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Abstract The last years have witnessed tremendous technical
advances in the field of transcriptomics that enable the simul-
taneous assessment of nearly all transcripts expressed in a
tissue at a given time. These advances harbor the potential to
gain a better understanding of the complex biological systems
and for the identification and development of novel bio-
markers. This article will review the current knowledge of
transcriptomics biomarkers in the cardiovascular field and will
provide an overview about the promises and challenges of the
transcriptomics approach for biomarker identification.
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Introduction

While cardiovascular disease (CVD) has traditionally been
considered a disease of Western society, its global incidence
is on the rise and it is currently more prevalent in low- and
middle income countries in Asia and Africa [1]. To prevent
CVD, accurate personal risk-assessment is paramount. The
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2012 European Society of Cardiology (ESC) guidelines rec-
ommend risk-assessment using the updated SCORE charts
based on age, gender, smoking, blood pressure, and total
cholesterol [2]. The recent joint guidelines by the American
College of Cardiology and the American Heart Association
(ACC/AHA) recommend a model based on the Framingham
Risk Score using generally similar parameters [3]. However,
these current risk prediction models only provide a rough
estimate of individual risk. Therefore, great value is posited
in the identification and development of new biomarkers for
CVD risk prediction.

Decades of research have shown that improvement of risk
prediction requires comprehensive understanding of the dis-
ease mechanism. The tremendous progress achieved in the
‘omics’ field has successfully improved the understanding of
CVD pathophysiology by comprehensively interrogating dis-
ease states at the molecular level. This molecular phenotyping
has become feasible by novel, robust, and fast high-
throughput analytic platforms providing novel opportunities
for molecular biomarker identification [4]. Transcriptomics,
the study of ribonucleic acid (RNA) transcripts and their
expression patterns at a genome-wide level, is particularly
promising for biomarker identification.

This article will review current knowledge of transcripto-
mics biomarkers in the cardiovascular field and provide an
overview about the promises and challenges of the transcripto-
mics approach for biomarker identification.

RNA

RNA has long been considered as the messenger molecule
between genes and proteins, where RNA is transcribed from
DNA to messenger RNA (mRNA) and subsequently translat-
ed into protein [5, 6]. In recent years, non-coding RNA species
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have been characterized including microRNAs (miRNAs) and
long non-coding RNAs (IncRNAs) [7, 8].

miRNAs are endogenous, non-coding small RNAs of
about 22 nucleotides regulating gene expression at a post-
transcriptional level [9, 10]. They are involved in a broad
range of biological processes and their dysregulation impacts
disease development [11]. Of great interest is that miRNAs are
stable in biological fluids such as blood and urine [12, 13], are
actively secreted in microparticles and show tissue-specificity,
attractive features of potential biomarkers [14].

IncRNAs cover RNA molecules over 200 nucleotides and
are observed in a wide range of tissues. They exert a broad
repertoire of functions and have been linked to differentiation
and developmental processes and disease [8, 15]. Compared
to miRNAs, the widespread attention on IncRNAs is a rather
recent phenomenon, nonetheless some promising evidence of
using IncRNAs as biomarkers exist [16].

Technology Platforms

Historically, investigation of RNA expression was performed
using northern blotting or RT-PCR approaches, at best inves-
tigating several RNA targets at once. For several years, the use
of expression microarrays has allowed rapid unbiased screen-
ing of nearly the entire transcriptome for discovery of the most
promising targets. In microarray-based methods tens of thou-
sands of transcripts are simultaneously analyzed by chemical-
ly labeling RNA molecules and subsequent hybridization to
probes on the microarray. The strength of microarrays lies in
the extensive coverage, the high-throughput applicability and
the relative inexpensiveness of the microarray approach.
However, microarray technology is limited by the amount of
RNA required, the limited dynamic range for quantification
and can only detect predefined transcripts. Furthermore, ques-
tions are raised about the reproducibility and reliability of
microarray experiments.

