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Background: PI3K� is implicated in insulin secretion and actin remodeling and is activated by glucose-dependent insuli-
notropic polypeptide (GIP).
Results: GIP activates Ras-related-C3 botulinum toxin substrate-1 (Rac1), induces actin remodeling, and amplifies �-cell insulin
secretion in a PI3K�-dependent manner.
Conclusion: Insulin secretion induced by GIP requires PI3K�.
Significance: Understanding the �-cell signaling pathway will help us understand �-cell dysfunction in diabetes.

PI3K�, a G-protein-coupled type 1B phosphoinositol 3-ki-
nase, exhibits a basal glucose-independent activity in �-cells
and can be activated by the glucose-dependent insulinotropic
polypeptide (GIP). We therefore investigated the role of the
PI3K� catalytic subunit (p110�) in insulin secretion and �-cell
exocytosis stimulated by GIP. We inhibited p110� with
AS604850 (1 �mol/liter) or knocked it down using an shRNA
adenovirus or siRNA duplex in mouse and human islets and
�-cells. Inhibition of PI3K� blunted the exocytotic and insuli-
notropic response to GIP receptor activation, whereas responses
to the glucagon-like peptide-1 or the glucagon-like peptide-1
receptor agonist exendin-4 were unchanged. Downstream, we
find that GIP, much like glucose stimulation, activates the small
GTPase protein Rac1 to induce actin remodeling. Inhibition of
PI3K� blocked these effects of GIP. Although exendin-4 could
also stimulate actin remodeling, this was not prevented by
p110� inhibition. Finally, forced actin depolymerization with
latrunculin B restored the exocytotic and secretory responses to
GIP during PI3K� inhibition, demonstrating that the loss of
GIP-induced actin depolymerization was indeed limiting insu-
lin exocytosis.

Both rodent and human �-cells express G-protein-coupled
receptors that are activated by peptide hormones of the secretin
family: glucose-dependent insulinotropic peptide (GIP)4 and

glucagon-like peptide-1 (GLP-1) (1–5). GIP and GLP-1 are
released from the intestine following a nutrient stimulus and
potentiate insulin secretion from pancreatic �-cells (6 –9).

Type 2 diabetes and metabolic syndrome are associated with
disturbances in the incretin-signaling pathway (10, 11).
Although still controversial, a number of studies suggest that
secretion of GIP (but not its stimulatory action) is preserved in
type 2 diabetes (12–14), whereas the action of GLP-1 is main-
tained, but its secretion is blunted (10, 13–15).

GIP and GLP-1 bind distinct seven-transmembrane domain
G-protein-coupled receptors (GIP-R and GLP-1-R) (1, 2, 5, 16).
GIP-R and GLP-1-R activation leads to the activation of adeny-
late cyclase and a rise in intracellular cAMP. This potentiates
insulin secretion through both PKA and the guanine nucleotide
exchange factor Epac and an increase in cytosolic Ca2� (17–
21). Certain anti-diabetic agents, such as the incretin mimetic
class of drugs, exploit this pathway by activating the GLP-1
receptor (22, 23).

Class 1 PI3Ks are implicated in incretin receptor signaling
(24 –26). The nonselective PI3K inhibitor wortmannin partially
inhibits GIP stimulated insulin secretion in a clonal �-cell line,
in a manner independent of cAMP generation (26). Although
the best studied PI3Ks (type 1A) are activated through tyrosine
kinase receptors (27), the lone type 1B PI3K isoform PI3K� is
activated by G-protein �� subunits (28). Furthermore, GIP is
shown to directly activate PI3K� in INS-1 cells, as measured by
an increase in the production of its main phosphorylation prod-
uct phosphatidylinositol 3,4,5-trisphosphate (25). We demon-
strated previously that PI3K� is required for a robust insulin
secretory response by promoting actin depolymerization and
insulin granule recruitment to the plasma membrane (29).

Given the importance of incretin action to secretory dysfunc-
tion in type 2 diabetes, we now examine the requirement for
PI3K� in incretin-stimulated insulin secretion. We demon-
strate that pharmacological inhibition, or shRNA-mediated
knockdown of p110� impairs the insulinotropic effect of GIP-R
(but not GLP-1-R) activation in mouse and human islets. We
show that GIP is a potent stimulator of insulin granule exocy-
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tosis, an effect that is blunted with p110� inhibition or knock-
down. Furthermore, we show that p110� inhibition prevents
GIP-induced actin depolymerization, likely by preventing acti-
vation of the small GTPase protein Rac1. Finally, we show that
forced actin depolymerization restores the insulinotropic effect
of GIP in cells lacking functional p110�. Thus, we demonstrate
that in addition to the classical cAMP pathway, PI3K signaling
through p110� is required for the full insulinotropic effect of
GIP.

