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Abstract

This article provides an introductory overview of the investigative strategy employed to evaluate 

the genetic basis of 17 endophenotypes examined as part of a 20-year data collection effort from 

the Minnesota Center for Twin and Family Research. Included are characterization of the study 

samples, descriptive statistics for key properties of the psychophysiological measures, and 

rationale behind the steps taken in the molecular genetic study design. The statistical approach 

included (a) biometric analysis of twin and family data, (b) heritability analysis using 527,829 

single nucleotide polymorphisms (SNPs), (c) genome-wide association analysis of these SNPs and 

17,601 autosomal genes, (d) follow-up analyses of candidate SNPs and genes hypothesized to 

have an association with each endophenotype, (e) rare variant analysis of nonsynonymous SNPs in 

the exome, and (f) whole genome sequencing association analysis using 27 million genetic 

variants. These methods were used in the accompanying empirical articles comprising this special 

issue, Genome-Wide Scans of Genetic Variants for Psychophysiological Endophenotypes.

Descriptors

Biometric modeling; Genome-wide complex trait analysis; Genome-wide association study; 
Exome chip; Whole genome sequencing; Endophenotype

Over the course of its 25-year history, the Minnesota Center for Twin and Family Research 

(MCTFR) has been among the leading contributors to research in developmental 

psychopathology, taking advantage of large, genetically informative, prospectively studied 

parent-offspring samples to generate insights into the nature of the genetic liability that 

underlies risk for the development of mental disorders. One of the central aims of the 

MCTFR has been the evaluation of psychophysiological measures for their potential as 

psychiatric endophenotypes. MCTFR studies have examined the heritability of 
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psychophysiological variables, their degree of association with psychopathology, and the 

extent to which they identify those at risk for the development of mental disorders. In 2007, 

funding was obtained to procure DNA samples from MCTFR participants to enable studies 

of the molecular genetic basis of psychiatric disorder-relevant traits, including MCTFR 

candidate endophenotypes, which has led to the development of this special issue. This 

article lays the foundation for the seven accompanying empirical papers by detailing the 

analytic methods used and providing descriptive findings that characterize the candidate 

endophenotypes.

Endophenotypes are laboratory-based quantitative measures indexing genetic risk for a 

psychiatric disorder. Because they are presumed to be more proximal to gene effects and 

thus more indicative of the genetic pathways that underlie complex psychiatric disorders, it 

has been suggested that endophenotypes might facilitate finding genes relevant to the 

associated disorder (cf. Gottesman & Gould, 2003; Iacono & Malone, 2011). Indeed, 

substantial interest in endophenotypes has emerged in recent years in psychophysiological, 

psychiatric (Braff et al., 2008; Flint & Munafò, 2007), and molecular genetic (Wood & 

Neale, 2010) research. However, the degree to which endophenotypes may assist gene 

finding remains an open question (e.g., for contrasting perspectives, see Flint & Munafò, 

2007; Jonas & Markon, in press)—one that the current relatively broad-based approach 

using a large sample such as the MCTFR is better designed to address than past attempts 

using small samples focused on candidate genes. Moreover, independent of their status as 

endophenotypes, psychophysiological measures tap into neurobiological and psychological 

constructs (e.g., arousal mechanisms, attention, working memory, emotion regulation), the 

genetic basis of which are of interest in their own right (e.g., see Anokhin, 2014, who makes 

a strong case for the value of understanding how genetic factors influence 

psychophysiological measures).

Each of the first five empirical papers in this special issue, which deal with common genetic 

variants, is based on a different measure (P3 amplitude, antisaccade error rate) or set of 

measures (electroencephalogram [EEG] characteristics, multiple measures of electrodermal 

activity, and modulation of the startle eye blink) that, to varying degrees can be considered 

endophenotypes for different disorders. Each paper reviews evidence for considering a 

particular measure as an endophenotype, taking into account (when possible) criteria we 

have recently enumerated and that emphasize a developmental perspective (Iacono & 

Malone, 2011). Key criteria involve heritability, association with one or more clinical 

phenotypes believed to share a common genetic liability, presence in unaffected individuals 

at high genetic risk, and the ability to predict prospectively the development of disorder.

Overview of the MCTFR Endophenotypes

At the time the MCTFR was begun 25 years ago, endophenotype research was in a relatively 

nascent state, and it was not clear what psychophysiological measures might best tap into 

genetic liability for psychopathology in a general population sample of prospectively studied 

twin children. Ultimately, the measures chosen were selected from those reported in the 

literature to show strong evidence of heritability and association with psychopathology, 

including those derived from established laboratory paradigms that showed that first-degree 
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relatives of affected individuals scored outside “normal” range. This led to the selection of 

measures that, at the time, had demonstrated potential as endophenotypes for alcoholism, 

mood disorders, and schizophrenia (Iacono, 1985, 1998; Iacono, Lykken, & McGue, 1996). 

P3 event-related potential amplitude, resting EEG spectral characteristics, eye tracking 

performance, and electrodermal habituation met these criteria and became part of the 

standard psychophysiological assessment battery used for all participants. The acoustic 

startle reflex and its affective modulation were added to the battery later, and therefore were 

not assessed on all participants. At the time these startle measures were added, there was 

scant evidence supporting startle as an endophenotype. Their addition was instead motivated 

primarily by research supporting the potential of the startle paradigm to provide insights into 

the neurobiology of psychiatric disorder (Vaidyanathan, Patrick, & Cuthbert, 2009), a 

feature that has resulted in its prominence in the National Institute of Mental Health’s 

Research Domain Criteria (RDoC, Insel et al., 2010).

The psychophysiological measures and evidence supporting them as endophenotypes are 

described in detail in each of the five empirical papers examining their association with 

common molecular genetic variants (using genome-wide association study [GWAS] 

methods). All 17 are considered together in the two papers dealing with rare genetic variants 

(using an exome chip array and sequencing methods). Appendix 1 provides a brief 

description of the five psychophysiological paradigms and the measures derived from each.

Overview of the MCTFR and the Samples Used in Endophenotype Studies

Characterization of MCTFR samples

The MCTFR oversees a set of longitudinal investigations focused on families with twin and 

adoptive children. Initiated by David Lykken in 1990, the MCTFR has enrolled and assessed 

five parent-offspring samples totaling 9,994 participants (see Figure 1). All these 

community-based samples were recruited using epidemiological procedures intended to 

maximize inclusiveness and minimize sampling bias. MCTFR research is ongoing, and 

continues to track offspring development into adulthood, with those first enrolled in the 

project now being reassessed 24 years after their initial recruitment.

The MCTFR embraces three twin samples comprising the Minnesota Twin Family Study 

(MTFS). The MTFS began as a cross-sequential study of preadolescent (younger cohort) 

and late adolescent (older cohort) monozygotic (MZ) and same-sex dizygotic (DZ) twins 

and their parents (for details, see Iacono, Carlson, Taylor, Elkins, & McGue, 1999; Iacono & 

McGue, 2002). Younger cohort families were recruited during the year the twins turned age 

11, and the older cohort was recruited when the twins turned 17 (see Figure 1). Twin 

families constituted a statewide sample identified using Minnesota state birth records. 

Families with children whose cognitive ability was insufficient to provide informed assent 

or consent were not recruited. No medical, psychological, or psychiatric exclusionary 

criteria were used to screen out participants. These families were broadly representative of 

Minnesota families with children living at home according to the 2000 U.S. Census for 

Minnesota (Holdcraft & Iacono, 2004). Data collection for a third MTFS twin sample (the 

Enrichment Sample, ES) was launched in 2000 (for details, see Iacono, McGue, & Krueger, 

2006; Keyes et al., 2009). ES focused on families with 11-year-old twins, half of whom 
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were selected to be at high risk for developing substance use disorders, and the other half of 

whom were selected using the same methods as were followed in the MTFS. Only 

participants from these three MTFS studies (younger cohort, older cohort, and ES) were 

tested in the psychophysiology laboratory, and thus only these MTFS families were included 

in the evaluation of the molecular genetic basis of the endophenotypes.