Currently, we are on the brink of a new revolution, brought
about by the advent of next-generation RNA-sequencing
(RNA-seq). Although still prohibitively expensive, advances
in RNA-seq will allow for superior scrutiny of the tran-
scriptome, providing absolute quantification of transcripts
while including splice variants, non-coding RNA and yet
unknown transcripts [17]. RNA-seq uses deep-sequencing
technologies whereby a population of RNA (e.g., mRNA or
miRNA) is converted to a cDNA library which is subsequent-
ly sequenced in a high-throughput base-by-base manner to
obtain short sequences. The reads, typically 30400 bp de-
pending on the DN A-sequencing technology used, are used to
reconstruct the original RNA-sequence in silico [18]. The use
of'this so called next generation sequencing technology for the
analysis of RNA has pioneered work with small regulatory
RNAs, possibly because this field has benefited less from
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microarrays as the usual size of small RNAs is too short to
be captured adequately with the limited resolution of micro-
arrays [19]. Detailed descriptions of microarray and RNA-seq
approaches are out of the scope of this work, but many
excellent reviews provide a comprehensive overview, e.g.,
[19-21].

As the technological capabilities for measuring transcript
expression have vastly improved, the importance of expres-
sion data for the development of new biomarkers has soared.
The opportunity for transcriptome-wide screening of bio-
markers allows for unbiased investigation of their potential
as an individual biomarker for disease.

Transcriptomics-based Biomarkers in Cardiovascular
Disease

Recent advances in the cardiovascular biomarker field have
identified novel and emerging transcriptomics-based bio-
markers (Table 1). Here, we highlight examples that have
started to emerge in clinical practice.

ST2 (IL-1RL-1, Interleukin 1 receptor-like 1)

ST2 represents a promising biomarker identified by a tran-
scriptomics approach. Weinberg and colleagues [22] identi-
fied the ST2 gene as upregulated in cardiac myocytes subject-
ed to mechanical strain by microarray analysis. Soluble ST2 is
a secreted receptor belonging to the IL-1 receptor family that
regulates inflammation and immunity [23]. The soluble form
of the protein can be measured in peripheral blood and a test
kit for measurements of soluble ST2 is already commercially
available (Critical Diagnostics Presage ST2 Assay). It has
been shown that ST2 levels rise above normal in the context
of various cardiac diseases [24] such as heart failure [25] and
ischemic heart disease [26]. In the Framingham Heart Study,
measurements of soluble ST2 showed clear gender differ-
ences, an increase with age and increased levels in association
with diabetes and hypertension [27] and soluble ST2 added
prognostic value to standard risk factors [28]. Novel findings,
however, indicate that genetic factors account for up to 40 %
of the inter-individual variability of soluble ST2 levels, which
must be taken into account in future studies of ST2 as a
biomarker [29]. ST2 is a clear example how the initial micro-
array analyses identified a target as cardiac biomarker and led
to the development of a suitable assay.

Growth Differentiation Factor-15 (GDF-15)

GDF-15, a distant member of the TGF-[3 cytokine superfam-
ily, has been identified by gene expression microarray analy-
ses as being massively upregulated in nitric oxide (NO)-treat-
ed cardiomyocytes [30], under oxidative stress, in pressure
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Table 1 Studies evaluating gene
expression data for the use of

Study scheme Selected references

biomarker identification for coro-

nary artery disease Gene expression (single genes)
sST2

GDF15

FSTL1
Gene expression signatures
23-gene score (Corus CAD)
Circulating microRNAs
miR-126, miR-223, miR-197

miR-1, miR-122, miR-133, miR-208a/b,

miR-375, miR-499
miR-21, mir-29a, miR-208a

miR-1, miR-133a, miR-499, miR-208

microRNA signatures
20-miRNA signature
6-miRNA signature
4-miRNA signature

HF, Ischemic heart disease [22, 25, 26]

acute coronary syndromes, [30, 32]
Angina pectoris, HF

ACS, HF [35, 37]

Obstructive CAD [43-45]

CHD [53]

AMI [49, 90-94]

Post-MI [95]

CAD [96, 97]

AMLI, single time point [56¢]

AMLI, serial time points [98]

AMI vs Takotsubo Cardiomyopathy [99]

overloaded left ventricles of mice with aortic stenosis, and a
mouse model of dilated cardiomyopathy [31]. Levels of
GDF15 can be measured in serum and plasma and evidence
are accumulating that GDF15 is a strong and independent
predictor of mortality and disease progression in patients with
established disease, such as acute coronary syndromes, angina
pectoris, heart failure [32]. Moreover, circulating GDF-15
levels are independently related to intermediate cardiovascular
phenotypes, including endothelial dysfunction, intima media
thickness, plaque burden, and left ventricular hypertrophy and
dilatation [33, 34]. Thus, measurement of GDF-15 may con-
tribute to a refined risk assessment on top of traditional risk
factors and biomarkers.