EXPERIMENTAL PROCEDURES

Cells and Cell Culture—Islets from male C57/BL6 mice were
isolated by collagenase digestion and then handpicked. Human
islets from 14 healthy donors (53 � 5 years of age) were from
either the Clinical Islet Laboratory at the University of Alberta
or the IsletCore program at the Alberta Diabetes Institute. Islets
were dispersed to single cells in Ca2�-free buffer. INS-1 832/13
cells were a gift of Prof. Christopher Newgard (Duke Univer-
sity). Islet and cell culture was as described previously (29, 30).
All studies were approved by the Animal Care and Use Com-
mittee and the Human Research Ethics Board at the University
of Alberta.

DNA and Adenovirus Constructs—The p110� shRNA and
scrambled control sequence were previously characterized
(29). Expression was via recombinant adenovirus produced by
transferring the expression cassettes into the Adeno-X viral
vector (Clontech) followed by adenovirus production in
HEK293 cells as previously described (29) An additional siRNA
sequence tested was from Applied Biosystems (catalog no.
4390771; Burlington, Canada). An Allstars negative control
siRNA was from Qiagen (catalog no. 1027284).

Pharmacologic Inhibitors and Peptides—AS6048505 (2,2-di-
fluoro-benzo[1,3] dioxol-5-ylmethylene)-thiazolidine-2,4-di-
one) (Selleckchem, Houston, TX) is a selective, competitive
inhibitor of p110� (IC50 � 250 nmol/liter for p110� versus 4.5
�mol/liter for p110� and �20 �mol/liter for p110�) (31). It
exhibits no notable activity against a wide array of kinases at
concentrations of 1 �mol/liter. Latrunculin B, a potent actin-
depolymerizing agent, was from Sigma-Aldrich. GIP and GLP-
1(7–36) peptides were from AnaSpec (Fremont, CA). Exen-
din-4 was from Sigma-Aldrich.

Immunoblotting—Cell lysates were subjected to SDS-PAGE
and transferred to polyvinylidene difluoride membranes (Mil-
lipore, Billerica, MA), probed with primary antibodies (anti-
p110�, anti-p110�, and anti-p110� (Cell Signaling Technology,
Beverly, MA); anti-�-actin (Santa Cruz Biotechnology, Santa
Cruz, CA); and anti-Rac1 (Cytoskeleton, Denver, CO)). Detec-
tion was with peroxidase-conjugated secondary anti-rabbit and
anti-mouse antibodies (GE Healthcare), and visualization by
chemiluminescence (ECL-Plus; GE Healthcare) and exposure
to x-ray film (Fujifilm, Tokyo, Japan).

Quantitative PCR—RNA was extracted using TRIzol reagent
(Invitrogen) from dispersed mouse �-cells 48 h post transfec-
tion with siRNA constructs. Real time quantitative PCR assays
were carried out on the 7900HT Fast Real-Time PCR system
using Fast SYBR Green Master Mix (Applied Biosystems) as the
amplification system. Primers were as follows: mouse p110�
forward, 5�-CATCAATAAAGAGAGAGTGCCCTTCGTCC-

TAAC-3�; mouse p110� reverse, 5�-CTAGGTAAGCTCTAA-
CACAGACATCCTGATTTC-3�; mouse cyclophilin forward,
5�-CGCGTCTCCTTCGAGCTGTTTGC-3�; and mouse cyc-
lophilin reverse, 5�-GTGTAAA GTCACCACCCTGGCACA-
TGAATC-3�.

Rac1 Activation Assays—INS-1 cells were treated overnight
with AS604850 (1 �mol/liter) or DMSO vehicle. Cells were
preincubated for 2 h in 1 mmol/liter glucose Krebs Ringer
buffer (KRB; 115 mmol/liter NaCl, 5 mmol/liter KCl, 24 mmol/
liter NaHCO3, 2.5 mmol/liter CaCl2, 1 mmol/liter MgCl2, and
10 mmol/liter HEPES, pH 7.4) and then stimulated for 25 min
with either 1 or 16.7 mmol/liter glucose KRB. For GIP stimula-
tion experiments, 100 nmol/liter GIP was included in the 1 or
16.7 mmol/liter glucose KRB. Rac1 activity was determined
with GST-p21-activated kinase binding domain as described in
the Rac1 pulldown activation biochem kit manual (Cytoskele-
ton, Inc., Denver, CO).

