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ABSTRACT: Human bone marrow mesenchymal stem cells
(hBMSCs) represents one of the most frequently applied cell
sources for clinical bone regeneration. To achieve the greatest
therapeutic effect, it is crucial to evaluate the osteogenic
differentiation potential of the stem cells during their culture
before the implantation. However, the practical evaluation of
stem cell osteogenicity has been limited to invasive biological
marker analysis that only enables assaying a single end-point.
To innovate around invasive quality assessments in clinical
cell therapy, we previously explored and demonstrated the
positive predictive value of using time-course images taken
during differentiation culture for hBMSC bone differentia-
tion potential. This initial method establishes proof of
concept for a morphology-based cell evaluation approach,
but reveals a practical limitation when considering the need
to handle large amounts of image data. In this report, we

aimed to scale-down our proposed method into a more
practical, efficient modeling scheme that can bemore broadly
implemented by physicians on the frontiers of clinical cell
therapy. We investigated which morphological features are
critical during the osteogenic differentiation period to assure
the performance of prediction models with reduced burden
on image acquisition. To our knowledge, this is the first
detailed characterization that describes both the critical
observation period and the critical number of time-points
needed for morphological features to adequately model
osteogenic potential. Our results revealed three important
observations: (i) themorphological features from the first 3 days
of differentiation are sufficiently informative to predict bone
differentiation potential, both activities of alkaline phosphatase
and calcium deposition, after 3 weeks of continuous culture;
(ii) intervals of 48h are sufficient for measuring critical
morphological features; and (iii) morphological features are
most accurately predictive when early morphological features
from the first 3 days of differentiation are combined with later
features (after 10 days of differentiation).
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Introduction

At present, the regenerative medicine market is still limited
when one considers its potential impact on clinical practice.
Currently, technological developments for commercial

This is an open access article under the terms of the Creative Commons Attribution-

NonCommercial-NoDerivs License, which permits use and distribution in any medium,

provided the original work is properly cited, the use is non-commercial and no

modifications or adaptations are made.

This article was published online on 30 January 2014. Subsequently, it was determined

that the article contained an earlier version of Figure 4, and the correct version was

published on 21 February 2014

Fumiko Matsuoka and Ichiro Takeuchi contributed equally to this work.

Correspondence to: R. Kato

Contract grant sponsor: New Energy and Industrial Technology Development

Organization

Contract grant number: 09C46036a

Received 26 August 2013; Revision received 21 October 2013; Accepted 7 January 2014

Accepted manuscript online 14 January 2014;

Article first published online 30 January 2014 in Wiley Online Library

(http://onlinelibrary.wiley.com/doi/10.1002/bit.25189/abstract).

DOI 10.1002/bit.25189

ARTICLE

1430 Biotechnology and Bioengineering, Vol. 111, No. 7, July, 2014 � 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.



advancement of regenerative medicine are focused on cell
culture automation technologies. For the purpose of
industrialization, higher expectations for standardization
are now required for automation technology; platforms need
to improve both quality of results and cost effectiveness
(Ratcliffe 2011; Smith 2012). Recently, advances in novel
imaging technologies, used to support image-based cell
evaluation, have improved performance to the point where
quantitative evaluation of detailed cellular events is now
possible (Becker and Madany, 2012; Erdmann et al., 2012;
Hong et al., 2006; Kino-oka et al., 2009; Li et al., 2010; Platt
et al., 2009; Poirier-Quinot et al., 2010; Seiler et al., 2012;
Unadkat et al., 2012). Non-destructive imaging methods have
shown particular compatibility with cell therapy, which
requires intact cells for therapy during and after their
evaluations. The historical use of microscopy for cell quality
evaluation suggests that morphological parameters can
empirically define cell quality, but to-date no objective
morphometric criteria have been directly linked to osteogen-
ic potential (Maul et al., 2011; Platt et al., 2009; Seiler
et al., 2012; Wang et al., 2013; Zhang and Kilian, 2013).
By focusing on cellular morphological information, we