The same group that reported on GDF15 as cardiac bio-
marker identified follistatin-like 1 (FSTL1) as an inducer of
GDF15 production and an independent biomarker in acute
coronary syndrome by using an expression screen for cDNAs
encoding activators of the GDF15 promoter [35]. FSTL1 had
previously been indicated as a putative biomarker in chronic
systolic heart failure [36] and has been discussed as a novel
therapeutic target for post-myocardial infarction and acute
coronary syndrome [37].

Expression Signatures

A precise gene expression signature, i.e., an RNA expression
pattern, has the promise to diagnose and classify diseases and
potentially guide personalized treatment decisions for patients
[4]. Gene expression signatures have already been shown to
accurately predict cardiomyopathy etiology in heart failure
[38, 39] and to be useful in monitoring clinically significant
allograft rejection [40, 41]. These data support ongoing efforts

to incorporate biomarkers based on expression profiling to
determine prognosis and response to therapy [38, 42].

In the Personalized Risk Evaluation and Diagnosis in the
Coronary Tree (PREDICT) study, a whole blood gene expres-
sion score was developed and validated for the assessment of
obstructive CAD in non-diabetic patients [43, 44]. This score
is a function of the expression levels of 23 genes grouped into
highly correlated terms reflecting biological processes or cell
types [44] and is associated with the probability of obstructive
CAD [45]. Subsequently, a multiplex assay for expression
levels of the 23 gene transcripts became commercially avail-
able (Corus CAD, CardioDx, Palo Alto, CA) [45]. Multiplex
tests are often complex, containing multiple sample process-
ing steps, operators, machines and types of reagents which can
affect assay variability. Assessment of the laboratory process
variability showed that the Corus CAD intra-batch PCR var-
iability contributed most to the overall variability while the
reagent lot contributed most to inter-batch variability [45].
Thomas et al. [46] evaluated the diagnostic accuracy of the
gene expression score to determine obstructive CAD in
symptomatic patients referred for myocardial perfusion in
the multicenter COMPASS study. The investigators found
that the gene expression score was a significant predictor
of obstructive CAD and resulted, at a predefined thresh-
old, in a high sensitivity and high negative predictive
value. Although the added value of a transcriptomics
profile such as Corus CAD must be rigorously tested
against current standard-of-care risk prediction and ex-
plored in different populations to define its clinical utility,
the Corus CAD assay is extremely promising and one of
the best examples of the value of transcriptomics-based
biomarkers in the cardiovascular field today.
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Circulating microRNAs

Changes in the circulating miRNA levels have been associat-
ed with cardiovascular disease [47, 48]. As PCR-based tech-
niques for quantifying circulating miRNAs improved, studies
began to explore whether miRNAs could serve as clinical
biomarkers, e.g., as biomarkers of the acute coronary syn-
drome [49, 50], acute myocardial infarction [51], heart failure
[52].

In the Bruneck study, one of the largest studies measuring
miRNAs, Zampetaki et al. [53] screened levels of 19 circulat-
ing miRNAs by quantitative RT-PCR. Three miRNAs formed
a signature for myocardial infarction: miR-126, miR-223 and
miR-197. Those miRNAs added information to the Framing-
ham Risk Score for the endpoint coronary heart disease and
led to better patient stratification to risk categories, indicating
the potential value of these miRNAs as biomarkers for car-
diovascular risk prediction.

However, most published miRNAs studies were small
case-control studies and should be interpreted with caution
and further work in larger populations is required. Detailed
overviews of the current miRNA biomarker literature are
given in, e.g., [9, 54, 55].

MicroRNA Signatures

Similar to specific gene expression signatures, signatures of
miRNAs may reflect a given disease state and have potential
as a biomarker. Meder et al. [56°] assessed whole-genome
miRNA expression in whole blood samples of patients with
acute myocardial infarction (AMI); 121 miRNAs were iden-
tified to be significantly dysregulated in AMI. The predictive
power of these miRNAs were evaluated by receiver operator
characteristic curves, and area under the curve (AUC) values
of up to 0.94 were observed for the most predictive single
miRNAs, miR-1291, and miR-663b. Using an algorithm for
self-learning pattern recognition, a unique 20-miRNA signa-
ture was identified that predicts AMI with higher power and
better AUC compared to individual miRNAs, even at stages
when troponin T was still negative. These study results impli-
cate that miRNA signatures, derived from peripheral blood,
can serve as a valuable biomarker and may improve
biomarker-based diagnosis of AMI. However, it needs to be
mentioned that the sample size was rather small and larger
patient cohorts are needed for validation.