Insulin Secretion Measurements—Islets (either mouse or
human) were treated overnight with 1 �mol/liter AS604850,
(or vehicle) or infected with a p110� shRNA adenovirus (or
scrambled control) for 72 h. Static insulin secretion measure-
ments were performed at 37 °C in KRB, as described previously
(29, 30). GIP (100 nmol/liter), Ex-4 (100 nmol/liter), GLP-1 (10
nmol/liter), or latrunculin B (10 �mol/liter) was present during
the 60-min 16.7-mmol/liter glucose KRB stimulation as indi-
cated. Human islet perifusion was performed at 37 °C using a
Brandel SF-06 system (Gaithersburg, MD) after a 2-h preincu-
bation in KRB with 1 mmol/liter glucose. Thirty-five islets per
lane were perifused (0.5 ml/min) with KRB with glucose as indi-
cated. Samples stored at �20 °C were assayed for insulin via
enzyme-linked immunosorbent assay (MSD, Rockville, MD).

Electrophysiology—We used the standard whole cell tech-
nique with the sine�DC lockin function of an EPC10 amplifier
and Patchmaster software (HEKA Electronics, Lambrecht/
Pfalz, Germany). Experiments were performed at 32–35 °C.
Solutions used for capacitance measurements are previously
described (29, 30). For GIP (100 nmol/liter) or Ex-4 (100 nmol/
liter) stimulation experiments, the peptides were added to the
bath solution prior to patch-clamping. For some experiments,
the pipette solution also contained 10 �mol/liter latrunculin B.
For experiments in Fig. 9C, cells were preincubated in 1 mmol/
liter bath solution for 1 h and glucose or GIP were added to the
bath as indicated. Capacitance responses and Ca2� currents
were normalized to initial cell size and expressed as femtofarad
per picofarad and picoamperes per picofarad. Mouse �-cells
were identified by size, whereas human �-cells were identified
by insulin immunostaining.

Actin Staining—Mouse islets were dispersed into single cells
onto coverslips as previously described (29). Cells were treated
overnight with the AS604850 inhibitor (1 �mol/liter) or vehi-
cle. For Figs. 7 and 8, the glucose concentration was 11 mmol/
liter. For the low glucose experiments in Fig. 9, cells were pre-
incubated with 2.8 mmol/liter KRB for 2 h prior to treatments.
For GIP, Ex-4, and latrunculin B experiments, cells were treated
as indicated. Immediately following treatment, cells were fixed
with Z-FIX (Anatech, Battle Creek, MI). Cells were stained for
insulin with rabbit anti-insulin primary antibody (Santa Cruz,
CA) and Alexa Fluor 594 goat anti-rabbit secondary antibody
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(Invitrogen). Cells were also stained for filamentous actin (F-ac-
tin) with Alexa Fluor 488-conjugated phalloidin (Invitrogen).
The cells were imaged with a Zeiss Axio Observer.Z1 micro-
scope and �63 Plan ApoChromat objective (1.4 NA). Excita-
tion was with a COLIBRITM (Carl Zeiss Canada, Toronto,
Canada) LED light source with 495- or 555-nm filter set. Only
insulin-positive cells were used for F-actin intensity measure-
ment, which were analyzed using ImageJ software (National
Institutes of Health).

Statistical Analysis—For single-cell electrophysiology or
imaging studies, the n values represent the number of cells
studied from at least three individual experiments. For secre-
tion and perifusion studies, the n values represent numbers of
distinct islet preparations from at least three individual exper-
iments. Electrophysiological data were extracted using FitMas-
ter v2.32 (HEKA Electronik). All data were analyzed using the
Student t test, or post hoc Tukey test following a two-way anal-
ysis of variance where more than two groups were present. Sta-
tistical outliers were removed using the Grubb’s test. The data
are expressed as means � S.E., and p 	 0.05 was considered
significant.

RESULTS

p110� Inhibition Blunts the Insulinotropic Effect of GIP-R
Activation in Mouse and Human Islets—Expression of the
p110� catalytic subunit of PI3K was confirmed by Western blot
in INS-1 832/13 cells, mouse islets, and human islets (Fig. 1A).
The p110� inhibitor AS604850 (1 �mol/liter, overnight) did
not alter expression of p110� protein in INS-1 832/13 cells (Fig.
1B). Because other PI3K catalytic isoforms could possibly com-
pensate for each other, we examined the effects of AS604850 on
protein expression of p110� and p110� in INS-1 832/13 cells
and found no difference following overnight p110� inhibition
(Fig. 1B).