previously reported a non-invasive cell quality evaluation
method for predicting the osteogenic differentiation potential
of human bone marrow-derived mesenchymal stem cells
(hBMSCs), by using only time-course collected phase contrast
images (Matsuoka et al., 2013). The clinical utility of our
proposed method improves upon previous reports by more
accurately predicting osteogenic potential. Also, our experi-
mental framework is designed to overcome common biases of
conventional morphology-/image-based cell quality analysis
approaches by satisfying three essential criteria for obtaining
high-performance models: (i) timely information extracted
from precisely timed image capture, assured by a fully
scheduled image acquisition system; (ii) unbiased informa-
tion described by carefully selected features, which are not
interdependent, thereby eliminating researcher subjectivity
biases; and (iii) reliable information described by features
derived from sampling statistically relevant numbers of cells.
Our proposed image-based cell quality prediction presents

a significant technological advancement that offers several
advantages over conventional measures of hBMSC differen-
tiation potential. Conventional differentiation markers can
only be measured once, when differentiation is complete.
Our proposed non-destructive method preserves all cells,
which maximizes the amount of viable material for
therapeutic use. Our approach also allows the continuous
evaluation of the same cells from the first day to the final day.
The ability to repeat measurements on the same cell
population provides a greater opportunity to accurately
predict optimal timing for use of the cells. An image-based
cell quality assessment tool can offer new choices for clinical
physicians to supply additional quality assurances for the
production of cells for therapy. Especially with their
heterogenic diversity of stem cells, the image-based evalua-
tion, which measures every single cell in the culture vessel,
can be a powerful tool for total cell evaluation.

However, our proposed method left some tasks to be solved
for more practical usage to satisfy both the efficacy and the
profitability. Since proposing the original method, we
re-evaluated the large collected data set consisting of 9,990
images covering 14 days (8 h intervals) of the differentiation
period. We considered that the image-dense data required to
implement our method may pose a potential obstacle for
clinical implementation. A fully automatic image acquisition
system to support image data analysis is not always a justifiable
investment for clinics performing the latest cell therapies. In
facilities already performing clinical research with established
standard operating procedures, changing an automated sample
handling system is also not always feasible. Physical space is
another limiting consideration when introducing an automa-
tion platform into a clinical environment. Therefore, to make
our proposed method more widely available, we aimed to
breakdown, simplify and refine the prediction scheme into a
practical, resource-efficient application without losing perfor-
mance. We also considered the resource demands when
re-evaluating our original method: (i) the worker time involved
in each image acquisition, (ii) the additional costs to fund
operators for timed images at night and on weekends, (iii) the
frequency and cost of occupying and maintaining the defined
area (such as clean rooms), (iv) the effort of scheduling
operators and space to obtain image data, and (v) the expense
of purchasing, labor and maintenance of image storage media.
Based on theweight of these considerations, we investigated the
minimum image acquisition conditions to assure high
prediction performance if our method was implemented using
manual procedures rather than fully automated. In this work,
we launched our investigation of constructing high-quality,
resource-efficient hBMSC prediction models by aiming to
define essential morphology parameters. To achieve this aim,
we vetted two aspects of the information derived from cellular
images during osteogenic differentiation: (i) the critical period
for defining cell quality by theirmorphological features, and (ii)
the optimal density of morphological information while
retaining prediction performance. To our knowledge, there
has been no detailed analysis that critically weighs the content of
cellular images for the purpose of informing cell quality
predictions based on cellular morphology. Since manual
observation of cellular morphology has historically supported
cell production, a detailed characterization of morphological
characteristics over a period of time should yield deeper insights
into the prediction sensitivity, and also the biologicalmeaning of
morphology-based decisions executed by cell biologists.
In this study, we used three types of algorithm modifica-