MCTFR participants from two other studies, the Sibling Interaction and Behavior Study 

(SIBS) and the Adolescent Brain (AdBrain) Development Study, also provided DNA 

samples and were genotyped using the same procedures followed for the MTFS samples (for 

details, see McGue et al., 2013; Miller et al., 2012). However, SIBs participants were never 

evaluated in the psychophysiology lab, and the AdBrain twins did not undergo the MTFS 

psychophysiological testing protocol, so neither of these samples is included in the 

molecular genetic analyses of the endophenotypes. Their data was valuable, however, for 

optimizing the quality control procedures used to process the genotyped data in all the 

papers. In addition, these samples were used to enhance the accuracy of the imputation of 

genetic marker variants in this sequencing study (Vrieze, Malone, Vaidyanathan et al., 

2014). Given their peripheral role in this series of papers, we refer readers to other 

publications for additional detail regarding these two studies (Malone, Luciana et al., 2014; 

McGue et al., 2007).

How participants came to have both psychophysiological and molecular genetic data

The cohort-sequential nature of the MTFS design is such that the MTFS younger cohort and 

ES twins were reassessed approximately 6 years after study intake, and thus these samples, 

like the older cohort twins, were seen at age 17. For this series of molecular genetic 

investigations, we targeted the age-17 assessment of all twins for the collection of 

endophenotype data. This resulted in the largest possible twin sample and represents a stage 

of development when adolescents are on the cusp of adulthood. Most parents completed an 

identical laboratory assessment; those who did were included. Fathers completed the 

laboratory assessment during the initial family intake visit to the university. Because 

mothers were asked to provide comprehensive information about other family members at 

the intake assessment, there was no time available to accommodate the psychophysiological 

assessment. For younger cohort and ES mothers, psychophysiological assessment took place 

when they accompanied the twins for their age-14 follow-up visit. Because the older cohort 

twins were legal adults when they returned for their first follow-up at age 20, there was no 

need for their mothers to accompany them, so their mothers were never asked to complete a 

psychophysiological lab session. In addition, as a result of adjustments to the design 

precipitated by a cut in funding to one of the supporting grants, the majority of mothers of 

younger cohort female twins were not asked to complete the laboratory assessment. Finally, 

as noted previously, the startle paradigm was not part of the original MTFS 

psychophysiological battery, so some twins (those in the ES study) were evaluated at other 

than age 17, and many twins and parents were never evaluated with startle (for additional 

details, see Vaidyanathan, Malone, Miller, McGue, & Iacono, 2014). Because these aspects 

of the design account for the great majority of missing data, these data can reasonably be 

treated as missing at random (Little & Rubin, 2002), which can be accommodated in our 

approaches to statistical analysis and permits unbiased statistical estimation. All participants 
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in MCTFR studies gave written informed consent or assent, if under the age of 18, to 

participate in the initial study, to provide a DNA sample, and to allow their phenotype and 

genotype data plus a sample of their DNA to be placed in a public repository to be shared 

with other researchers.

As Figure 1 illustrates, there were 7,697 participants who provided DNA and passed our 

genotyping quality control screening. Only Caucasian participants were included because 

ethnic differences in allele frequencies can create spurious associations in genetic 

association studies. Of these 7,697 subjects, 4,905 had data for at least one endophenotype, 

with the vast majority of the remainder not included because they were from the SIBs or 

AdBrain samples, and some because they did not have data even though they were in the 

MTFS (e.g., younger cohort twins who did not return at age 17). There were 1,715 families, 

64.1% of them MZ twin families, with the number of individuals in a family (including 

stepparents) ranging from 1 to 5. Families with 3 members were most common (48%), and 

approximately 91% comprised 2–4 members. As can be seen in Table 1, for each 

endophenotype, somewhat different subsets of these individuals provided valid data for the 

genetic analyses. Most of the participants were offspring, and as would be expected given 

that mothers (unlike fathers) were not always asked to complete a psychophysiological 

assessment, about twice as many fathers contributed data as did mothers.

Figure 1 documents that there is some variability across measures in the total number of 

individuals with data for each, ranging from a high of 4,469 for the antisaccade task to a low 

of 3,323 for startle. It took over 20 years to collect the psychophysiological data from all of 

these MTFS participants. It was not always possible to obtain data for everyone on each 

measure (as noted previously, this was especially true for startle, which was added late to the 

assessment protocol). In addition, there was also obvious variability across measures in the 

likelihood that collected data could be used in analyses. Our procedure required that data be 

collected on individuals who ordinarily would have been excluded for an assessment based 

on preexisting status (e.g., having a bad cough on the day of assessment, taking medications 

or psychoactive substances that might interfere with psychophysiological recording), or 

having a physical problem or condition likely to affect the validity of the 

psychophysiological measurement or neurophysiological state at the time of testing (e.g., 

serious head injury, neurological disorder). Adolescents taking medication for attention 

deficit hyperactivity disorder (ADHD), such as methylphenidate, were asked to refrain from 

doing so the day of their assessment. If any reported taking these medications, they were 

excluded from analysis. This nonexclusionary approach to laboratory assessment was 

necessitated by privacy concerns (e.g., family members came together and could easily 

determine if one member was excluded from a procedure, raising questions regarding why), 

the desire to optimize future participation in our longitudinal research (e.g., by not 

inadvertently creating the impression that some participant data would not have value), and 

the need to keep participants occupied and with staff for the entirety of a day-long 

assessment. In addition, someone who might be seen as inappropriate for one procedure 

might nevertheless be seen as appropriate for another, making it awkward to explain why 

they were qualified for certain procedures but not others. Finally, participants were also 

excluded due to psychophysiological recording problems, which ranged from excessive 

artifact and recording equipment malfunction to the failure of disk storage.
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Tables 1 and 2 describe the participant samples and data used in the five common variant 

studies as well as the exome chip rare variant article. Figure 2 provides a heat map 

representation of the correlations among the 17 endophenotypes. The heat map shows that, 

with a few exceptions, each of the five psychophysiological protocols yielded variables that 

were much more strongly correlated with each other than they were with variables from 

other protocols. One exception arose with startle where the amplitude of the overall startle 

response showed little correlation with aversive and pleasant startle difference measures, 

which were derived from z scores. Another involved the EEG and P3 measures wherein P3 

amplitude and the genetic factor score were on average correlated .19 with the EEG power 

measures. Alpha frequency showed a strong negative correlation (averaging −.38) with EEG 

power in all spectral bands except beta (−.05).

Genotyping and Quality Control

Across all five MCTFR samples (see top of Figure 1), 9,515 participants were eligible to 

provide DNA because they were still living and had not withdrawn from the MCTFR study 

in which they were enrolled. From this group, 7,845 provided DNA, with 7,278 (93%) 

providing blood and 567 providing saliva samples. However, when the MZ co-twins of the 

MZ twins in this sample of 7,845 are added to the total, more than 88% (N = 8,405) agreed 

to participate. Of the 12% who did not, the majority could not be contacted within the time 

allocated for obtaining consent or had concerns about providing a DNA sample. Samples 

were stored at the Rutgers University Cell and DNA Repository, which followed standard 

procedures to extract DNA. All genotyping, including the Illumina 660W-Quad, Illumina 

HumanExome, and whole genome sequencing, was conducted on these DNA samples. The 

Illumina 660W-Quad (Illumina, 2008–2013) contained 657,366 variants, 561,490 of which 

were single nucleotide polymorphisms (SNPs; see Appendix 2 for a glossary of commonly 

used terminology), which are the focus of the first five articles in this special issue (the 

remaining 95,876 markers were for copy number variants that were not analyzed here). The 

plates used for genotyping contained 96 wells, and DNA samples were distributed randomly 

across plates with two exceptions: each plate included samples from two members of a 

three-member family from the Centre d’Etude du Polymorphisme Humaine (CEPH), the 

genotypes of whom are known, with the specific individuals rotated across plates, as well as 

a randomly selected MCTFR duplicate sample. These two types of samples allowed us to 

assess the accuracy and quality of genotyping.