Consistent with our previous findings using a different
p110�-selective inhibitor (29), inhibition of p110� with
AS604850, (1 �mol/liter overnight) decreased glucose-stimu-
lated insulin secretion from mouse islets by 50% (n � 18 from
seven distinct experiments, p 	 0.05; Fig. 1C). The insulino-
tropic effect of GIP (100 nmol/liter) was blunted by 46% follow-
ing inhibition of p110� (n � 17 from seven distinct experi-
ments, p 	 0.01; Fig. 1C). Insulin content was unaffected by
overnight p110� inhibition (n � 18 from seven distinct exper-
iments, Fig. 1C (inset)), nor was there a change in GIP-R or
GLP-1-R mRNA as measured by quantitative PCR (not shown).
The secretory response to GIP was also blunted by p110� inhi-
bition in islets from six human donors (Fig. 2). This suggests
that GIP-induced insulin secretion requires p110� activity, in
line with previous demonstrations that GIP can activate p110�
in INS-1 cells (25) and that GIP-dependent insulin secretion is
blunted by the pan-PI3K inhibitor wortmannin (26).

p110� Inhibition Does Not Impair the Insulinotropic Effect of
GLP-1-R Activation in Mouse and Human Islets—p110��/�

mice have an impaired insulin secretory response that is res-
cued by chronic Ex-4 administration (32, 33). We thus exam-
ined the insulinotropic effect of GLP-1 (10 nmol/liter) and the
GLP-1 agonist Ex-4 (100 nmol/liter) following p110� inhibition

in isolated islets. Insulin secretion in response to either GLP-1
or Ex-4 was not blunted following p110� inhibition in mouse
islets (n � 16 from six distinct experiments Fig. 1D). Simi-
larly, Ex-4 remained able to stimulate insulin secretion from
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FIGURE 1. p110� inhibition impairs GIP-R, but not GLP-1-R-stimulated
insulin secretion from mouse islets. A, expression of p110� was confirmed
by Western blot of protein lysates from INS-1 832/13 (I), mouse islets (M), and
human islets (H). B, p110�, p110�, and p110� protein expression levels from
INS-1 832/13 cells following overnight treatment with either DMSO or
AS604850 (1 �mol/liter). �-Actin was used as a loading control. C, glucose and
GIP (100 nmol/liter; 1 h) stimulated insulin secretion was measured from
mouse islets treated overnight with either DMSO (open bars) or AS604850 (1
�mol/liter; black bars). D, glucose and GLP-1-stimulated (10 nmol/liter; 1 h) or
Ex-4-stimulated (100 nmol/liter; 1 h) insulin secretion was measured from
mouse islets treated overnight with either DMSO (open bars) or AS604850 (1
�mol/liter; black bars). Inset shows total insulin content. *, p 	 0.5; **, p 	 0.01;
ns, not significant.
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islets of six human donors (Fig. 2). This suggests that insulin
secretion stimulated by the GIP-R, but not the GLP-1-R,
requires p110�.

p110� Inhibition Prevents GIP-induced Exocytosis in Mouse
and Human �-Cells—We next monitored �-cell exocytosis as
whole cell capacitance increases in response to a train of mem-
brane depolarizations following p110� inhibition. AS604850 (1
�mol/liter, overnight) decreased exocytosis by 60% (n � 15–18,
p 	 0.01; Fig. 3A) in mouse �-cells. GIP treatment (100 nmol/
liter) increased exocytosis in control cells by 2.3-fold (n �

15–17, p 	 0.05; Fig. 3, A and B), an effect that was blunted
following p110� inhibition (n � 16 –17; Fig. 3B). Conversely,
Ex-4 treatment (100 nmol/liter) increased exocytosis in control
cells by 2.6-fold (n � 15–19, p 	 0.01; Fig. 3, A and C), and
p110� inhibition did not blunt the ability of Ex-4 to stimulate
the exocytotic response (n � 16 –19; Fig. 3C).

We also monitored whole cell capacitance following p110�
inhibition in human �-cells. Similar to the mouse data, inhibi-
tion of p110� decreased the exocytotic response by 50% (n �
20 –23, p 	 0.01; Fig. 4A). GIP (100 nmol/liter) increased exo-
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FIGURE 2. p110� inhibition impairs GIP-R, but not GLP-1-R-stimulated insulin secretion from human islets. A–F, glucose-stimulated (HG) and GIP-
stimulated (100 nmol/liter; 1 h; left panels) or Ex-4-stimulated (100 nmol/liter; 1 h; right panels) insulin secretion was measured from human islets treated
overnight with either DMSO (open circles) or AS604850 (1 �mol/liter; black circles). Each individual donor is shown in a separate panel. G, averaged secretory
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cytosis in control cells by 1.8-fold (n � 19 –23, p 	 0.01; Fig. 4,
A and B), and this was severely blunted following p110� inhibi-
tion (n � 17–19; Fig. 4B).