tion for the characterization of morphological features: (i)
shortening type: dataset characterization where the inclusion
rate of morphological features along a time-line is shortened;
(ii) window-shift type: dataset characterization where the
inclusion period for morphological features is changed along
a time-line; and (iii) skipping type: dataset characterization
where the density of morphological features is reduced by
decreasing time-point sampling frequency. By comparing
changes in each type of model’s prediction performance, we
could define the sensitivity of morphological signals for
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detecting collapse of hBMSC differentiation potential. We
also defined the most resource-effective scheme to collect the
morphological parameters to predict osteogenic differentia-
tion potential. Our data shows not only the key conditions for
feasible implementation of our proposed method by clinical
physicians, but also the modeling approach that maximally
satisfies both quality and efficiency of image-based cell
quality prediction modeling.

Materials and Methods

Cells and Culture

Three lots of human bone marrow which were derived
mesenchymal stem cells (hBMSCs) (LonzaWalkersville, Inc.,
Walkersville, MD) were designated as Lot 1 (strain number

15000-1, unknown race, Male, 19-year-old), Lot 2 (strain
number 17174, Oriental, Male, 20-year-old), Lot 3 (strain
number 11533, Black, Male, 22-year-old). Groups of cells
with different passage number were prepared by expanding
three lots of hBMSCs in growth medium (passage 3–5 for lot
1 and 2, passage 6–8 for lot 3) based on the clinical jaw bone
therapy protocol used by our group (Kagami et al., 2011). The
previously described osteogenic differentiation protocol was
simultaneously applied to these cells and images acquired in
parallel (detailed protocol described in Matsuoka et al.,
2013). Briefly, as indicated in Figure 1, cells were seeded at a
density of 1.0� 104 cells/well in 12-well plate (Greiner Bio-
One, Frickenhausen, Germany), and the cell-seeding day was
designated as day 0 and cultured for expansion from days 4 to
0 in a-modified Eagle’s medium (aMEM) containing 10%
fetal bovine. From days 1 to 14, cells were divided into two

Figure 1. Schematic illustration of experimental procedures for constructing morphology-based prediction models for osteogenic differentiation potential. In the time-course

experiment, an osteogenic differentiation culture period (21 days) followed the expansion culture period (4 days). For the first 14 days of differentiation culture phase contrast

microscopic images were automatically acquired at 8 h intervals (total 37 time-points) using BioStation CT (Nikon). From acquired images, morphological features were extracted

through image processing (total 666 morphological features). Three types of feature variation were compared: (i) Shortening type, a systematic examination of the impact of

decreasing the overall duration of the experimental time-line; (ii) Window-shift type, a 6-time-point scan of the 14 day time-course to explore the possibility of a critical time window;

and (iii) Skipping type, an evaluation of the critical sampling frequency between time-points. Circles in the upper-left panel represent image collection time-points. On day 14,

sampleswere collected for experimental measurement of ALP activity. On day 21, samples were collected for calcium deposition measurement. Themodel predicting ALP activity on

day 14 was designated as D14_ALP, and the model predicting calcium deposition rate on day 21 was designated as D21_Ca. For both prediction models, two different scenarios for

model construction were examined. Scenario I: New patient modeling, which attempted to predict a new patients cell potential from historical image data of previous patients, and

Scenario II: Ongoing patient modeling, which attempted to predict new patients cell potential by combining the historical image data of previous patients together with the patients

own image data from early culture stages.
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groups: (i) osteogenic-induction group (Induction, N¼ 6)
and (ii) non-induction group (Control, N¼ 6). For the
Induction group, the medium was switched to induction
medium consisting of 10% FBS-containing aMEM medium
supplemented with 10 nM dexamethasone (Sigma-Aldrich
Corp., St. Louis, MO), 100mM ascorbic acid (Wako Pure
Chemical Industries, Ltd., Osaka, Japan), and 10mMglycerol
2-phosphate sodium salt hydrate (Sigma-Aldrich Co.). For
the non-induction group, no supplements were added to the
aMEM medium containing 10% FBS. The medium was
refreshed at days 3 and 9. For half of the samples in each
experimental group (N¼ 3), alkaline phosphatase (ALP)
activity was quantified on day 14, and for the rest (N¼ 3),
calcium deposition was quantified on day 21.

