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Abstract

In certain genetic studies, clinicians and genetic counselors are interested in estimating the 

cumulative risk of a disease for individuals with and without a rare deleterious mutation. 

Estimating the cumulative risk is difficult, however, when the estimates are based on family 

history data. Often, the genetic mutation status in many family members is unknown; instead, only 

estimated probabilities of a patient having a certain mutation status are available. Also, ages of 

disease-onset are subject to right censoring. Existing methods to estimate the cumulative risk 

using such family-based data only provide estimation at individual time points, and are not 

guaranteed to be monotonic, nor non-negative. In this paper, we develop a novel method that 

combines Expectation-Maximization and isotonic regression to estimate the cumulative risk across 

the entire support. Our estimator is monotonic, satisfies self-consistent estimating equations, and 

has high power in detecting differences between the cumulative risks of different populations. 

Application of our estimator to a Parkinson’s disease (PD) study provides the age-at-onset 

distribution of PD in PARK2 mutation carriers and non-carriers, and reveals a significant 

difference between the distribution in compound heterozygous carriers compared to non-carriers, 

but not between heterozygous carriers and non-carriers.
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1. Introduction

In genetic epidemiology studies (Struewing et al., 1997; Marder et al., 2003; Goldwurm et 

al., 2011), family history data is collected to estimate the cumulative distribution function of 

disease onset in populations with different risk factors (e.g., genetic mutation carriers and 

non-carriers). Such estimates provide crucial information to assist clinicians, genetic 

counselors and patients to make important decisions such as mastectomy (Grady et al., 

2013). The family history data, however, raises serious challenges when estimating the 

cumulative risk. First, a family member’s exact risk factor is unknown; the only available 

information is the estimated probabilities that a family member has each risk factor. Second, 

ages of disease onset are subject to censoring due to patient drop-out or loss to follow-up. 

For such family history data, the cumulative risk of disease is thus a mixture of cumulative 

distributions for the risk factors with known mixture probabilities. While different 

parametric and nonparametric estimators have been proposed for estimating these mixture 

data distribution functions, they are not guaranteed to be monotonic, nor non-negative: two 

principle features of distribution functions. Most of these estimators also examine the 

mixture distributions only at individual time points, rather than at a range of time points. To 

overcome these challenges, we develop a novel, simultaneous estimation method which 

combines isotone regression (Barlow et al., 1972) with an Expectation-Maximization (EM) 

algorithm. Our algorithm is based on the binomial likelihood at all observations (Huang et 

al., 2007; Ma and Wang, 2013), and yields estimated distribution functions that are non-

negative, monotone, consistent, efficient and that provide estimates of the cumulative risk 

over a range of time points.

Family history data is often collected when studying the risk of disease associated with rare 

mutations (Struewing et al., 1997; Marder et al., 2003; Wang et al., 2008; Goldwurm et al., 

2011). For example, estimating the probability that Ashkenazi Jewish women with specific 

mutations of BRCA1 or BRCA2 will develop breast cancer (Struewing et al., 1997); 

estimating the survival function from relatives of Huntington’s disease probands with 

expanded C-A-G repeats in the huntingtin gene (Wang et al., 2012); and, in this paper, 

estimating age-at-onset of Parkinson’s disease in carriers of PARK2 mutations (Section 1.1).

In all these cases, a sample of (usually diseased) subjects referred to as probands are 

genotyped. Disease history in the probands’ first-degree relatives, including age-at-onset of 

the disease, is obtained through validated interviews (Marder et al., 2003). Because of 

practical considerations including high costs or unwillingness to undergo genetic testing, the 

relatives’ genotype information is not collected. Instead, the probability that the relative has 

the mutation or not is computed based on the relative’s relationship to the proband and the 

proband’s mutation status (Khoury et al., 1993, section 8.4). Thus, the distribution of the 
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relative’s age-at-onset of a disease is a mixture of genotype-specific distributions with 

known, subject-specific mixing proportions.

