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Brugada syndrome risk loci seem protective against
atrial fibrillation

Laura Andreasen1,2,3, Jonas B Nielsen1,2, Stine Darkner1,2, Ingrid E Christophersen1,2,4, Javad Jabbari1,2,
Lena Refsgaard1,2, Jens J Thiis5, Ahmad Sajadieh6, Arnljot Tveit4, Stig Haunsø1,2,7, Jesper H Svendsen1,2,7,
Nicole Schmitt1,3 and Morten S Olesen*,1,2

Several studies have shown an overlap between genes involved in the pathophysiological mechanisms of atrial fibrillation (AF)

and Brugada Syndrome (BrS). We investigated whether three single-nucleotide polymorphisms (SNPs) (rs11708996; G4C

located intronic to SCN5A, rs10428132; T4G located in SCN10A, and rs9388451; T4C located downstream to HEY2) at

loci associated with BrS in a recent genome-wide association study (GWAS) also were associated with AF. A total of 657

patients diagnosed with AF and a control group comprising 741 individuals free of AF were included. The three SNPs were

genotyped using TaqMan assays. The frequencies of risk alleles in the AF population and the control population were compared

in two-by-two models. One variant, rs10428132 at SCN10A, was associated with a statistically significant decreased risk of AF

(odds ratio (OR)¼0.77, P¼0.001). A meta-analysis was performed by enriching the control population with allele frequencies

from controls in the recently published BrS GWAS (2230 alleles). In this meta-analysis, both rs10428132 at SCN10A

(OR¼0.73, P¼5.7�10�6) and rs11708996 at SCN5A (OR¼0.80, P¼0.02) showed a statistically significant decreased

risk of AF. When assessing the additive effect of the three loci, we found that the risk of AF decreased in a dose-responsive

manner with increasing numbers of risk alleles (OR¼0.50, P¼0.001 for individuals carrying Z4 risk alleles vs r1 allele).

In conclusion, the prevalence of three risk alleles previously associated with BrS was lower in AF patients than in patients free

of AF, suggesting a protective role of these loci in developing AF.
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INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia that requires
treatment and is associated with increased morbidity and mortality.1

The prevalence of AF increases with age, and affects 1–2% of the
general population, a proportion that is likely to increase in the next
50 years.2,3 Cardiac risk factors such as hypertension and ischemic or
other structural heart disease are known as risk factors for AF.1,4,5

However, a subgroup of patients diagnosed with AF is younger than
60 years of age and lacks these well-established risk factors. This
condition is called ‘lone’ AF and accounts for 10–20% of the total
number of patients with AF.6,7

Brugada Syndrome (BrS) is characterized by ST-segment elevations
in the right precordial leads and an increased risk of ventricular
arrhythmias and sudden cardiac death.8

There is a significant overlap between genes associated with AF and
BrS.8,9 Accordingly, several rare variants in genes encoding cardiac
sodium and potassium channels have been found both in patients
with AF and in patients with BrS. This is the case for the variants in
SCN5A (c. 647C4T (p.(Ser216Leu)), rs201002736,10,11 c. 1127G4A
(p.(Arg376His)), rs199473101,10,12 c. 3157G4A (p.(Glu1053Lys)),
rs137854617,10,13 and c. 6010T4C (p.(Phe2004Leu)), rs4131111714,15),
SCN1Bb (c. 641G4A (p.(Arg214Gln)), rs6687687616,17), SCN3B
(c. 29T4C (p.(Leu10Pro)), rs12191828218,19), MOG1 (c. 181G4T

(p.(Glu61Xaa20,21)), rs140704891, and KCNJ8 (c. 1265C4T
(p.(Ser422Leu)), rs7255407122,23). Furthermore, several studies have
showed that the common AF-associated variant c. 1673A4G
(p.(His558Arg)), rs1805124, in SCN5A may have a protective role
against BrS in patients with other Brugada-associated SCN5A
variants.11,24–26 Since some mutations can result in different
phenotypes,18,19 the presence of additional single-nucleotide
polymorphisms (SNPs) might have a disease-modifying effect. Of
note, a recent genome-wide association study (GWAS) identified
three loci (rs9388451; T4C, rs10428132; T4G, and rs11708996;
G4C), to be associated with BrS. Patients carrying more than four
risk alleles had an odds ratio (OR) of 21.5 for BrS, compared with
patients carrying less than two risk alleles.27 All three GWAS-
identified loci are presumed to affect the sodium current.