Image Acquisition

During the osteogenic differentiation culture period, phase
contrast microscopic images of hBMSCs were obtained using
the BioStation CT (Nikon Co., Tokyo, Japan). Five view fields
(center position and four positions at 2.2mm from the
center) of phase contrast images were acquired from eachwell
at 8 h intervals covering 8 h (first image acquisition) to 320 h
(last image acquisition) covering a total of 14 days. Among all
40 time-points scheduled, three time-points were omitted
from analysis. Data at 8 h was omitted since the cells were not
yet fully settled. Data at time 64 h and time 216 h were also
omitted, since the image acquisition schedule conflicted with
scheduled medium changes. As a consequence of these
omissions, we re-numbered the retained data sequentially
from time-point 1 (16 h after the differentiation start) to
time-point 37 (320 h after the differentiation start).

Quantification of Osteogenic Differentiation Rates

Quantitative ALP activity and calcium deposition assays,
which are conventional destructive experiments, were
performed as previously described (Matsuoka et al., 2013).
Briefly, after 14 days of differentiation culture, ALP activity
was measured with a p-nitrophenyl phosphate solution and
normalized to the total cell number. Since ALP activity
measurement has been known as insufficient osteogenic
differentiation marker in the clinical trials, calcium deposi-
tion was also measured after an additional 7 days of culture
using an alizarin red staining method, to enhance the
meaning of quantification of osteogenic differentiation
potential.

Cell Image Processing

Cell image processing was performed as described in our
previous reports (Matsuoka et al., 2013; Sasaki et al., 2013).
Briefly, all images were processed using MetaMorph software
(Molecular Devices, Sunnyvale, CA) with the original filter
sets. After binarization, the following nine morphological
features of all cellular objects in each image were measured:
(i) breadth, (ii) elliptical form factor, (iii) fiber breadth, (iv)

fiber length, (v) hole area, (vi) inner radius, (vii) relative hole
area, (viii) shape factor, and (ix) total area. For each
parameter, the average (AVE) and standard deviation (SD) of
five view fields, consisting of about 4,000–40,000 cells, were
calculated, yielding 18 features (consist of AVE and SD for
nine features). Such AVE and SD information encompassing
the time-course of 38-time-points are assigned to describe
the statistical changes that arise in heterogenic group of
cells. The final total features consisted of 666 features
(18 morphological features within each of 37 time-points).
From all of these parameters, key features were selected using
the three types of dataset characterization described in the
Construction and prediction models section. Morphological
features were directly associated with the morphological
measurement data, which were experimentally determined
values, resulting in 54 samples (3 lots� 2 induction
conditions� 3 passages� 3 wells) assigned with correspond-
ing ALP values, and 54 samples assigned with calcium
deposition values. This process linked the biological
measurement with morphometric information to complete
a dataset for use in prediction model construction.