Genotyping produces measures of intensity for each allele (which we will refer to as A and 

a), which reflect the degree to which DNA binds to specific allele probes. When plotted 

against one another, the pairs of intensity values ideally yield three distinct clusters, one 

cluster corresponding to AA homozygotes, another to aa homozygotes, and the third to Aa 

heterozygotes. A subset of 1,508 SNPs out of the total of 561,490 could not be called 

because the clustering of intensity values was not sufficiently distinct to permit identifying 

the three genotypes reliably. The remaining markers (559,982) were subjected to a series of 

quality control filters and were excluded for any of the following, if (a) Illumina scientists 

identified the marker as untrustworthy; (b) duplicate samples did not yield identical results 

more than once; (c) the call rate was less than 99%, indicating that the algorithm used to 

estimate the probability that a genotype at an individual SNP is aa, AA, or Aa failed for a 
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nontrivial number of DNA samples; (d) the minor allele frequency (MAF) was less than 1 in 

100 subjects; (e) there were more than two Mendelian inconsistencies within families, 

indicating a mismatch of alleles between parents and offspring; (f) allele frequencies were 

inconsistent with Hardy-Weinberg equilibrium, an indicator of stability in a population and a 

necessary precondition for genetic analysis (p < 10−7 in the Caucasian subsample); (g) if the 

marker was associated with the particular plate used for processing; or (h) the marker was 

associated with sex (also at p < 10−7), which would indicate a source of systematic error. 

This resulted in the elimination of 32,153 markers (5.7%), leaving 527,829 SNPs for 

analysis. The majority of SNPs dropped had a MAF less than .01 (19,999, or 3.6% of the 

total).

The quality of each individual’s DNA sample was assessed using five criteria, and it was 

excluded if (1) more than 5,000 SNPs could not be called, suggesting poor quality of the 

sample; (2) GenCall scores produced by Illumina’s BeadStudio software, indexing 

confidence in each call, were below an empirically derived threshold (Cunningham et al., 

2008); (3) samples had apparently been mixed; (4) a sample was characterized by excessive 

homozygosity or heterozygosity; or (5) known genetic relationships could not be confirmed. 

This process, which took advantage of the family relationships to identify errors in labeling 

samples, eliminated 160 samples. The final sample of 7,278 that passed all quality-control 

filters included 1,127 samples from individuals whose monozygotic twin had not been 

genotyped, in which case the genotypes of genotyped twins were assigned to the 

nongenotyped identical twin, which resulted in a final sample of 8,405. Five individuals 

with X chromosome anomalies, such as Turner syndrome, were subsequently eliminated due 

to concerns about potential cognitive correlates.

The Illumina HumanExome BeadChip array was genotyped in a similar fashion as the 

660W-Quad, with additional steps and filters to deal with the very rare variants genotyped 

on the exome array. Details are provided in the relevant article (Vrieze, Malone, Pankratz et 

al., 2014). For whole genome sequencing, we took advantage of the results of our 660W-

Quad genotyping to select samples that had quality DNA, genome-wide genotypes (useful in 

evaluating sequencing accuracy), and were of European ancestry. See Vrieze, Malone, 

Vaidyanathan et al. (2014) for a full description of the whole genome sequencing 

experiment.

Confounding by Ethnicity

Ethnic differences in allele frequencies are common. They can be confounded with ethnic 

differences in mean levels of a phenotype or rates of a disorder, in which case a spurious 

association between genetic variants and phenotype can exist. Ethnic differences in 

genotype can be assessed by means of multivariate techniques such as principal component 

analysis (PCA), which captures the major sources of genetic variation in a reduced subspace. 

Figure 3 depicts the first two components from an analysis of the entire MCTFR sample 

using the program EIGENSTRAT (http://genepath.med.harvard.edu/~reich/Software.htm) 

(Price et al., 2006), which detects and corrects for population stratification in genome-wide 

association studies. The PCA method explicitly models ancestry differences along 

continuous axes of variation. Close pairwise relationships (e.g., parent-child, siblings) were 
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avoided when determining the major dimensions of variation, but the genotypes of those 

individuals excluded were then projected onto the components extracted from the unrelated 

subsample (for additional details, see Miller et al., 2012). The first principal dimension in 

Figure 3 consists of a component anchored by individuals who reported European ancestry 

at one end and by individuals whose self-reported ancestry is East Asian (Korean adoptees 

from the SIBS project) at the other. The second principal dimension differentiated 

individuals of European ancestry from those who reported African-American ancestry. 

Because the majority of the MCTFR sample is Caucasian, broadly representative of the 

racial composition of the state of Minnesota during the birth years from which the different 

samples were drawn, we restricted genetic analyses to Caucasian individuals of European 

ancestry (e.g., Caucasians of Middle Eastern ancestry were not included). PCA was 

conducted separately on these subjects in EIGENSTRAT to identify the major dimensions 

of genetic variation in this otherwise ethnically homogeneous sample. As is common 

practice, the 10 components (PCs) accounting for the most variance were included as 

covariates in our genetic association analyses (cf. Price et al., 2006) to account for subtle 

genotypic variation that might create spurious associations.

Genetic Analyses

The analytic approach for the seven empirical articles in this special issue is illustrated in the 

flowchart in Figure 4. We describe the approach first for the five GWAS articles examining 

common variants, then for the exome chip article examining effects of rare nonsynonymous 

variants in coding regions, and finally for the sequencing paper covering rare polymorphic 

SNPs throughout the genome.

Associations between common variants and endophenotypes: GWAS-based analyses

Our approach to assessing the influence of common variants in our GWAS studies 

comprised four prongs: biometric, genome-wide complex trait (GCTA), GWAS, and 

versatile gene-based association (VEGAS) studies. Figure 4 depicts these analyses in a 

simplified form; in what follows, we provide a more detailed explication of the methods and 

assumptions behind these analyses.

1. Biometric models—First, we conducted biometric model-fitting analyses for the 

purpose of estimating the magnitude of heritable differences in each measure, using standard 

biometric approaches to modeling twin-family data (M. C. Neale, Boker, Xie, & Maes, 

2003). Analyses were conducted using the OpenMx package (Boker et al., 2011) for the R 

statistical computing environment (R Development Core Team, 2010). Such approaches 

consist of estimating the parameters in latent variable models, which treat the observed 

values of a phenotype as due to (caused by) the influence of four latent variables: additive 

genetic influence (A); nonadditive dominance genetic influence (D), which reflects 

interactive effects between alleles at the same locus; common or shared environmental 

influence (C); and unique or unshared environmental influence (E). The observed 

correlations (or covariances, more commonly) are compared to the correlations implied by 

the model, which, given standard biometric assumptions, are determined by the known 

genetic and environmental correlations among family members with respect to the latent 
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factors. Parents and offspring share half their genes by descent, whereas DZ twins share half 

their segregating genes, on average; the genetic correlation in these pairs is therefore 0.5. 

MZ pairs share all genes, yielding a genetic correlation of 1 for both A and D. By contrast, 

the probability that DZ pairs will share both alleles at a locus, which is necessary for 

dominance effects, is 1/4; this is the dominance genetic correlation (0.25). All family 

members by definition share the common environment, whereas E reflects environmental 

factors that are unique to each individual; it does not contribute to within-family 

correlations. Our models did not allow for assortative mating, the tendency for people with 

similar characteristics to marry (“like marries like”), as likely influences on the 

endophenotypes. That this is a reasonable assumption is supported by the mother-father 

correlation in Table 3, which is very close to 0 across the 17 endophenotypes we examined 

in this special issue. Similarly, we assumed no environmentally mediated “vertical” 

transmission of psychophysiological features from parents to offspring. As we indicate in 

the Adjusting for Covariates section below, all measures were adjusted for any effects on 

mean levels of particularly relevant covariates, including the first 10 PCs from 

EIGENSTRAT. Although the latter might seem to overcorrect familial resemblance, it 

simply adjusts for any effects on mean levels of unknown stratification factors captured by 

the 10 PCs. However, adjusting for covariate effects on mean levels cannot account for any 

effects of covariates on phenotypic variances, which we observed most commonly in 

relation to gender and age cohort. Biometric models therefore allowed for gender and age-

cohort effects on variances. For the majority of measures, there were significant differences 

between cohorts in the phenotypic variance. Moderator effects were included in our 

biometric models even if they were not significant, however, in order to maintain 

consistency across measures, thereby facilitating comparison.

In order to adopt a common framework for all five articles, we began by examining the 

pattern of within-family correlations. The aforementioned Table 3 presents the median 

correlation across the 17 measures for each family relationship. The MZ twin correlation 

was large and approximately twice the magnitude of the DZ twin correlation. Because the 

genetic correlation in MZ pairs is twice the correlation in DZ pairs, this pattern is consistent 

with additive genetic influence. Because shared environment is shared equally by MZ and 

DZ twins (the equal environments assumption), a DZ twin correlation exceeding half the 

MZ twin correlation is consistent with a shared environmental influence. The DZ correlation 

is only slightly greater than half the MZ correlation, suggesting at best a weak shared 

environmental effect. However, the mother-father correlation, which can be due to shared 

environment or assortative mating, was effectively 0, suggesting neither is influencing the 

endophenotypes. Taking the pattern of twin and parent correlations into account provides 

little support for a shared environmental effect.