p110� Knockdown Impairs the Response to GIP in Mouse and
Human Islets—Knockdown of p110� using an adenoviral
shRNA construct (Adsh-p110�) that we have previously shown
to reduce p110� protein expression by 78% (29) results in
impaired insulin exocytosis when compared with a scrambled
control. In line with our observations using pharmacological
inhibition, infection of mouse islets with Adsh-p110� impaired
the insulinotropic effect of GIP (100 nmol/liter) measured dur-
ing perifusion (n � 4,4, p 	 0.05; Fig. 5, A and B). Similarly, the
insulinotropic effect of GIP (100 nmol/liter) was also blunted in
human islets infected with Adsh-p110� (n � 6 distinct donors,
p 	 0.05; Fig. 5C). Insulin content was not significantly changed
during any treatment conditions. Adsh-p110� also severely
impaired the ability of GIP (100 nmol/liter) to increase exocy-
tosis in mouse �-cells (n � 15–18, p 	 0.01; Fig. 5, D and E).

To confirm these results using a separate knockdown
approach, we measured exocytosis in mouse �-cells following
transfection with an siRNA duplex (si-p110�) targeting a dif-
ferent region of p110�, which decreased p110� mRNA expres-
sion by 76% compared with a scrambled control (n � 3, p 	
0.001; Fig. 5F [inset]). si-p110�, which blunted the exocytotic
response mouse �-cells (n � 12–16, p 	 0.05; Fig. 5F), also
severely impaired the ability of GIP (100 nmol/liter) to increase
exocytosis (n � 12–15, p 	 0.001; Fig. 5G).

p110� Inhibition Blunts Rac1 Activation—Next, we explored
the mechanism by which p110� inhibition impairs the insuli-
notropic effect of GIP. Small GTPase proteins such as Rac1 are
implicated in the insulin secretory response, having well
defined roles in actin remodeling (34 –36). Recent studies in
�-cell-specific Rac1 knock-out (�Rac1�/�) mice demonstrate
that Rac1 controls insulin secretion by promoting cytoskeletal
rearrangement and recruitment of insulin-containing granules
to the plasma membrane (37). In addition, INS-1 832/13 cells
lacking Rac1 or the ability to activate Rac1 fail to reorganize
actin in response to glucose and exhibit a decreased insulin
secretory response (36, 37).

Because p110� inhibition is associated with increased actin
polymerization and a reduction in insulin granules at the
plasma membrane (29), we examined Rac1 activation in INS-1
832/13 treated with AS604850 (1 �mol/liter, overnight). We
find that p110� inhibition severely impairs glucose-stimulated
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Rac1 activation, without affecting total Rac1 levels (n � 3, p 	
0.01; Fig. 6, A and B). Compared with controls, glucose-stimu-
lated Rac1 activation was decreased by 76% in AS604850-
treated cells (n � 3, p 	 0.01; Fig. 6, A and B).

GIP Activates Rac1 in a p110�-dependent Manner—GLP-
1-R activation has been postulated to activate Rac1 through
PKA-mediated activation of the serine/threonine-protein kinase
PAK 1 (34). We now show that GIP stimulates Rac1 activation in
INS-1 cells (Fig. 6, C and D) under low glucose conditions. GIP
(100 nmol/liter, 25 min) increased Rac1 activation by 4.3-fold (n �

3, p 	 0.05; Fig. 6, C and D). However, when p110� activity was
inhibited, GIP-mediated Rac1 activation was blocked (Fig. 6, E and
F). When GIP (100 nmol/liter, 25 min) is present together with
high glucose, we see no significant further potentiation of Rac1
activity (n � 3; Fig. 6, G and H), suggesting that this may represent
a point at which glucose and GIP signaling converge.