Prediction Model Construction

To characterize the effects of morphological features on
model performances to predict the osteogenic differentia-
tion potential of hBMSCs, three types of data characterization
concepts were examined with two types of target prediction
models (D14_ALP and D21_Ca) constructed through two
types of scenarios (scenario I and II) using ridge regression
(Fig. 1). Three types of data characterization were defined as
follows: (i) Shortening type: the number of morphological
features was systematically decreased by 1 time-point for
each sampling event along the time-course. For example,
morphological features used for the full time-course included
time-points 1–37 (666 features¼ 18 morphological features
from 37 time-points); this was then shortened to time 1–36
(648 features¼ 18 morphological features from 36 time-
points), then time 1–35(630 features¼ 18 morphological
features from 35 time-points), and so on. (ii) Window-shift
type: the number of time-points within an analysis set was
fixed to 6 time-points (covering approximately 2 days), and
their capture period was shifted along the time-course with 1
time-point. For example, beginning from time-point 1 the
first 108 features (i.e., 18 morphological features� time-
points 1–6) were included; beginning from time-point 2, the
next time-matched 108 features were included (i.e., 18
morphological features� time-points 2–7), repeated to the
final time-point. (iii) Skipping type: the number of
morphological features included was decreased by increasing
the time-point span by 8 h intervals. For example, 666
morphological features, including all time-point data at 8-h
intervals were initially used, then the dataset was decreased to
342 features by increasing the time-point interval to 16-h,
and so on. The detailed modeling process using ridge
regression followed a previously described method (Hastie
et al., 2009).
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For each of the three types of parameter evaluations, four
types of prediction models were constructed, which covered
the two types of prediction goals and two types of modeling
scenarios. The two types of prediction models were as
follows: (i) D14_ALP model that aimed to predict the ALP
activity value measured on 14th day from the preceding
morphological features (days 1–14); and (ii) D21_Ca
model that aimed to predict the calcium deposition value
measured after an additional week of differentiation culture
(day 21) from the previous week’s morphological features
(days 15–21).

For each model, two types of modeling scenarios were
tested. In Scenario I, which is applied as a new patient
modeling scheme, the prediction model does not use
information fromwithin the same lot of cells model training.
For instance, when we examined 3 lots of hBMSCs with 18
samples per lot (54 samples in total), for each prediction
output the prediction model was trained with 36 samples
from 2 lots of cells (e.g., lots 1 and 2), and then used to predict
performance of the 18 samples from the remaining lot (e.g.,
lot 3). This scenario was designed to provide the advantage of
performing an accurate cell quality evaluation from a newly
accepted patient using historical data collected from other
patients’ cells. In Scenario II, the ongoing patient approach,
a model is built by incorporating early data derived from the
patient’s own cells into the training set. For example, when
using data from 54 samples consisting of 3 lots of hBMSCs,
the prediction model is trained with 42 samples consisting
of 2 lots (e.g., lots 1 and 2), plus 6 early samples from the
remaining lot (e.g., images from the first passage of lot 3), and
then predicts the remaining 12 samples. This scenario was
designed to take advantage of early data thatmay be generated
when cell therapy requires more than two passages to expand
cells in order to obtain therapeutically relevant cell numbers.
This scenario makes use of stored information obtained from
previous patients plus the patient’s own cellular morphology
data, which can be used to predict the future quality of a
newly accepted patient’s cells.

We calculated standardized error as a metric for evaluating
the performance of the prediction models as follows:

Eave ¼
XN

k¼0

ðyp � ytÞ2 ð1Þ

Estd ¼ Eave
V

ð2Þ

(Estd, standardized error; Eave, averaged error; yp, prediction
value; yt, teacher signal value; N, sample number; V, variance
of all samples)

Performance is considered to be improved with a decrease
in the standardized error.When the standardized error equals
1, the prediction yields are essentially equal to the average
value for all test samples, which is equivalent to random
guessing.

Results

Effect of Time-Course Length for the Prediction of
Osteogenic Differentiation Potential Based on Image Data

We evaluated the performance of models derived from
“shortening type” of dataset characterization to first
determine the effect of morphological data acquisition
period on predicting osteogenic differentiation potential
(Fig. 2).

For both modeling scenarios, the prediction performance
of the D14_ALP models were found to be high (standardized
error< 0.5) for all models lacking morphology information
collected after 40 h from start of induction (Fig. 2a).