Under the additive ACE model, we expect parent-offspring and DZ twin correlations to be 

equal, but they are not. In fact, the DZ twin correlation is larger than the parent-offspring 

correlation. This is what one might expect if there were dominance effects. Because 

dominance effects are 25% shared by DZ twins, but completely unshared by parents and 

children, they would lead to a DZ twin (or sibling) correlation that is higher than the parent-

offspring correlation. However, the parent-offspring correlation can also be deflated for 

other reasons, including the special twin environment (which each DZ twin has but the 
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parent does not (Maes, Neale, & Eaves, 1997), and gene-environment interaction (also 

discussed as cryptic genetic variation, Paaby & Rockman, 2014), which causes different 

genetic effects to be expressed at different developmental stages or in different cohorts 

(Eaves, Last, Young, & Martin, 1978).

Dominance effects are also suggested when the DZ correlation is much less than half the 

MZ correlation, but that pattern is not evident in Table 3. Evidence of dominance effects is 

thus weak and inconsistent in the family correlations, and our molecular genetic heritability 

analyses (i.e., GCTA, described next) can only accommodate additive genetic effects. We 

therefore opted to focus on ACE models in the accompanying articles. However, this may 

cause us to somewhat overestimate the narrow-sense heritability of our measures 

(heritability due solely to additive genes). We therefore also fit ADE models and report the 

results of these if they suggest that dominance effects are an important influence on a 

particular measure. We also examined ACE and ADE models fit to the twins only, in part 

due to concerns about gene-environment effects in the parental generation, as described 

above, and in part to facilitate comparison with the published findings of other researchers 

working with twin samples. Our goal was not careful explication of the structure of these 

measures from a biometric perspective, but rather to establish that they are heritable, and 

broadly to characterize the magnitude of heritable differences, which provides an estimate of 

the genetic target in genome-wide analyses of individual genetic variants. Because our 

sample is genetically informative, we are able to do both in the same sample, which provides 

a relatively unique opportunity to establish the magnitude of heritability and identify 

relevant genetic variants at the same time.

2. SNP heritability—As an adjunct to biometric analyses, we also conducted genome-

wide complex trait analysis (GCTA; Yang, Lee, Goddard, & Visscher, 2011), which, for 

each endophenotype, assesses the additive effect of all SNPs in linkage disequilibrium (LD) 

with the 527,829 SNPs on the Illumina genotyping array. LD creates a correlation among 

SNPs that are commonly inherited together in a given chromosomal region. An apparent 

association between SNPs on the genotyping array and a phenotype may be due not to the 

genotyped SNPs, but rather to variants in LD with those SNPs. GCTA thus estimates the 

variance in the phenotype explained by all SNPs in aggregate, rather than estimating 

associations between each individual SNP and endophenotype, as is done in GWAS. This is 

accomplished by treating each SNP as a random effect in a linear mixed model. Fixed 

effects in the model in our analyses, which are normally of interest in regression analyses, 

consisted of the covariates described in the Adjusting for Covariates section that follows. 

Each genotype is a standardized count of the number of minor alleles. A simple 

reparameterization expresses the random effects in terms of a matrix of pairwise genetic 

relationships among all participants (the genetic relatedness matrix). Restricted maximum 

likelihood is used to estimate the random effect variance, which is the total variance in the 

phenotype accounted for by SNPs on the genotyping array or in LD with them.

In samples comprising families, estimates of the additive genetic variance in a phenotype are 

driven by the phenotypic correlations among family members, which can be influenced by 

common environmental effects and nonadditive genetic effects, thus leading to biased 

estimates. Estimates of additive genetic variance can also be influenced by other classes of 
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genetic variation (e.g., rare variants). Thus, the GCTA estimates derived from families will 

reflect all causal variants, including rare variants not well tagged by SNPs on the genotyping 

array, rather than only those on the array itself or in LD with SNPs on the array. GCTA 

results based on families thus have a very different interpretation than results obtained in 

unrelated individuals. Yang and colleagues therefore recommend filtering family samples 

using several values of genetic relatedness to exclude close relatives, which ideally yields 

stable estimates across different thresholds. Because the choice of a cutoff is arbitrary, we 

used values of .025, .05, and .10, the most stringent of which (.025) corresponds to 

approximately third to fourth cousins. Because SNP heritability estimates can be inflated by 

SNPs in LD with “causal” variants (Speed, Hemani, Johnson, & Balding, 2012), in addition 

to the commonly employed GCTA procedure of Yang et al. (2011), we also used the 

program LDAK to derive LD-adjusted kinship coefficients that weight SNPs by local LD 

patterns (http://dougspeed.com/ldak). Hence, each article provides GCTA estimates based 

on the use of three different cutoffs, using both the GCTA approach most commonly 

employed in the literature, and a less commonly employed version that has the advantage of 

taking into account LD patterns. Our goal was thus not to provide a single GCTA point 

estimate for each endophenotype, but rather to examine how the estimates vary using 

different procedures, providing us with the opportunity to examine the extent to which our 

results depend on the assumptions inherent to each. Of particular interest was the degree to 

which convergence was evident in point estimate across the six analyses.

In addition to analyses based on subsamples of unrelated individuals, we conducted two 

different GCTA analyses using the whole sample. One used the procedure of Yang et al. 

(2011) without filtering subjects on the basis of genetic relatedness. GCTA estimates 

produced by this approach are driven by phenotypic relationships, including effects of 

shared environment (the C latent variable in biometric models). We also carried out a second 

analysis of the whole sample using a method recommended by Yang and colleagues (Yang, 

Lee, Goddard, & Visscher, 2013) for simultaneously modeling the genetic and 

environmental influences shared by family members. This produces an estimate 

unconfounded by the contribution of C. It also provides an estimate of C effects, which 

offers an opportunity to corroborate or disconfirm biometric model-fitting results. (We do 

not report these estimates, however, because they can be inferred from the magnitude of the 

difference in GCTA estimates from the two family-based models.) To summarize, we 

examined SNP heritability using three different versions of GCTA, and where possible, 

different cutoffs for relatedness in our sample. The online supporting information for this 

paper provides further details regarding exactly how the different GCTA models were 

applied for the analyses carried out in each of the empirical papers.

GCTA is essentially descriptive; its purpose is not to identify specific SNPs that influence a 

trait. As such, it complements the biometric model-fitting analyses by focusing on the 

molecular-genetic basis of phenotypic similarity rather than fitting models based on 

phenotypic covariances. It tells us to what extent biometric heritability can be accounted for 

by a truly additive model of one class of genetic variants, common SNPs (and everything in 

LD with these SNPs). This in turn gives us some insight into the utility of additional 

investigations into other types of genetic variants, such as copy number variants, variable 
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nucleotide repeats, insertions and deletions, rare SNPs, epistasis, or dominance, none of 

which is accounted for by GCTA despite possibly contributing to biometric heritability.

3. Analysis of individual SNPs in GWAS papers of common variants—The third 

prong in our analytic strategy was to conduct genome-wide association studies (GWAS). In 

the GWAS, we conducted regression analyses of effects on each psychophysiological 

measure of each of the 527,829 SNPs on the Illumina 660W-Quad genotyping array that 

survived quality control filters. Whereas GCTA considers all SNPs together, GWAS 

considers each SNP alone. The focus of GWAS is often on relatively common SNPs—

typically those with a MAF of at least 5% (those with a MAF less than 1% were discarded 

as part of our quality control procedure). A focus on common SNPs is consistent with the 

“common disease–common variant” model (for a review of the development of this concept, 

see Visscher, Brown, McCarthy, & Yang, 2012). For this model, the underlying genetic 

architecture differs between common and rare disorders, with common disorders (here, more 

appropriately, an endophenotype for a common disorder) thought to be heavily influenced 

by variants that are relatively common in the population, although this does not exclude the 

possibility that rare variants may also be involved. This model was influenced by 

discoveries of susceptibility variants for common diseases that have large MAFs, such as 

alleles in the apolipoprotein E gene (APOE) that confer risk for Alzheimer’s disease and 

alleles in the PPARG gene that confer risk for type II diabetes (Bush & Moore, 2012). 