GIP-R and GLP-1-R Activation Stimulates Actin Depolymeri-
zation—Cortical actin is an important determinant of the exocy-
totic response (29, 34, 38). We know that p110� inhibition blunts
exocytosis by increasing cortical actin density and limiting the
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number of insulin containing granules at the plasma membrane
(29). Rac1 activation is necessary to induce a secretory response
(36, 37) and actin reorganization in response to glucose (37). Thus,
we examined whether GIP-R and GLP-1-R activation affects cor-
tical actin. We find that both GIP (100 nmol/liter) and Ex-4 (100
nmol/liter) induce actin depolymerization in mouse �-cells. After
5 min, cortical actin was decreased by 29% (n � 55–65, p 	 0.001;
Fig. 7, A and B) with GIP (100 nmol/liter) and by 31% (n � 75–85,
p 	 0.001; Fig. 7, C and D) with Ex-4 (100 nmol/liter). This effect
was maintained over 60 min (Fig. 7, B and D). In comparison,
latrunculin B (10 �mol/liter, 2 min), a potent actin-depolymeriz-
ing agent, reduced actin intensity by 64–65% (n � 40–60, p 	
0.001; Fig. 7, B and D).

p110� Is Required for GIP-R-dependent (but Not GLP-1-R-
dependent) Actin Depolymerization—Because p110� inhibition
prevents the insulinotropic effect of GIP and cortical actin dyna-
mics are essential to insulin secretion (34), we investigated the role

of p110� in GIP-induced actin depolymerization. Although GIP
(100 nmol/liter, 5 min) depolymerized cortical F-actin by 30% in
dispersed mouse �-cells (n � 88–93 from four mice, p 	 0.01; Fig.
8, A and B), this response was lost following p110� inhibition (n �
89–90 from four mice, p � ns; Fig. 8, A and B). Both vehicle- and
AS604850-treated cells responded to latrunculin B (n � 61–71
from four mice, p 	 0.001; Fig. 8, A and B).

Conversely, inhibition of p110� did not prevent actin depo-
lymerization induced by Ex-4. Ex-4 (100 nmol/liter, 5 min)
decreased F-actin density by 32% in vehicle-treated controls
(n � 66 – 88 from four mice, p 	 0.001; Fig. 8, A and B) and by
37% in AS604850-treated cells (n � 64 – 89 from four mice, p 	
0.001; Fig. 8, A and B).

GIP-R Activation Induces Depolymerization of F-actin under
Low Glucose Conditions, and This Is Blunted by p110�
Inhibition—Because we show that GIP induces Rac1 activation
under low glucose conditions, we examined whether GIP also

FIGURE 6. p110� inhibition impairs glucose- and GIP-activated Rac1 activation in INS-1 832/13 cells. A, representative blots of activated Rac1 and total
Rac1 in response to high glucose shown in cells treated overnight with either DMSO or AS604850 (1 �mol/liter). B, average Rac1 activation (normalized to total
Rac1) in response to glucose shown in cells treated overnight with either DMSO (open bar) or AS604850 (1 �mol/liter; black bar). C, a representative blot of
activated Rac1 in response to GIP (100 nmol/liter, 25 min). D, average Rac1 activation (normalized to total Rac1 present) in response to GIP (100 nmol/liter, 25
min; black bar). E, representative blots of activated Rac1 and total Rac1 in response to GIP (100 nmol/liter, 25 min) in cells treated overnight with either DMSO
or AS604850 (1 �mol/liter) (blots shown are from different parts of the same gel). F, average Rac1 activation (normalized to total Rac1 present) in response to
GIP (100 nmol/liter, 25 min; black bar) in cells treated overnight with either DMSO (open bars) or AS604850 (1 �mol/liter; black bars). G, representative blots of
activated Rac1 and total Rac1 in response to glucose together with GIP (100 nmol/liter, 25 min) shown in cells treated overnight with either DMSO or AS604850
(1 �mol/liter). H, average Rac1 activation (normalized to total Rac1) in response to glucose together with GIP is shown in cells treated overnight with either
DMSO (open bar) or AS604850 (1 �mol/liter; black bar). *, p 	 0.5; **, p 	 0.01 as indicated.
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depolymerizes F-actin under this condition. Indeed, we find
that GIP (100 nmol/liter, 5 min) decreased F-actin density by
48% in vehicle-treated control cells preincubated with 2.8
mmol/liter glucose for 2 h (n � 40 – 43 from three mice, p 	
0.001; Fig. 9, A and B). This effect was significantly blunted
when p110� was inhibited (n � 40 – 43 from three mice, p 	
0.01; Fig. 9, A and B).

GIP-R Activation Does Not Stimulate Exocytosis under Low
Glucose Conditions—Because GIP-R activation depolymerizes
F-actin at low glucose, we examined whether this is sufficient to
potentiate depolarization-induced exocytosis in mouse �-cells.
Although the exocytotic response in these cells was reduced at
low glucose (1 mmol/liter), it was elevated by inclusion of 10
mmol/liter glucose in the bath (Fig. 9C). However, neither GIP
(100 nmol/liter; Fig. 9C) nor latrunculin B (10 �mol/liter; not
shown) was able to enhance the exocytotic response at 1 mmol/
liter glucose. This is consistent with the known glucose depen-
dence of the effects of GIP (39 – 41) and further reinforces the
importance of additional pathways that amplify �-cell exocyto-
sis and insulin secretion (42– 44).