Figure 2. Prediction performance of shortening type use of morphological

features. a: Performance of D14_ALP models. b: Performance of D21_Ca models. Filled

squares and solid line, modeling with scenario I (new patient modeling); open squares

and solid line, modeling with scenario II (ongoing patient modeling).
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Surprisingly, in spite of the differences between construction
scenarios, the prediction model using only morphological
features from the first 2 days (precisely, 16–40 h) showed
similar performance compared to the model using all
information from the entire collection period. We have
previously reported our scenario II to be the most effective
modeling scenario by using all 14 days of morphological
features. However, based on results from the present study,
the scenario II-based models can reduce their data usage to
only 8 h of data (16–24 h), which is sufficient to predict ALP
activity after 14 days (Matsuoka et al., 2013). Considering
aspects that have the greatest influence on diminishing
performance, the scenario I-based models shifted perfor-
mance drastically, when themorphological information from
time-point 4 (40 h after the induction start) was removed,
or when morphological features were limited to the very
first day.
For D21_Camodels (Fig. 2b), we identified an observation

time period that contributes uncertainty to the models.
When morphological data from the culture period spanning
88–248 h is included in the model, we observe a noticeable
decrease in model prediction accuracy. In contrast, features
which cover only 48 h were found to construct models with
consistent performance compared to the model using data
from the entire sampling period (Fig. 2b). With D21_Ca, the
difference in model between the two construction scenarios
was marked. Our proposed approach with scenario II greatly
enhanced performance of predicting further biological
response after differentiation. Eight hours (16–24 h) of
morphology measurements was also found to be sufficient to
predict calcium deposition rate after 21 days of differentia-
tion, which is similar to the findings when using D14_ALP
models.

Effect of Image Collection Period Interval Within a
Time-Course for Prediction of Osteogenic Differentiation
Potential

The “window-shift type” of dataset characterization was
evaluated to examine the critical time interval during which
morphological information should be collected for the most
accurate osteogenic differentiation model construction
(Fig. 3). In our previous investigations, we found that a
collection interval of approximately 2 days was sufficient to
predict cellular quality (Sasaki et al., 2013); therefore, we set
the size of the window to cover 2 days (6 time-points) and
evaluated the effects of various 2 days intervals shifted over a
total span of 14 days.
With a window-shift type of evaluation, we found that

small numbers of morphological features gave stable and
high prediction performance in D14_ALPmodels for most of
the intervals tested. In contrast, D21_Camodel performances
were poor in all intervals. Interestingly, we observed no
significant differences in performance between scenarios I
and II with the morphological features obtained from the
2 days period.

Effect of Image Data Sampling Frequency for Time-Course
Prediction of Osteogenic Differentiation Potential

We evaluated the performance of models derived from
“skipping type” data set characterization to explore the effect
of image data density that would be sufficient for construct-
ing accurate osteogenic differentiation models (Fig. 4).
Starting with 8-h intervals from time-point 1 to 37, we
decreased the frequency of image data collection, or

Figure 3. Prediction performance of window-shift type use of morphological

features. a: Performance of D14_ALP models. b: Performance of D21_Ca models. Filled

squares and solid line, modeling with scenario I (new patient modeling); open squares

and solid line, modeling with scenario II (ongoing patient modeling). Dotted line, the

lowest prediction error in Shortening type use of features; broken line, the lowest

prediction error in Skipping type use of features. The axis indicating standard error is

plotted in logarithmic scale for indicating a wider range of plots.
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“skipped” interim time-points, which diminished the density
of the overall dataset.

With D14_ALP models, prediction performance was
nearly the same when using either 8- or 40-h sampling
frequencies. Forty-eight hours sampling frequency was also
found to be sufficient for clinical use. Scenario II constructed
D21_Ca models also produced very highly accurate
predictions using 48-h intervals. In contrast to the influence
“skipping” data had in the D14_ALP models, the perfor-
mance of D21_Ca models was enhanced by reducing the
frequency of morphological features to 48-h intervals.