Importantly, these procedures were not those used in the exome chip and sequencing papers 

to appropriately analyze large numbers of rare variants (see the next section for details and 

Vrieze, Malone, Pankratz et al., 2014; Vrieze, Malone, Vaidyanathan et al., 2014).

GWAS using MCTFR data is complicated by the nested structure of our sample, which 

induces a correlation among family members. To account for the lack of independence in 

family data, we used rapid feasible generalized least squares (RFGLS; X. Li, Basu, Miller, 

Iacono, & McGue, 2011). RFGLS is a computationally efficient form of generalized least 

squares (GLS). GLS can be appropriate when residuals are correlated (or heteroskedastic). 

GLS assumes that the residual covariance structure (e.g., within higher-order units, in our 

case, families) is known. If it is not, the observed variances and covariances can be used as 

an estimate of the unknown covariance structure, an approach known as feasible GLS 

(FGLS). In the present case, data were clustered in families comprising one to four 

members, with three family types: MZ and DZ families and stepparents. RFGLS estimates 

the residual covariance matrix separately for each type. FGLS would require us to estimate 

the residual covariance structure conditional on model covariates and a given SNP for each 

of the 527,829 SNPs, which is computationally inefficient. RFGLS estimates the residual 

covariance matrix once, conditional only on model covariates, based on the assumption that 

SNP effects on the residual covariances will be negligible. This produces significant savings 

in computational time and minimal bias or loss of power (X. Li et al., 2011). Constraints are 

imposed on several elements of the residual covariance matrix in order to reduce the number 

of parameters to be estimated, thereby avoiding problems with algorithm convergence. The 

mother-offspring and father-offspring correlations are constrained equal, as are variances for 

the two members of a twin pair. In all, four correlations (MZ or DZ twin pair, mother-

offspring, father-offspring, mother-father) and four variances (twin, mother, father, 
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stepparent) were estimated in the investigations described here. The independent variable in 

each analysis was a count of the number of minor alleles (0, 1, or 2) for each SNP, with the 

variables described below as covariates. The causal model implicit in using a count of minor 

alleles is that SNP effects are additive. Each SNP association was assessed via a test with 1 

df.

We used the conventional p-value threshold of 5 × 10−8, a genome-wide significance 

criterion used in GWAS that is considered robust to false positives because it tightly 

controls the familywise error rate arising from the testing of hundreds of thousands of SNPs. 

This is based on the notion of genome-wide significance, which corrects for the total number 

of effective independent regions in the genome, based on LD patterns in a particular 

population. Although the threshold adopted is stringent, we are applying it on a per 

phenotype and per experiment basis instead of correcting for all the possible different 

phenotypes we are evaluating across all the different papers. We believe there is an 

advantage to adopting this approach when all the tests we are conducting appear as part of a 

collection of papers presented together (as opposed to publishing each independently in 

different sources spread out over an extended period of time) because it allows the reader to 

make an informed opinion about the evidence for association in the context of a transparent 

overall approach. Nevertheless, for each tested endophenotype, there undoubtedly will be 

SNPs that are related to the endophenotypes that do not cross this stringent but necessary 

significance threshold. Therefore, we point out “suggestive” associations with each measure, 

although we do not interpret them. In this vein, each GWAS paper is accompanied by a 

supplement, which includes a list of SNPs associated with that paper’s endophenotype(s) at 

a significance level of p < 10−4. Although many of the SNPs with p values this small will 

represent false positives, a small subset is likely to constitute a valid signal in the genetic 

pathway mediating the development of a particular endophenotype. It is here that future 

molecular genetic investigators interested in a psychophysiological measure might look for 

evidence that their small p-value findings overlap with and are in effect replicated by ours.

In addition to this genome-wide scan, we used GWAS results to explicitly assess 

associations for two sets of candidate SNPs. The first set comprised 1,180 SNPs related to 

disorders or traits that are likely a priori to be associated with the different endophenotypes. 

These were identified through MEDLINE and included meta- and mega-analyses of alcohol 

(Wang et al., 2011) and drug (C. Y. Li et al., 2011) dependence, cocaine abuse (Clarke et al., 

2013), smoking and nicotine dependence (Belsky et al., 2013; Bierut et al., 2008; Furberg et 

al., 2010; Liu, Tozzi et al., 2010; Thorgeirsson et al., 2010), ADHD (B. M. Neale et al., 

2010), schizophrenia, bipolar disorder, and major depression (Greenwood et al., 2011; Hek 

et al., 2013; Ripke et al., 2012; Smoller et al., 2013; Sullivan, Daly, & O’Donovan, 2012), or 

related phenotypes, such as heavy drinking (Heath et al., 2011) and the maximum number of 

drinks consumed at one time (Kapoor et al., 2013; Pan et al., 2013), and the personality 

characteristic of excitement seeking (Terracciano et al., 2011).

The second candidate SNP set was different for each investigation, consisting of SNPs that 

have been reported in previous research to be associated with the specific endophenotypes 

investigated. SNPs in either of these two sets that were not on the Illumina array were 

imputed, using the program Minimac (Howie, Fuchsberger, Stephens, Marchini, & 
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Abecasis, 2012), after genotypes had first been phased using Beagle (Browning & 

Browning, 2009), which uses known familial structure to improve phasing accuracy. 

Genotypes were imputed with 1000 Genomes reference haplotypes (1000 Genomes Project 

Consortium, 2012). Imputation produces an allele dosage for each variant site in 1000 

Genomes, which is a weighted count of the minor allele; each genotype (AA, Aa, and aa, 

represented as 0, 1, and 2, respectively) is weighted by the posterior probability of that 

genotype as estimated by the imputation algorithm. Analyses of imputed SNPs used the 

allele dosage as the independent variable. We only used SNPs that had been imputed 

accurately, with an imputation r2 of at least .30 (http://www.ncbi.nlm.nih.gov/pubmed/

21058334). A Bonferroni-corrected significance threshold was adopted for both candidate 

sets, which corresponded to α = 4.24 × 10−5 for the set of 1,180 SNPs and a different value 

for the second set of candidate SNPs that varied from one endophenotype to another.

4. Aggregating SNPs within a gene—The fourth aspect of our analysis strategy 

consisted of testing associations between individual genes and the endophenotypes, using 

VEGAS, which stands for a “versatile gene-based association study” (Liu, Mcrae et al., 

2010). VEGAS combines into a single score evidence of association between all SNPs in a 

gene and a phenotype. This approach can be particularly powerful when several SNPs 

located in a gene are causally related to the phenotype, in which case the p value associated 

with any of them may not be small enough to be distinguishable from noise. VEGAS assigns 

SNPs to a gene by reference to the UCSC Genome Browser assembly, including all SNPs 

within 50 kilobases of the 3′ and 5′ untranslated region of a given gene in order to capture 

regulatory SNPs and SNPs in LD with those in the gene itself. Individual p values for each 

SNP are converted into chi-squared statistics with 1 df and summed. Although other gene-

based approaches exist, VEGAS easily accommodates the clustered nature of our sample 

because the p values it uses were produced by RFGLS and accurately reflect the nested 

structure of our data. LD between SNPs causes the SNPs and their p values to be correlated. 

Therefore, the null distribution of the gene score in the presence of LD must be determined. 

VEGAS uses Monte Carlo methods and the LD structure of a reference sample from the 

International HapMap Project (International HapMap Consortium, 2005). We selected the 

CEPH sample of Utah residents of European ancestry in HapMap (CEU) for this purpose.

We used VEGAS to conduct gene-based tests of association in a manner parallel to our 

analyses of individual SNPs. We tested the association between each of 17,601 autosomal 

genes and our endophenotypes in a genome-wide scan comparable to our GWAS of SNPs. 