Since B20% of Brugada patients also develop supraventricular
arrhythmias including AF,28 we hypothesized that SNPs previously
associated with BrS in GWAS27 may also modify the risk of AF.

MATERIALS AND METHODS

Study population
A total of 358 patients with lone AF (ie, the absence of clinical or

echocardiographic findings indicating other cardiovascular diseases, metabolic,

or pulmonary diseases) and onset of disease before the age of 50 (ranging from
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16 to 49 years of age) were included from Copenhagen, Denmark and from

Oslo and Vestre Viken, Norway, as described previously.29 In addition, 299

‘non-lone’ AF patients were included.

An ethnically matched control population was recruited from the same

geographic area as the cases. This control population comprised (1) 208 healthy

blood donors o48 years of age and free of cardiac diseases19 and (2) 533 men

and women aged 55–75 years without history of AF or other cardiovascular

diseases or stroke, despite a high prevalence of risk factors for AF30 (control

group I). The latter control group was considered as highly relevant, because of

their high AF resistance. To add power to our data, we added summarized data

from the recently published BrS GWAS27 (control group II).

Written informed consent was obtained from all participants. The study

conforms to the principles outlined in the Declaration of Helsinki, and was

approved by the Scientific Ethics Committee of Copenhagen and Frederiksberg

(Protocol reference number: H-KF-01313322) and the Regional Ethics

Committee in Norway (Protocol reference number: 2009/2224-5).

SNP genotyping
Genotyping was performed as previously described.31 In brief, the DNA was

extracted from whole blood that had been stored at �20 1C using the QIAamp

DNA Blood Mini and Maxi kits (Qiagen, Hilden, Germany). SNP genotypes

for rs9388451, rs10428132, and rs11708996 were determined using

fluorescence-based real-time PCR (ABI PRISM 7900 Sequence Detection

System; Applied Biosystems, Foster City, CA, USA) and pre-developed

TaqMan assays (Applied Biosystems). An allelic discrimination run was

performed allowing for discrimination between the allele compositions of

each sample.

SNP genotypes for rs9388451, rs10428132, and rs11708996 have been

submitted to ResearchGate, URL: https://www.researchgate.net/publication/

259990810_Brugada_syndrome_risk_loci_seem_protective_against_atrial_

fibrillation?ev=prf_pub.

Statistical analyses
The proportion of risk alleles (risk allele frequencies) was compared between

AF cases and controls in two-by-two tables. Analyses were performed

separately for the three investigated SNPs using either (1) in-house controls

(control group I) or (2) both the in-house controls and summarized data on

controls from the recently published BrS GWAS27 (control group I and control

group II). The latter meta-analysis was done to add power to our analysis.

To assess the additive effect of the three SNPs, logistic regression models

were performed including AF patients and control group I. Individuals were

categorized into having 0–1, 2–3, or 4–6 risk alleles. The additive effect of

carrying multiple BrS-risk alleles was assessed in four different models

including (1) all three alleles, (2) the two loci that were statistically significant

associated with AF, (3) all three alleles but without the non-lone AF patients,

and finally (4) only the two statistically significant loci and without the non-

lone AF patients. A two-tailed P-value of o0.05 was considered as statistically

significant. Analyses were performed with the Stata 11.0 software package

(StataCorp LP, College Station, TX, USA).

RESULTS

Clinical characteristics of the two AF groups and the control group
are shown in Table 1. The lone and non-lone AF groups are combined
in one case group throughout all analyses, unless otherwise stated.

The results of the genotyping are summarized in Tables 2 and 3.
One of three variants, rs10428132 in SCN10A, showed a statistically
significant decreased risk of AF (OR¼ 0.77, P¼ 0.001) when compar-
ing AF cases with control group I. Combining control groups I and II,
both rs10428132 in SCN10A and rs11708996 intronic to SCN5A
showed a statistically significant decreased risk of AF (rs10428132:
OR¼ 0.73, P¼ 5.7� 10�6, rs11708996: OR¼ 0.80, P¼ 0.02)
(Table 3).