Discussion

To advance our previous findings, which proposed an
automated approach for morphology-based prediction of

osteogenic differentiation potential, we provide here a
detailed critical evaluation of the image sampling require-
ments for morphological features of hBMSCs. Although an
image-based cell quality assessment method provides greater
advantages for industrialization of regenerative medicine due
to its non-destructive nature, we designed this study to
identify the critical morphological image sampling character-
istics that would allow a resource-efficient prediction of
osteogenic differentiation potential. Our focus was to balance
accuracy, which can also be considered the prediction
performance when only using microscopic images only,
together with resource sparing, which considers the effort
and expense required for its implementation. Thus, this study
focused on reducing the resource demands of introducing
our proposed cell quality prediction method in medical
facilities that have to continuously run their current therapies
without introduction of expensive hardware for automated
image-acquisition. At the same time, we wanted to define the
critical timing and number of morphological features that
quantitatively allows detection of loss of hBMSC differentia-
tion potential. In this study we reduced the data needed to be
extracted from morphological features in order to predict
both ALP activity (day 14) and calcium deposition rate (day
21) as compared to our previous report, in which we used a
total of 666 morphological features (18 morphological
features measured at 37 time-points, covering 14 days of
differentiation culture) (Fig. 1).

Among all parameter reduction investigations, we found
that modeling under scenario II (ongoing patient scenario)
invariably provided better performance in both D14_ALP
and D21_Ca models, compared to that under scenario I
(new patient scenario). The strong performance of
scenario II in this study was consistent with findings from
our previous study and attributed to inclusion of the test
patient’s morphological data into the model. The present
study also clarified that the weaker performance of scenario I
models is not caused by improper use of morphological
features, such as including a particularly noisy time-period
or bias from overrepresentation of non-informative
periods. We can now conclude more strongly that strong
prediction performance of both ALP levels and calcium
deposition can be achieved by following our scenario II
modeling concept and focus further discussion only on
scenario II modeling results.

From the performance of “shortening type” models
(Fig. 2), we found that the minimum image-acquisition
period could be shortened to the first 40 h after differentia-
tion (standardized error< 0.5) in both D14_ALP and
D21_Ca models. With a standardized error of 0.5, this
prediction model is nearly twofold better than random
guessing. It was surprising to find that the biochemical
measurements of osteogenic differentiation after 2–3 weeks
of culturing can be identified by morphological changes seen
within the first 2 days. This finding indicates that a
differentiation quality check of hBMSCs can be performed
in a very early period, so that additional unnecessary
culturing can be reduced.
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Figure 4. Prediction performance of skipping type use of morphological features.

a: Performance of D14_ALP models. b: Performance of D21_Ca models. Filled bars,

modeling with scenario I (new patient modeling); open bars, modeling with scenario II

(ongoing patient modeling).
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Figure 5. Responses of morphological features to medium change events. Typical responses that appear in morphological features in all lots (a) and in Lot 1 (b) are shown as

representative examples. (a) Heat map of morphological features (fiber length, shape factor, and total area) were shownwith red (maximum) and green (minimum). Each square was

colored based on the mean value of each morphological feature from all cells under 1 condition (3 wells� 5 view fields). Roughly, 4,000–40,000 cells were measured to obtain this

mean value. (b) Longitudinal changes in average of Fiber length over time. Filled square, control samples; open square, induction samples. All average values were calculated as for