In a subsequent miRNA study the same group investigated
the kinetics of miRNA dysregulation in serial measurements
in AMI patients and confirmed a 6-miRNA signature, includ-
ing five out of the 20 miRNAs identified in the previous study
[57]. These serial measurements identified distinct miRNA
patterns in the very early phase of AMI that resolved within
the first days of successful therapy. Significant differences
were seen mainly at the two earliest time points, indicating
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those miRNAs to be early markers of AMI. The authors
hypothesize that, although the release of molecules from
injured myocardium may be similar for miRNA and proteins,
a whole-blood approach may provide further information
because it would reflect the disease processes involved in
the pathogenesis of rather than solely detecting myocardial
NECrosis.

Clearly, future studies are needed to examine the value of
miRNA signatures as potential robust biomarkers; neverthe-
less, miRNAs and miRNA signatures are emerging promising
new players in cardiovascular biomarker research.

Long Non-coding RNAs

Recently another class of non-coding RNAs, IncRNAs, has
aroused interest in cardiovascular function and disease. Grow-
ing evidence suggest that IncRNAs are key regulatory mole-
cules at every level of cellular physiology, and their alterations
are associated with multiple human diseases [58, 59] and may
provide promising new targets for biomarker identification.
Despite the progress made in oncology studies that tested
IncRNAs as biomarkers for, e.g., breast cancer [60], endome-
trial carcinoma [61] and lung cancer [62¢¢], data on IncRNA
biomarkers in the cardiovascular field is still poor and further
work is essential to improve the overall understanding and
value of IncRNAs as biomarkers.

Challenges in Biomarker Development

Multiple stages are required for the “pipeline” of transcripto-
mics biomarker discovery and development. These stages
include among others 1) discovery of putative biomarkers for
the target disease phenotype, ii) (technical) validation of those
biomarkers in various disease and population cohorts to char-
acterize biomarker performance, and iii) subsequent testing in
large prospective clinical trials before translation into clinical
routine. In addition, the impact of a new biomarker on clinical
outcomes in terms of efficacy and cost effectiveness is a
further step that should be taken. Novel technologies have
contributed to a massive increase in biomarker discovery
projects and reports, however, only few have been validated
for routine clinical practice [63].

Numerous excellent reports are published providing a com-
prehensive overview of pitfalls and challenges for biomarker
discovery and translation, e.g., [55, 63—67]. Here, we briefly
review the key challenging points (summarized in Fig. 1).

Study Design

An appropriate study design is a foremost requirement for
reliable transcriptomics-based biomarker identification,
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*inadequate size or composition
*inadequate study design
*inaccurate clinical data

* lost to follow-up

Study Cohort

* mixed up

* degradation
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*inadequate target material

* technological artifacts
* technological accuracy & precision
* batch-effects

Measurement

* quality control & normalization
« correction for confounders

* subgroup analyses

* systems biology
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Risk Prediction *added value over existing models

*validation

e intellectual property

« funding for development
e regulatory approval

Clinical Application

Fig. 1 Challenges in transcriptomic biomarker development.
Figure depicts main steps in Biomarker discovery and development and
associated challenges to overcome

ensuring adequate sample size for analysis and accounting for
possible confounders. We recently showed that age, gender,
body mass index, inflammatory status, and smoking influence
gene expression [68]. Likewise, consideration should be given
to the influence of cardiovascular risk factors, ethnicity, and
medication on gene expression [4]. In addition, common gene
variants (i.e., single-nucleotide polymorphisms) and epigenet-
ic patterns can influence gene expression [4]. To achieve
adequate statistical power, large sample sizes, accurate clinical
phenotyping and well-characterized populations are mandato-
ry [64, 69]. Another primary consideration in study design is
the choice of tissue or cell type to investigate. Due to the ease
of access, circulating blood is often used as surrogate source
of diseased tissue. However, it is unclear whether the blood
transcriptome is suitable as a surrogate for tissues like, e.g.,
heart tissue. One needs to consider that whole blood contains a
mixture of cell types whose proportions show inter variability
and may alter depending on disease state [70].

Animal models and in vitro experiments are still important
methods employed for biomarker research. However, the
translation of these studies toward clinical application is dif-
ficult and could lead to false targets. Comparison of tran-
scriptomics data from ex-vivo monocytes and the in vitro
monocytic THP-1 cell-line showed important differences

[71]. Likewise, recently Seok et al. showed that human in-
flammatory expression profiles where highly similar between
various causes of inflammation, yet very different from mice
inflammatory expression profiles [72¢¢]. This indicates that
great care must be taken when translating such results into the
clinical setting.