In a pooled analysis of all three SNPs, we found that the risk of AF
decreased consistently with increasing numbers of BrS-risk alleles
(Figure 1a). Carrying four or more risk alleles was associated with an
OR of 0.50 (95% CI: 0.33–0.76, P¼ 0.001) for AF compared with
individuals carrying less than two risk alleles. A subgroup analysis of
the lone AF patient group showed a similar association (OR¼ 0.41,
95% CI: 0.23–0.74, P¼ 0.003) (Figure 1b). Similar pooled analyses
were carried out for the two variants shown to be significantly
associated with a decreased risk of AF. Again, AF risk decreased
consistently with increasing numbers of BrS-risk alleles that an
individual carried (Figure 1c and d). The distribution of risk alleles

Table 1 Clinical data of patient and control populations

Controls Lone AF Non-lone AF

N 741 358 299

Median age, years (IQR) 60 (55–70) 35 (28–39) 61 (51–69)

Male gender, % 52.3 81.9 69.5

Hypertension, %a 26.2 0 36.5

Abbreviations: AF, atrial fibrillation; IQR, interquartile range.
aHypertension defined as diastolic blood pressure 490mmHg or systolic blood pressure
4140mmHg at clinical examination.

Table 2 Effect size of BrS-risk alleles in AF population vs control I

Nearest gene SNP Chr Bp substitution Risk allele27 RAF cases RAF control I OR (95% CI) P-value

HEY2 rs9388451 6 C4T C 0.49 0.51 0.94 (0.81–1.09) 0.42

SCN10A rs10428132 3 G4T T 0.33 0.39 0.77 (0.66–0.90) 0.001

SCN5A rs11708996 3 C4G C 0.13 0.15 0.82 (0.65–1.02) 0.07

Abbreviations: bp, basepair; Chr, chromosome; CI, confidence interval; OR, odds ratio; RAF, risk allele frequency; SNP, single-nucleotide polymorphism.
Control I: in-house controls. Cases: combined lone AF and non-lone AF patient group. P-value defined as two-sided.

Table 3 Effect size of BrS-risk alleles in AF population vs controls Iþ II

Nearest

gene SNP Chr

Bp

substitution

Risk

allele27

RAF

cases

RAF control

I

RAF control

II27

RAF controls

Iþ II

OR (95%CI) controls

Iþ II

P-value controls

Iþ II

HEY2 rs9388451 6 C4T C 0.49 0.51 0.50 0.51 0.97 (0.85–1.10) 0.64

SCN10A rs10428132 3 G4T T 0.33 0.39 0.41 0.40 0.73 (0.64–0.84) 5.7�10�6

SCN5A rs11708996 3 C4G C 0.13 0.15 0.15 0.15 0.80 (0.66–0.98) 0.02

Abbreviations: bp, basepair; Chr, chromosome; CI, confidence interval; OR, odds ratio; RAF, risk allele frequency; SNP, single-nucleotide polymorphism.
Control II: GWAS27 controls, controls Iþ II: in-houseþGWAS27 controls. Cases: combined lone AF and non-lone AF patient group. P-value defined as two-sided.
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in patients and controls (control group I) is shown in Figure 2. The
risk of AF decreases consistently with increasing numbers of BrS-risk
alleles, indicated by the right-shifted patient population.

DISCUSSION

We investigated the prevalence of three SNPs recently shown to be
associated with BrS, in a group of AF patients and in controls, and
found that the additive effect of the three loci decreased the risk of AF
in a dose-response manner (OR¼ 0.50, 95% CI: 0.33–0.76, P¼ 0.001
in the presence of Z4 risk alleles vs r1).

The finding that the same group of SNPs known to be associated
with BrS, with ORs of 420, at the same time possess a protective
effect against AF is fascinating. The reported SNPs are either within or
close to genes underlying or regulating the cardiac sodium current
(INa). rs10428132 resides in the gene SCN10A encoding NaV1.8,
rs11708996 is intronic to SCN5A encoding NaV1.5, and rs9388451

resides near the HEY2 locus. The loci at SCN10A and SCN5A are also
associated with both PR interval and QRS duration.32,33

From an evolutionary perspective, our results may suggest that
these common variants known to increase the risk of a rare, but
potentially lethal syndrome such as BrS seem to have a dualistic effect,
protecting against a much more common disease such as AF.