Fig. 5a. Error bars indicate standard deviation. Red arrows indicate the timing of medium changes.
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The “window-shift type” model evaluation revealed a
critical period for obtaining the most informative morpho-
logical features (Fig. 3). When attempting prediction with
only 108 features (i.e., 16% of the information compared
to that used in our original study), we found that the
morphological changes in culture days 8–10 (D14_ALP
model) and days 9–11 (D21_ALP model) are most
informative and enhance prediction performance. This
result largely matched the performance of “skipping type”
models (Fig. 4). Most “skipping type” models exceeded
the performance of models from the later stages in the
“shortening type” analyses, which lost predictive strength in
this portion of the time-course. The lack of later-stage
morphological features correlated with decreased prediction
performance in both D14_ALP and D21_Ca models, but
more so in D21_Ca models, when derived from “shortening
type” evaluations. This suggests morphological changes
are informative in the first 2 days, but incorporation of
morphological features from later stages of differentiation
can further improve prediction accuracy. From this observa-
tion we conclude that acquiring additional images from the
later stages of differentiation culture are not essential,
but can add value to prediction models. Considering both
observations from “shortening type” and “skipping type”
evaluations, we conclude the image-acquisition from the first
2 days of a “shortening type” model, can be reduced by
loosening the image acquisition schedule to a frequency
of 48 h intervals without significant impact to correctly
classifying candidate differentiation potential. An advantage
to widening the sampling frequency to 48 h intervals is the
ability to implement a manual version of this method in a
clinical setting that frees up weekend time and mitigates
resource burden on operators and facilities.

We also identified limitations of the morphological
features reflecting cellular potential. As shown in Figure 4,
the “shortening type” analysis revealed that including
changes in morphological features from the first day (16–
32 h) undermines the prediction performance. These
observations suggest morphological changes in the first day
of differentiation culture are likely more random compared
to subsequent changes in morphology that more directly
contribute to prediction of osteogenic potential. Since cells
had attached sufficiently during the expansion culture period
in the same plate wells prior to day 0 in our experiment, these
extraordinary morphological changes are likely a response to
changing the culture environment to differentiationmedium.
We therefore further examined the morphological responses
to medium changes (Fig. 5). When the differentiation period
started, medium was changed at 64 h (day 3) and at 216 h
(day 10; Fig. 5a). Surprisingly, many morphological features
showed irregular changes after the medium was refreshed,
which we interpret as clear morphological responses to the
medium change. When viewed collectively these morpho-
logical responses to medium change were limited to
particular morphological features. The morphological pa-
rameter, “fiber lengths,” was one parameter sensitive to
medium changes (Fig. 5b). Even though these changes were

small from a statistical point of view, this parameter, which
indicates cell shrinkage, was most sensitive to medium
change across all cell lots. Although most of these features
were insensitive to the second medium change at time-point
26, fiber length still reflected this change in the environment.
We found a drift in model performance in the “shortening
type” and “window-shift type” analyses, which was due
to parameter disturbances reflecting this response to
medium change. Based on our observations we suggest
correcting for these types of morphological parameters,
which may be a source of noise when used in predictions of
cellular ostogenic potential. This finding also strongly
indicates the possibility that cellular morphology changes
can also be used to detect changes in cellular microenviron-
ment as a way to quality check animal cells during high-
throughput assays.

The utility of morphology-based cell quality evaluation has
also been studied by Seiler et al. where they reported a
systematic evaluation method for hBMSCs’ differentiation
potential based on morphological features measured from
non-labeled time-course images (Seiler et al., 2012). Building
on the work of Seiler et al. and their algorithm approach
(node-harvest method), our original report greatly expands
the utility of the image-basedmodeling concept by advancing
the field in three areas: (i) improved model performance by
data accuracy, (ii) various modeling scenarios for practical
implementation in clinics, and (iii) quantitative prediction
of osteogenic potential (versus classifications). The further
iterations presented here add three more advancements:
(i) identification of a critical period for measuring
morphological features, (ii) the sensitivity of particular
morphological features, and (iii) the most resource-efficient
data collection method.

In conclusion, in this study, we were able to define the
key characteristics of hBMSC morphological features to
advance our image-based computational prediction model.
The detailed characterization of morphological features in
this study has demonstrated a way that allows practical,
flexible and efficient introduction of our method, allowing
users to most appropriately match facilities and protocols.
Our next investigation to universalize this application should
be the confirmation of our method under different imaging
platforms. We believe that this is a benchmark study
highlighting the importance of real-time morphological
features for use in prediction modeling, which may trigger
wider implementation of this approach to address the
need for cell quality evaluation methods in regenerative
medicine.
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