Analytical Considerations and Standardization

In contrast to genomic data, a subject’s gene expression data
will vary spatially and temporally. To reduce confounding
factors influencing gene expression data, such as different
sample preparations and differences in the PCR runs, gene
expression data have to be normalized. This is a critical issue
and a major concern in transcriptomics studies. Especially for
circulating miRNA measurements normalization is a “hot
topic” in the current discussion, and several normalization
approaches are used such as quantile-quantile normalization
or spike-in of artificial RNA material [20]. However, normal-
ization is currently applied in a non-standardized fashion and
application of universal reference material is required. Fur-
thermore, variation caused by preanalytical and analytical
factors can substantially influence gene expression data [4].
Schurmann et al. [73] showed that factors such as RNA
quality, storage time of blood, and batches of RNA processing
and amplification have strong influence on gene expression
data. Other studies provide evidence for the variability inher-
ent to the PCR process and about batch effects in high-
throughput technologies [45, 74]. In addition, numerous var-
iables have been shown to influence the detection of miRNAs
in the preanalytical phase such as heparin [75¢¢] and can lead
to erroneous results [76]. This can be particularly challenging
in the clinical setting, as differences in sample collection,
sample processing, and assay performance in different clinical
centers are to be expected. Therefore, to eliminate technical
and analytical variability and avoid artifactual data generation,
consensus on standard methods for all steps is imperative.

Validation

Validation of initial discovery results in independent, large-
scale studies are required in the field of biomarker research.
Ideally, results of transcriptomics analyses will be validated in
multi-center real-world studies, even comprising
decentralized processing of RNA and PCR analysis and opti-
mization of (decentralized) clinical laboratory testing proce-
dures [4]. After validation of the initial expression results, the
putative biomarker must be rigorously tested against the
existing standard of care and explored in a wider population
to define its clinical utility.

Another aspect that will become increasingly important is
the validation of biomarkers for specific subgroups. It has
been common practice for clinical laboratories to use specific
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reference values for several important subgroups like men and
women or children and adults, when evaluating diagnostic
markers. However, it is uncommon to determine the predictive
value of a biomarker for specific subgroups. This is
about to change, as it is clear from the recent recom-
mendations on cardiovascular risk-assessment by the
ACC/AHA, stating that race- and sex- specific risk-
assessment is highly recommended [3].

Multidisciplinary Approaches

Getting candidate biomarkers into large-scale validation stud-
ies requires the integration of diverse skills. Most biomarker
discovery is conducted in labs lacking the resources and
multidisciplinary expertise needed [63]. Therefore, biomarker
discovery should be a component of large research networks,
involving industry and experts in distinct fields such as mo-
lecular biology, analytical chemistry, bioinformatics, clinical-
trial design, epidemiology, statistics, and health-care econom-
ics [63]. Several collaborative initiatives have emerged in
recent years to orchestrate biomarker research efforts (includ-
ing transcriptomics-based biomarkers). These include, among
others, the Innovative Medicines Initiative (IMI) (www.imi.
europa.eu/) and the BiomarCaRE Consortium (www.
biomarcare.eu), both funded by the European Union.

Transcriptomics, Genomics, and Epigenomics

The current trend in biomarker research is increasingly fo-
cused on the discovery of causal biomarkers indicative of
changes in pathophysiologic processes that are the basis of
the complex disease and a potential target for drug develop-
ment. GWAS provide an important tool to reveal causality
through the principle of “Mendelian randomization”. Zacho
et al. is a case in point, showing that genetically raised CRP
levels did not influence risk of myocardial ischemia [77].
Another clear example is the recent landmark paper by Voight
et al. which showed that genetic predispositions that raised
HDL-cholesterol levels had no influence on disease outcome,
as opposed to genetic alterations in LDL-cholesterol levels
[78]. The method of ‘Mendelian randomization’ is also well-
suited to indicate causality of transcriptomics-derived
biomarkers.

GWAS has found many single nucleotide polymorphisms
(SNPs) affecting disease, yet the complex mechanisms
through which they exert their effect, is still largely unknown,
as many appear in non-coding regions of the genome. SNPs
which influence mRNA expression are known as expression
Quantitative Trait Loci (eQTL).