The VEGAS algorithm we used did not consider allosomes. A threshold of p = 2.84 × 10−6 

was used for determining statistical significance, which corrects for the number of different 

genes. In addition, we evaluated three sets of candidate genes. The first set comprised 204 

genes selected because they are likely a priori to be related to the endophenotypes by virtue 

of particular characteristics: they belong to one of the major neurotransmitter or 

neuromodulatory systems (dopamine, noradrenaline, acetylcholine, GABA, glutamate, and 

serotonin), they belong to the endogenous opioid or cannabinoid systems, or they are 

implicated in metabolizing alcohol and nicotine. Relevant genes were identified through the 

NeuroSNP database (https://zork5.wustl.edu/nida/neurosnp.html). A threshold of 2.45 × 

10−5 was used for determining the significance of any genes in this set. The second set 
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consisted of 92 autosomal candidate genes identified by the Consortium on the Genetics of 

Schizophrenia (Greenwood et al., 2011), which reported evidence of association between 

these genes and some candidate endophenotypes broadly similar to those studied here. The 

third set was unique to each article, consisting of any candidate genes that have been found 

in previous research to be associated with the particular endophenotype examined.

Adjusting for Covariates

The measures we examined in these seven articles are potentially influenced by several 

demographic-related characteristics. For instance, gender differences in mean levels are 

sometimes observed for these measures considered as a group. Moreover, the sample 

comprises two age cohorts: adolescent twins and their parents, who are primarily middle 

aged. The actual ages vary within each cohort, and all of our measures are likely to change 

somewhat in mean level over the course of the life span, including during the late-adolescent 

period spanned by twins in this sample. We therefore adjusted all measures for these 

covariates in order to remove them as potential sources of confounding in our analyses. The 

covariate set, which was common to the five investigations of common variants, also 

included the 10 genetic PCs derived from EIGENSTRAT to adjust for any effects of 

unknown population stratification factors, in addition to age cohort, gender, and 

chronological age. Because data for these investigations were collected over a span of 

approximately 20 years, there were sometimes changes in protocol or recording system. The 

covariate set for each investigation therefore included dummy variables as necessary to 

accommodate variation in procedure or differences between protocols that might be specific 

to an experimental task. With the exception of the 10 genetic PCs, the same covariates were 

used in the two papers examining rare variants.

Associations Between Rare Variants and Endophenotypes: Exome Chip Analysis

Whereas the first five papers in this special issue examine the role of common variants in 

accounting for variance in the different putative endophenotypes, the sixth empirical report 

focuses on rare variants. In general, results from the common variant papers indicated that 

estimates of SNP heritability from GCTA were less than estimates of phenotypic heritability 

from fitting biometric models. This pattern suggests that not all of the genetic influence on 

these endophenotypes is accounted for by the common variants on the Illumina genotyping 

array. This finding is common in medical and psychiatric genetics, and it has led many to 

consider the role of rare variants (Zuk et al., 2014). In the investigation described in this 

paper, we examined associations between ~ 85,000 nonsynonymous SNPs and all 17 

endophenotypes. Nonsynonymous SNPs are located in coding regions of the genome (the 

exome); they are therefore exonic variants, and they also tend to be rare. The different 

alleles of nonsynonymous SNPs change the amino acid sequence of a protein, the effects of 

which can range from benign to lethal. Even in less extreme cases, however, their impact on 

phenotypic development is hypothesized to be greater, on average, than the impact of SNPs, 

which do not directly affect protein structure. This stands in sharp contrast to the (common) 

SNPs assessed in GWAS, which are selected for characteristics such as their ability to tag 

other SNPs and not necessarily for any functional relevance. We also conducted gene-based 

burden tests, in which the effects of individual variants within a gene are combined into a 

single score, similar to the VEGAS approach. Although the variants examined differ 
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between the first five papers and the sixth, we nevertheless were able to specifically examine 

rare variants in the 204 NeuroSNP candidate genes from the common-variant analyses 

(described above).

The methods used in this paper are necessarily different from those used in the five papers 

on common variants, and they are described in detail in the paper itself. As in the papers on 

common variants, all putative endophenotypes were adjusted for the relevant covariates: 

gender, age cohort, chronological age, and any dummy variables representing task-specific 

factors that might affect observed levels. Unlike the approach adopted in the other papers, 

they were not adjusted for population stratification by means of the 10 PCs produced by 

EIGENSTRAT. Instead, a linear mixed model EMMAX (Kang et al., 2010), implemented in 

the program EPACTS (Kang, 2014), was used to estimate an empirical kinship matrix, 

analogous to the genetic relatedness matrix in GCTA. The empirical kinship matrix allowed 

us to adjust for familial resemblance and population stratification simultaneously.

Associations Between (Nearly) All SNPs and Endophenotypes: Whole Genome 
Sequencing

The final empirical article in this special issue (Vrieze, Malone, Vaidyanathan et al., 2014) 

represents our most comprehensive attempt to discover rare, or common, variant 

associations with the 17 endophenotypes. We use whole genome sequencing to search the 

entire genome for SNPs, whether common or rare. We found 27 million autosomal SNPs, 

which includes the vast majority of all SNPs genotyped on the 660W-Quad genome-wide 

array and the exome array described previously. Each SNP is then tested for association with 

each endophenotype. We also conduct gene-based burden tests, just as in the exome chip 

article. We describe the sequencing methodology in the sequencing article itself and do not 

repeat it here. Instead, we provide a brief overview of how the sequencing article 

complements the other articles in this special issue, and some of the challenges associated 

with sequence analysis.

The other six articles used fixed arrays to genotype individuals; such arrays only genotype 

variants that have already been discovered in other individuals. Whole genome sequencing 

can identify novel rare variants, never seen before in any individual. Indeed, some of the 

variants we describe in the sequencing article are exclusive to the MCTFR participants, and 

have never been reported previously, in any study. Such comprehensive genotypic 

information allows for comprehensive genetic association tests. It is well known, for 

example, that increased genotyping density increases power to discover associations, even 

for common variants (Y. Li, Willer, Ding, Scheet, & Abecasis, 2010). Sequencing also 

allows accurate genotyping of rarer variants completely missed on any commercially 

available array.

This wealth of genetic variation carries with it a variety of challenges. First, genotype 

accuracy from sequencing is strongly related to the depth of sequencing; the deeper the 

sequencing, the more accurate the genotypes. Very shallow sequencing of 1× or 2× (i.e., the 

base sequence in the genome is “read” 1 or 2 times) is sufficient to accurately capture the 

vast majority of common variants in the genome (Y. Li, Sidore, Kang, Boehnke, & 

Abecasis, 2011). However, the human genome contains some 3 billion base pairs, the 
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“reading” of which can be expected to produce occasional genotyping error that cannot 

easily be differentiated from a rare variant that shows up in the occasional subject. Deep 

sequencing, such as 30×, provides high power to detect variants so rare that only a single 

copy of the minor allele is observed in the sample (i.e., appears in just one person, a 

“singleton”). This accuracy is achieved because reading the base pair sequence 30× makes it 

possible to separate sequencing errors (which might produce different values for a single 

base across the 30 reads) from reproducible signal (producing the same value for the base all 

30 times). However, higher depth sequencing is more costly. At low depths, many 

participants can be sequenced for some fixed cost but high depth is more expensive per 

person, such that only a few individuals can be sequenced for the same fixed cost. That is, 

low depth sacrifices genotype precision for sample size, and high depth sacrifices sample 

size for precision. Our sequencing study attempted to balance these competing outcomes, 

simultaneously obtaining good power to accurately genotype rarer variants in a relatively 

large sample size. In the end, we settled on a depth of 10×, which, according to our results, 

provided about 75% power to discover singletons.

Second, knowledge about genomic function outside of the exome is less well developed than 

our knowledge of that within the exome. Noncoding function can also be highly tissue 

specific, and the availability of such information in relevant brain tissue is only now being 

released through ROADMAP (Bernstein et al., 2010; Chadwick, 2012), ENCODE (The 

ENCODE Project Consortium, 2012), and GTEx (GTEx Consortium, 2013). Therefore, in 

the present work, we refrain from using functional annotation outside of coding regions, and 

conduct burden tests within the exome only. However, most disease- and trait-associated 

SNPs are not found in coding regions (Maurano et al., 2012). Noncoding regions, which 

comprise over 98% of the genome, are clearly important in genome function (The ENCODE 

Project Consortium, 2012), and we are keen to use noncoding functional information, as it 

becomes available, in the future for the sequences we have generated.

Third, whole genome sequencing remains relatively expensive (over $1,000 per individual 

in our work), so the available sample size is only a portion of that available in the MCTFR. 