Noteworthy, the SCN10A SNP, rs10428132, is in high linkage (0.98
r2) with rs6795970, also located in SCN10A. rs6795970 has, in a recent
GWAS,34 been shown to protect against AF and atrial flutter
(OR¼ 0.85, P¼ 8.45� 10�4), along with arterial embolism and
thrombosis (OR¼ 0.69, P¼ 3.20� 10�3). This SNP leads to the
substitution of valine to alanine at amino-acid position 1073 (c.
3218T4C (p.(Val1073Ala))) in the sodium channel isoform Nav1.8,
resulting in this channel displaying both increased peak and late
sodium current in functional studies.35 The NaV1.8 channel protein
seems to be expressed in working myocardium and the cardiac
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Figure 1 ORs calculated according to the number of risk alleles in the in-house controls. Each dot represents the log(OR) value and each bar the 95%

confidence interval (vertical). (a) Pooled analysis of all three loci in the lone AF and the non-lone AF patients vs the in-house controls. (b) Pooled analysis

of all three loci in the lone AF patients vs the in-house controls. (c) Pooled analysis of the two loci significantly associated with AF (rs10428132 in
SCN10A and rs11708996 intronic to SCN5A) in the lone AF and the non-lone AF patients vs the in-house controls. (d) Pooled analysis of the two loci

significantly associated with AF in the lone AF population vs the in-house controls.
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conduction system,36 although it has also been found in intracardiac
neurons.37 Its contribution to the total cardiac sodium current in the
atria remains elusive. In addition, rs10428132 is in complete linkage
with the PR-prolonging allele of rs6800541 which Pfeufer et al32 also
noted to have a protective effect on AF risk. Finally, rs10428132 is in
almost complete linkage with rs6801957 (r2¼ 0.97), which has been
reported to affect the binding of the TBX3 transcription factor and
thereby the regulation of SCN5A/SCN10A expression.38

The majority of the cardiac sodium current is conducted by
NaV1.5, and several studies including knock-out mouse models
suggest a central role of SCN5A/NaV1.5 in the pathogenesis of AF.
Heterozygote knock-out mice display compromised conduction
velocity, impaired AV conduction, and QRS prolongation.39 An
altered SCN5A/SCN10A expression could affect the conduction
velocity and thereby the risk for BrS. Of note, both the SCN5A
SNP rs11708996 and the SCN10A SNP rs10428132 have previously
been associated with PR interval duration in a GWAS,32 supporting a
protective role in AF. Pazoki et al40 replicated the association between
the SCN5A SNP and PR duration, showing a trend for association
between the rs11708996 C allele and a PR interval of Z200 ms
(OR¼ 2.39, P¼ 0.004).

rs9388451 is located in close proximity to the HEY2 gene, encoding
a transcriptional repressor important in the development of the
cardiovascular system.41–44 Bezzina et al27 found homozygous HEY2
knock-out embryos to have increased NaV1.5 expression and a
flattened transmural expression gradient of the channel in the
cardiac ventricles. In HEY2þ /� knock-out mice, the conduction
velocity was increased in the right ventricle outflow tract (RVOT),
and the action potential upstroke velocity was increased, indicating an
increase in sodium channel peak current. This is in line with the
characteristic ST-segment elevation in the right precordial leads of BrS
ECGs, and proposes the RVOT as an origin of ventricular arrhythmias
in BrS. Assuming that the variant also gives rise to an increased
conduction velocity in the atria it may protect against other genetic
variants, or age- and sport-induced decreases in conduction velocity
caused by fibrosis, and thereby protect against AF. Furthermore,
HEY2-deficient embryos displayed a change in the expression patterns
of GJA5, NPPA, and TBX5.43,45,46 These genes have all previously been
associated with AF.47–50

Thus, several studies support our finding that BrS-associated
genetic variants protect against AF. Further mechanistic studies might

help decipher how cellular electrophysiological changes induced by
each of these variants (separately and additively) result in protection
against AF. The elucidation of the mechanism(s) might provide keys
to a more detailed understanding of the pathophysiology of AF and
BrS. From a clinical point of view, our result highlights the complex-
ity of personalized medicine as the AF patients with BrS-risk alleles,
known to increase the sodium peak current, on one hand might
benefit from a sodium peak current blocker such as flecainide, but on
the other hand, flecainide treatment might increase the risk of sudden
cardiac death in these patients, since they are predisposed for BrS by
the same BrS-risk alleles.

Study limitations
Our study population was highly selected and relatively small. As a
consequence, the power to detect associations was reduced. The study
only included cases of Scandinavian ancestry, and the generalizability
of the results to other ethnicities might be limited.

CONCLUSIONS

We found the risk of AF to decrease consistently with increasing
numbers of BrS-risk alleles carried, suggesting that these variants have
a protective role against developing AF.
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