Forced Actin Depolymerization Restores GIP-mediated Exo-
cytosis and Insulin Secretion following p110� Inhibition or
Knockdown—We next determined whether the impairment of
the ability of GIP to increase exocytosis (at 5 mmol/liter glu-
cose) and insulin secretion following p110� inhibition is due to
its inability to induce actin depolymerization. Upon intracellu-
lar dialysis of latrunculin B (10 �mol/liter via the patch-pi-

pette), the GIP-stimulated capacitance response of mouse
�-cells was unaffected by Adsh-p110� compared with a scram-
bled control (n � 12–15; Fig. 10A). Accordingly, the blunted
secretory response to GIP observed following p110� inhibition
was reversed by acute treatment of islets with latrunculin B (10
�mol/liter) (n � 4; Fig. 10B). These data suggest that the
impaired glucose-dependent insulinotropic effect of GIP seen
following p110� inhibition is mediated by its inability to depo-
lymerize actin.

DISCUSSION

We have previously shown that the G-protein-coupled
PI3K� is a positive regulator of insulin secretion by controlling
cortical actin density and targeting secretory granules to the
plasma membrane (29). The two incretin hormones GIP and
GLP-1 signal through distinct Gs-coupled G-protein receptors,
their major mechanism of action being linked to a rise in cAMP
(19, 45).

GIP can directly stimulate PI3K� activity, as measured by an
increase in PIP3 production in insulinoma cells (25). GIP signal-
ing has also been linked to a wortmannin-sensitive pathway
(26). Conversely, the insulin secretory defect of PI3K� KO mice
is reversed following chronic Ex-4 treatment, suggesting that
PI3K� is not required for the insulinotropic actions of GLP-1
(32). GLP-1-R (or GIP-R) activation increases intracellular
cAMP, which subsequently activates PKA. This has been pos-
tulated to activate Rac1 through PKA-mediated activation of
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the serine/threonine-protein kinase PAK 1 (34). Furthermore,
p110� is implicated in PAK 1 activation (albeit in a non-insulin-
secreting line (46)).

Thus, we now investigated whether PI3K� is required for
GIP-R and/or GLP-1-R-induced insulin secretion and examine
the role of GIP-mediated Rac1 activation and actin remodeling.
We find that selective inhibition of p110�, or shRNA-mediated
knockdown, impairs the insulinotropic effect of GIP in both
mouse and human islets. This does not appear to be due to a loss
of the GIP-R because mRNA expression of either this or GLP-
1-R is not reduced following p110� inhibition.

We also find that both GIP and Ex-4 are potent potentiators
of insulin exocytosis and that p110� inhibition or knockdown

blocks the GIP-mediated facilitation of exocytosis. This is con-
sistent with work by Straub et al. (26), who found that wort-
mannin inhibits the insulinotropic effect of GIP (but not fors-
kolin) in HIT-T15 insulinoma cells. The authors linked this
effect to the possible inhibition of a “novel exocytosis-linked
G-protein �� subunit activated PI3K,” which our work now
demonstrates is PI3K�.

Surprisingly, our results indicate that the insulinotropic
effect of GLP-1 or its agonist Ex-4 is not impaired following
p110� inhibition. The ability of Ex-4 to stimulate exocytosis or
depolymerize actin is also not impaired following p110� inhi-
bition. These results are consistent with earlier observations
showing that Ex-4 rescues the glucose-stimulated secretory
defect in islets from p110��/� mice (33) and suggest that the
GIP-R and GLP-1-R are differentially coupled to PI3K�.

The GLP-1-R has been linked to activation of class 1A PI3Ks
through transactivation of the EGF receptor in the �-cell (47).
Although it is possible, because PI3K� and PI3K� (class 1A
PI3Ks) also regulate insulin secretion (27, 30), that these may
link the GLP-1-R to actin depolymerization, it should be noted
that selective inhibition of PI3K� potentiates glucose-stimu-
lated insulin secretion (30). This would be inconsistent with a
positive role in GLP-1-dependent insulin secretion.