This limits statistical power in a sample that is likely already underpowered to detect small 

genetic effects. To increase our sample, while maintaining the genotype density afforded us 

by sequencing, we used the sequences to impute into the full available MCTFR sample. We 

observed an increase in imputation accuracy over that obtained through imputation with 

1000 Genomes (cf. Pistis et al., 2014), the current standard in imputation. The imputation 

procedure allowed us to retest all 27 million sequenced variants in all 4,905 individuals with 

psychophysiological endophenotypes, and the increase in statistical power associated with 

that increased sample size.

Linear Mixed Models in Rare Variant Association Studies

In both the exome chip (Vrieze, Malone, Pankratz et al., 2014) and sequencing articles 

(Vrieze, Malone, Vaidyanathan et al., 2014) we used a linear mixed model called EMMAX 

(Kang et al., 2010) to account for population stratification and familial clustering in genetic 

association tests. Such models have become standard practice for these purposes (Yang, 

Zaitlen, Goddard, Visscher, & Price, 2014). The linear mixed model is similar to GCTA, in 
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that one uses a kinship matrix representing all pairwise familial relationships estimated on 

the available genetic data. This matrix is entered as a random effect of a linear mixed model 

to account for variance in the phenotype due to familial and population structure. Linear 

mixed models are not without their pitfalls, and thus used incorrectly can lead to spurious 

results (Yang et al., 2014). One concern noted elsewhere that does apply, however, is in the 

use of linear mixed models in analysis of rare variants. When the empirical kinship matrix is 

computed on genome-wide common variants, it may not reflect small pockets of population 

stratification that are due to evolutionarily recent rare variants. In this case, there may be 

residual population stratification due to rare variants that are confounded with nongenetic 

influences (e.g., environment, cultural practices). In this case, the residual population 

structure can exert a spurious influence on test statistics, and this influence is not corrected 

for by the common variant empirical kinship matrix (Mathieson & McVean, 2013). 

Although rare variant stratification is theoretically possible and certainly worth scrutiny, the 

authors present no real-world examples of the kind of stratification they propose could be 

problematic. Indeed, we observe no inflation in our rare variant tests here that would lead us 

to believe that rare variant stratification is playing more than a negligible role in our results; 

neither have we observed spurious results in prior research that used linear mixed models in 

rare variant association tests (Vrieze et al., 2013).

Summary and Conclusion

Our approach involves applying the same set of analytic procedures to each of 17 candidate 

endophenotypes derived from five different psychophysiological protocols assessing 

constructs of broad interest in psychophysiological research. It includes elements that are 

both agnostic (genome-wide analyses) and hypothesis driven (plausibly relevant candidate 

SNPs and genes) regarding the expected results. Consistent with current convention 

designed to lessen the likelihood of the types of false-positive outcomes that are generally 

believed to be common in molecular genetic research, we adopted conservative p-value 

thresholds in our analyses. In reporting results, we interpreted as significant findings that 

exceeded these thresholds while also noting our strongest nonsignificant findings, with the 

hope that both are likely to be of value to investigators also interested in the genetic basis of 

the measures we examined. Also included are biometric analyses of the same phenotypes 

using the participants in the molecular genetic studies. Although our investigations are not 

unique in this regard, this is not a common feature of genome-wide studies of complex traits. 

Besides providing evidence regarding the strength of genetic influence on our measures, 

because MZ twins are in effect parallel forms of the same person, the MZ twin correlations 

provide an index of measurement reliability, also an important aspect of an endophenotype.

Although the two decades it took to acquire our study subjects produced samples that are 

large by standards commonly employed in psychophysiology, they are small when 

compared against what molecular geneticists believe are well suited to identify genetic 

variants associated with complex traits. However, there is no way to know what sample size 

is necessary to achieve success with these candidate endophenotypes in the absence of the 

type of evaluative investigation we have undertaken. In a review of the first 5 years of 

GWAS discovery for complex traits, Visscher et al. (2012) graphically showed (see their 

Figure 2A) that the number of discovered genetic variants was strongly correlated with 
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sample size, such that samples of 20,000 or larger have been required to obtain hits for easy-

to-measure-accurately but genetically distal traits like body mass index and height. More 

difficult to measure but biologically relevant traits with presumed more proximal genetic 

influences, like the Q–T interval in the electrocardiogram (and HDL cholesterol and bone 

mineral density), produced verifiable hits with sample sizes in the 2,000–5,000 range, 

similar to those available in the MCTFR. It is because of such findings that we launched 

these special issue studies with some optimism regarding the likelihood of identifying causal 

variants for the endophenotypes we investigated.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix 1

Endophenotype Brief Descriptions

Antisaccade Eye Tracking Error (Vaidyanathan, Malone, Donnelly et al., 2014)

Participants viewed a spot of light in the center of a computer screen that appeared to move 

to one side or the other of the screen (the centered dot disappeared and another appeared to 

the side). The participant’s task was to override the impulse to direct gaze toward the new 

target location and to look instead in the opposite direction, fixating on the approximate 
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mirror image location of the target. Performance was quantified as the proportion of trials on 

which the participant generated a saccade in pursuit of the target instead of generating an 

antisaccade away from it.

EEG Measures (Malone, Burwell et al., 2014)

Electroencephalographic (EEG) activity was recorded from three electrode locations while 

subjects relaxed with eyes closed for 5 min. Five measures were derived from EEG at the 

vertex electrode Cz: Total EEG Power = total power between 0.5 and 30 Hz, Alpha EEG 
Power = power in the alpha band (8 to 13 Hz), Beta EEG Power = power in the beta band 

(13.5 to 30 Hz), Theta EEG Power = power between 4 and 7.5 Hz, and Delta EEG Power 
= power between 0.5 and 4 Hz. In addition, we examined two measures obtained by 

averaging across two bipolar occipital-parietal electrode derivations (O1–P7 and O2–P8): 

Alpha EEG Power 0102, defined as for Cz; and Alpha EEG Frequency 0102, defined as 

the dominant peak frequency in the alpha band.

P3 Event-Related Potential Amplitude Measures (Malone, Vaidyanathan et al., 2014)

To determine P3 Amplitude, subjects completed the rotated heads visual oddball task 

(Begleiter, Porjesz, Bihari, & Kissin, 1984). Interspersed among frequently displayed stimuli 

consisting of ovals were infrequently presented superior views of a stylized head displaying 

the nose and one ear. Subjects pressed a left button if they saw a left ear and a right button if 

they saw a right ear. Half of these P3-eliciting oddball targets were rotated by 180 degrees 

and presented with the nose facing down. An additional amplitude measure was also 

calculated, the P3 Genetic Factor Score, which was generated from a twin family-based 

factor analysis of P3 amplitude using responses recorded from three parietal electrodes. This 

measure captures the degree to which the covariance among P3 amplitude measures reflects 

the influence of shared genetic effects. Because environmental influences are not included in 

the genetic factor score, it should provide a stronger genetic signal than P3 amplitude, 

possibly conferring an advantage when searching for associated genetic variants.

Electrodermal Activity Measures (Vaidyanathan, Isen et al., 2014)

Electrodermal activity was recorded from the fingertips as part of a habituation task during 

which loud tones were intermittently delivered while participants viewed scenes from a 

closed-captioned movie. Immediately following the end of the movie presentation, 

participants rested with eyes closed for 5 min. Skin Conductance Level provided a measure 

of the participant’s tonic resting level monitored at the end of the session, when participants 

can be expected to be relaxed after having viewed the movie. Skin Conductance Response 
Frequency provided a count of the number of tones to which participants responded. Skin 
Conductance Response Amplitude captured mean response magnitude for trials on which 

participants produced an observable response. The Electrodermal Activity Factor Score 
provided a global measure of electrodermal activity using a factor score derived from a 

common factor model fit to the three skin conductance measures.
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Acoustic Startle Response and Affective Startle Modulation (Vaidyanathan, Malone, Miller, 
McGue, & Iacono, 2014)

Three measures were derived from an affective startle modulation paradigm (Vrana, Spence, 

& Lang, 1988) in which participants viewed a series of well-standardized images, while 

their startle eye blink reactions to noise probes were recorded. Overall Startle indexed the 

magnitude (in μV) of the integrated electromyographic (EMG) response from the orbicularis 

oculi muscle averaged over all trials, regardless of image valence. Aversive Difference 
Startle was defined by the z score difference in mean EMG startle magnitude between 

aversive and neutral images and represents a measure of the degree to which startle eye 

blink is potentiated by aversive stimuli. Pleasant Difference Startle was defined as the z 

score difference in startle magnitude between pleasant and neutral images and represents a 

measure of the degree to which startle eye blink is attenuated by pleasant stimuli. The startle 

blink reflex is intensified by aversive motivational states and diminished by appetitive states.