SNPs associated with complex diseases are more likely to
be eQTLs compared to other SNPs and 45 % of genes
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associated with CVD contain eQTLs [79, 80]. SNPs also
influence known risk factors of cardiovascular disease, for
example lipoproteins, for which 96 eQTLs have been found
in 157 known loci [81, 82]. This shows that eQTLs may be an
important mechanism for cardiovascular risk SNPs, and em-
phasizes the importance of transcriptomics for the interpreta-
tion of GWAS results.

In addition to genetic biomarkers, epigenetic DNA modi-
fications like DNA methylation and histone modifications
could serve as biomarkers of disease. Most interest has recent-
ly been directed at DNA-methylation biomarkers, enabled by
development of ‘epigenome-wide’ DNA-methylation arrays.
To elucidate the tissue specific down-regulation of gene ex-
pression by DNA-methylation in a high-throughput fashion,
transcriptomics are indispensable. In a recent study,
Grundberg et al. compared DNA-methylation to GWAS and
transcriptomics data and found that 28 % of methylation
quantitative trait loci (meQTL’s) are associated with nearby
SNPs, and 6 % of SNPs played a role in both DNA-
methylation and adipose tissue gene expression [83], showing
the complex interplay between genetic variants, methylation,
and expression.

In addition, SNPs may also influence the expression of
mRNA through interference with non-coding RNA
(ncRNA) regulatory activity. For example, Gamazon et al.
analyzed the effects of SNP’s on expression (MRNA-eQTL)
and microRNA expression (miRNA-eQTL) and showed sig-
nificant enrichment of miRNA-eQTLs in known mRNA-
eQTLs, thereby providing important evidence for specific
miRNA-mRNA interactions. Furthermore, many of the found
SNPs were associated with traits of complex diseases [84¢]. In
an identical fashion, Kumar et al. identified SNPs that influ-
ence lincRNA expression, and showed associations of these
SNPs with complex diseases [85]. This indicates that dysreg-
ulation of transcriptome interactions could be an important
disease mechanism, and may thus form interesting biomarker
targets.

Future Perspectives

Despite a tremendous increase of interest in the transcriptome,
we are only just scratching the surface of its complexity. To
fully elucidate the transcriptome requires robust sample pro-
cessing as well as advances in technology and analysis
methods.

Whole transcriptome RNA sequencing is still in its infancy
yet new developments seem very promising. Meanwhile,
several companies acknowledge the trend for multimarker
diagnostics, and have developed custom expression arrays
and multiplex PCR solutions suited for clinical application.
Improvements in microfluidics lead to reduced sample
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Fig. 2 Transcriptomics for biomarker discovery. Simplified schematic of
relevant transcriptome interactions for current biomarker development.
Large studies are required to elucidate the complex interactions of the
genome and epigenome with the transcriptome and subsequently the
proteome. Bullets denote contemporary techniques. eQTL, expression
quantitative trait loci; meQTL, methylation quantitative trait loci; mRNA,
messenger RNA; ncRNA, non-coding RNA

volume requirements, smaller machines and laboratory set-
ups and will soon culminate in lab-on-chip solutions.

Advances in analysis methods require standardization of
data normalization and optimal modeling [86]. An increasing-
ly important strategy of in silico modeling is the systems
biology approach [87]. It combines data at various biological
levels (e.g., genomic, epigenomic, transcriptomic, and prote-
omic) to identify targets of interest (Fig. 2). In addition, it
sheds light on the relation of the target biomarker to other
markers, paving the way for in silico pathway analysis and
enabling the identification of pathological pathways [88].

As new biomarkers emerge on the horizon, improved risk
prediction will have to be translated into increased health
benefits from therapeutic intervention. This is especially in-
teresting for causal biomarkers, which can themselves act as a
target for novel drug development. Furthermore, companion
diagnostics indicating individual drug efficacy, will likely take
a more prominent role, as we progress toward personalized
medicine.

Conclusion

Over the last years, gene expression analyses strongly influ-
enced the area of biomarker identification and development in
the cardiovascular field. Several potential biomarkers have
been identified including gene expression signatures and

non-coding RNAs, and a few have been translated into clinical
utility. However, several aspects in the “transcriptomics pipe-
line” of biomarker development deserve consideration, rang-
ing from appropriate study design and material to analytical
methods, standardizations, most importantly, and validation.
Finally, to reach clinical application of the biomarker, funda-
mental questions about the clinical potential need to be eval-
uated as outlined by Morrow and deLemos [89]: i) can the
clinician measure the biomarker?, ii) does the biomarker add
new information?, and iii) does the biomarker help the clini-
cian to manage patients?.
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