Recent reports suggest that p110��/� mice are protected
from obesity-induced inflammation and insulin resistance
(48 –50). These studies suggest that p110� inhibition may be
beneficial, because it would limit the inflammatory response
associated with obesity. These studies were, however, done in
vivo, in mice ubiquitously lacking p110� (48 –50). PI3K� is
highly expressed in cells of the immune system (51, 52). The
improvements in insulin resistance in p110��/� mice are
largely due to protection from inflammatory stress when on a
high fat diet (48 –50), which may mask an underlying role of
p110� as a positive regulator of insulin secretion in �-cells.
Also, any defect in the insulinotropic effects of GIP in these
mice could be compensated by intact GLP-1 signaling, which is
not impaired following p110� inhibition.

Our results point to a mechanism by which GIP activates the
small GTPase protein Rac1 to induce actin depolymerization.
p110� has previously been shown to be involved in the activa-
tion of Rac1 in immune cells (53, 54). Phosphatidylinositol
3,4,5-trisphosphate and G�� both activate Rac1 by activating
Rac-specific guanine nucleotide exchange factors (55, 56).

Small GTPase proteins, such as Rac1, are implicated in the
insulin secretory response (35–37). Insulin-producing cells
lacking Rac1 or in which the ability of Rac1 to be activated is
blocked lack glucose stimulated actin remodeling and show
impaired insulin secretion (35–37). Dispersed �-cells from
�Rac1�/� mice also show a reduction in insulin granule
recruitment to the plasma membrane (37), similar to what we
reported previously upon loss of p110� (29). Thus, we now sug-
gest that the insulinotropic effects of GIP are blunted when
p110� is inhibited or knocked down. Much like glucose, GIP
activates Rac1, in a manner that depends on p110�, to induce
actin remodeling.

F-actin can act as a barrier to insulin secretion by limiting
vesicle fusion with the plasma membrane (29, 38, 57–59). Our
finding that GIP-stimulated insulin secretion and the GIP-po-
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FIGURE 8. p110� inhibition prevents GIP-induced actin depolymeriza-
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tentiated capacitance response were no longer different upon
actin depolymerization with latrunculin B suggests that the lack
of F-actin depolarization upon p110� inhibition was indeed
limiting to GIP-induced secretion. However, whereas GIP acti-
vates Rac1 and depolymerizes actin at low glucose, this alone is
insufficient to potentiate depolarization-induced exocytosis in
�-cells and suggests that the glucose dependence of the actions
of GIP lies downstream of this pathway.

In summary, we show that the insulinotropic effect of GIP is
blunted following p110� inhibition or knockdown in both
mouse and human cells. Although functional p110� is required
for glucose-stimulated insulin secretion, independent of incre-
tin receptor activation, the fact that p110� inhibition does not

FIGURE 9. GIP-induced actin depolymerization in mouse �-cells at low
glucose is blunted by p110� inhibition, but GIP does not stimulate exo-
cytosis at low glucose. A, representative images, and intensity line scans for
F-actin staining (green) of dispersed mouse �-cells treated overnight with
either DMSO or AS604850 (1 �mol/liter) and preincubated with 2.8 mmol/
liter glucose for 2 h prior to treatment with a water control, 16.7 mmol/liter
glucose, GIP (100 nmol/liter), or latrunculin B (10 �mol/liter) for indicated
time periods. B, average peak actin intensities following treatments are

shown. C, representative capacitance recordings (left panel) and the averaged
cumulative capacitance responses (right panel) from mouse �-cells preincu-
bated with 1 mmol/liter glucose for 1 h and then treated with vehicle (gray
line), GIP (100 nmol/liter; black line), or 10 mmol/liter glucose (light gray line). *,
p 	 0.5; **, p 	 0.01; ***, p 	 0.001 compared with low glucose, or as
indicated.

FIGURE 10. Forced disruption of F-actin restores the insulinotropic effects
of GIP. A, representative membrane capacitance traces (left) from mouse
�-cells infected with Adsh-scram (gray lines) or Adsh-p110� (black lines),
treated with GIP (100 nmol/liter, 1 h) and with 10 �mol/liter latrunculin B
included in the patch pipette. At right is the average capacitance response
over the course of the depolarization trains. B, glucose-stimulated insulin
secretion in the presence of GIP (100 nmol/liter) and/or latrunculin B (10
�mol/liter) was measured from mouse islets treated overnight with either
DMSO (open bars) or AS604850 (1 �mol/liter) (black bars). *, p 	 0.05 as
indicated.
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impair the insulinotropic effect of GLP-1-R activation is indic-
ative of the requirement for p110� in the insulinotropic effects
of GIP. This PI3K�-dependent pathway will facilitate insulin
granule access to the plasma membrane to, in concert with
classical cAMP/PKA-dependent signaling, and potentiate
Ca2�-dependent exocytosis and insulin secretion.
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