Appendix 2 Glossary

1000 Genomes Newer than the HapMap Project, the 1000 Genomes Project describes 

the genomes of 1,092 individuals from 14 countries and provides a 

validated map of 38 million single nucleotide polymorphisms (SNPs) 

and almost 1.5 million insertions and deletions of genetic material. It 

provides a reference panel for imputing SNPs that are not on a 

genotyping array but are in LD with SNPs on the array.

Allelic stratification 

(population 

stratification)

This occurs if allele frequencies that vary between ethnic groups are 

confounded with ethnic differences in the phenotype, which can 

create a spurious association.

Biometric model Applied to family members, this statistical procedure provides 

estimates of the amount of variance in a phenotypic trait that is 

accounted for by shared genetic influences (indicating the heritability 

of the trait), shared environmental experience that makes family 

members similar to one another, and unique environmental factors 

that make family members different from each other.

Common variant A strict definition does not exist, but “common variant” often refers 

to SNPs whose minor (less frequently occurring) allele is present in 

5% or more of the study population.

Exons These are the sequences of DNA found in genes that directly encode 

the amino acids that make up proteins. All the exons combined are 

referred to as the “exome” and represent perhaps 2% of the total 

genome sequence.
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Exome chip Genotyping array used to identify rare nonsynonymous variants in the 

exome (protein coding portion of DNA).

HapMap A catalog of common variants derived from DNA samples from 

populations of African, Asian, and European ancestry. Samples were 

collected from individuals of Northern and Western European 

ancestry in the United States by the Centre d’Etude du 

Polymorphisme Humain (CEPH). This is the reference population for 

Caucasian subjects in GWAS, abbreviated CEU, and is used by the 

VEGAS analytic program to evaluate the strength of association of a 

gene with a phenotype.

GCTA: Genome-

wide complex trait 

analysis

A quantitative method used to estimate the degree to which SNPs in 

unrelated people account for their degree of phenotypic similarity. 

GCTA assumes genetic variance in the phenotype reflects the 

combined additive effect of all alleles weighted equally. When 

carried out on related individuals, estimates are not strictly due to 

measured genetic variants. Rather, they are driven by all factors that 

influence phenotypic similarity, including shared environment, 

nonadditive genetic effects, and rare variants not tagged by the 

genotyping array. A recent development permits modeling, and 

thereby accounting for, the shared environmental effects that operate 

within families.

Genomic control In GWAS, we expect the vast majority of genetic variants to have no 

discernible association with the phenotype of interest. Genomic 

control tests whether the median p value is greater or smaller than 

expected by chance (i.e., different from the null). If it deviates too far 

from expectation, there may be unknown population stratification, 

familial relatedness, or other problems in the sample.

GWAS: Genome-

wide association 

study

A molecular genetic method in which a genotyping array for 

hundreds of thousands of SNPs is used to examine the degree to 

which each is associated with a phenotype. In the current studies, we 

tested the degree to which each of 527,829 SNPs was associated with 

each psychophysiological endophenotype.

Linkage 

disequilibrium

Linkage equilibrium occurs when the genotype present at one locus is 

independent of that at another locus. With linkage disequilibrium, 

there is nonrandom association between two or more alleles/SNPs, 

suggesting that they are inherited together and possibly functioning as 

a unit.
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MAC: Minor allele 

count

The number of times the minor allele is present in a sample or 

population. MAC is typically examined in studies of rare variants that 

occur in only a small number of people in a study sample.

MAF: Minor allele 

frequency

The proportion of times the minor allele, or less frequently observed 

allele, is present in a sample or population. It is the MAC divided by 

twice the number of individuals (i.e., the MAC times the number of 

chromosomes in the sample).

Manhattan plot A plot of observed p values from a GWAS sorted by chromosome, 

providing a detailed picture of associations between SNPs and a 

phenotype. To better visualize small p values, they are scaled as 

−log10(p). Genome-wide significance of 5 × 10−8 is equal to 7.30 on 

this scale.

Nonsynonymous A type of genetic variant that resides within an exon and can alter the 

amino acid sequence of a protein, making it nonfunctional.

Q-Q plot Q-Q plots represent a tool for evaluating graphically the fit of 

observed data to a particular distribution. In GWAS, they plot 

observed p values against expected p values under the null 

distribution. Because the vast majority of SNPs are not expected to be 

associated with a given phenotype, observed values should conform 

closely to expected values, except for significant associations.

RFGLS: Rapid 

feasible generalized 

least squares

RFGLS is a statistical package developed at the University of 

Minnesota to account for the correlated nature of family data in a way 

that is computationally efficient when running GWAS analyses.

Rare variant While no strict definition exists, these are often SNPs whose minor 

allele frequencies (MAFs) are present in fewer than 5% of those in a 

study sample.

SNP: Single 

nucleotide 

polymorphism

A sequence variation in a single DNA base pair, the configuration of 

which varies across people.

Tag SNP Common SNPs may not be independent of one another due to linkage 

disequilibrium. For this reason, one only needs to genotype a select 

subset of the total number of common SNPs. If these “tag” SNPs are 

selected well, then a survey of only several hundred thousand SNPs 

provides a cost-effective way to obtain most of the information about 

common SNPs in the genome.
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VEGAS: Versatile 

gene-based 

association study

A quantitative method in which all the SNPs in every autosomal gene 

(i.e., a gene that is not on the sex chromosomes) and its surrounding 

region are tested in aggregate for their strength of association with a 

phenotype. Linkage disequilibrium among the SNPs is accounted for 

through simulations in generating a p value.

Whole genome 

sequencing (WGS)

A genotyping method that identifies the exact sequence of bases in an 

entire individual genome, thus making possible the identification of 

rare variants.
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Figure 1. 
Sample flow chart providing an overview of the MCTFR participant samples used in the 

molecular genetic studies of endophenotypes derived from five different 

psychophysiological protocols. See text for key to abbreviations.
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Figure 2. 
Heat map representation of phenotype correlations among the 17 phenotypes. All measures 

were covariate adjusted (see text). The dendrogram shows measure clustering based on the 

correlations. totPower = total EEG power at electrode Cz; μPower = power in the alpha, 

beta, theta, and delta bands at Cz, respectively; αPowerO1O2 = alpha power at electrodes 

01–02; αFreqO1O2 = alpha frequency at electrodes 01–02; P3 = P300 amplitude; gP3 = 

genetic factor score for P300 amplitude; EDA = electrodermal factor score; SCL = skin 

conductance level; fSCR = skin conductance response frequency; aSCR = skin conductance 

response amplitude; aSTRTL = aversive difference startle score; pSTRTL = pleasant 

difference startle score; STRTL = overall startle amplitude; SAC = antisaccade tracking 

error rate.
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Figure 3. 
First two components from a principal components analysis of ancestry differences in 4,756 

unrelated subjects in the MCTFR genotyped sample using the program EIGENSTRAT. 

Each dot represents an individual. Dots are color coded by self-reported ethnicity. The 

principal axis of variation is anchored at one end by those of self-reported European 

ancestry and at the other by East Asians. The second principal dimension differentiates 

European ancestry from those who reported African-American ancestry.
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Figure 4. 
Flow chart highlighting the research questions posed and the analytic methods used to 

address them in the seven accompanying empirical articles. GCTA = genome-wide complex 

trait analysis; GWAS = genome-wide association study; VEGAS = versatile gene-based 

association study; SNP = single nucleotide polymorphism; MCTFR = Minnesota Center for 

Twin & Family Research.
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Table 3

Median Within-Family Correlations for the 17 Endophenotypes

Relationship Median r

Mother-father .01

Mother-offspring .23

Father-offspring .18

MZ twins .64

DZ twins .34

Note. Correlations were produced by rapid feasible generalized least squares (RFGLS), our analytic method for GWAS that is described in the text, 
which models within-family correlations. All measures were adjusted for the same set of covariates: chronological age, gender, generation 
(adolescent or adult), any task-specific factors that might affect mean levels, and scores on 10 principal components reflecting residual population 
stratification in our Caucasian sample.
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