A first attempt at estimating the mixture distribution functions was based on assuming 

parametric or semiparametric forms (Wu et al., 2007) for the underlying mixture densities. 

To avoid model misspecification, however, nonparametric estimators such as the 

nonparametric maximum likelihood estimator (NPMLE) were also proposed. While in many 

situations the NPMLEs are consistent and efficient, they are neither for the mixture model 

(Wang et al., 2012; Ma and Wang, 2013). As improvements over the NPMLEs, Wang et al. 

(2012) and Ma and Wang (2013) proposed consistent and efficient nonparametric estimators 

based on estimating equations. The estimators stem from casting the problem into a 

semiparametric theory framework and identifying the efficient estimator. The resulting 

estimator, however, can have computational difficulties when the data is censored as it uses 

inverse probability weighting (IPW) and augmented IPW to estimate the mixture 

distribution functions (Wang et al., 2012). The weighting function involves a Kaplan-Meier 

estimator which can result in unstable estimation because the weighting function can be 

close to zero in the right tail. There is also no guarantee that the resulting estimator is 

monotonic or non-negative; thus, a post-estimate adjustment was implemented to ensure 

monotonicity.

In this paper, we propose a novel nonparametric estimator that is neither complex, nor 

computationally intensive, and yields a genuine distribution for the mixture data problem 

under the monotonicity constraint of a distribution function. Providing nonparametric 

estimators for survival functions under ordered constraints has received considerable 

attention recently (Park et al., 2012; Barmi and McKeague, 2013), but the emphasis has 

been on non-mixture data. The method we propose is applicable to mixture data. Our 

method is motivated from a real world study on genetic epidemiology of Parkinson’s disease 

(see Section 1.1), and is based on maximizing a binomial likelihood simultaneously at all 

observations (Huang et al., 2007). Our method involves combining an EM algorithm and 

isotone regression (Ayer et al., 1955) so that monotonicity is ensured. We demonstrate that 

our estimator is consistent, satisfies self-consistent estimating equations, and yields large 

power in detecting differences between the distribution functions in the mixture populations. 

Our estimator is easy to implement, and for non-mixture data, we show that our method 

coincides with the NPMLE.

1.1. CORE-PD study to estimate the risk of PARK2 mutations

Parkinson’s disease (PD) is a neurodegenerative disorder of the central nervous system that 

results in bradykinesia, tremors, and problems with gait. PD mostly affects the elderly 50 

and older, but early onset cases do occur and are hypothesized to be a result of genetic risk 

factors. Mutations in the PARK2 gene (Kitada et al., 1998; Hedrich et al., 2004) are the most 

common genetic risk factor for early-onset PD (Lücking et al., 2000) and may be a risk 

factor for late onset (Oliveira et al., 2003). While mutations in the PARK2 gene are rare, 

genetic or acquired defects in Parkin function may have far-reaching implications for the 

understanding and treatment of both familial and sporadic PD.
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To understand the effects of mutations in the PARK2 gene, the Consortium on Risk for 

Early Onset PD (CORE-PD) study was begun in 2004 (Marder et al., 2010). Experienced 

neurologists performed in-depth examinations (i.e., neurological, cognitive, psychiatric 

assessments) of proband participants, a subset of non-carriers, and some of the first-degree 

relatives of probands and non-carriers. For relatives who were not examined in person, their 

PARK2 genotypes were not available, but their age-at-onset of PD was obtained through 

systematic family history interviews (Marder et al., 2003). Based on this family history data, 

the objective then is to determine the age-specific cumulative risk of PD in PARK2 mutation 

carriers and non-carriers. The results will help patients interpret a positive test result both in 

deciding treatment options and making important life decisions such as family planning.

The remaining sections of this paper are as follows. Section 2 describes our proposed 

estimator which involves maximizing a binomial log-likelihood with an EM algorithm. We 

demonstrate that the ensuing estimator solves a self-consistent estimating equation, and is 

consistent for complete and right censored data. We demonstrate in Section 3 that we can re-

formulate the estimator using a different EM algorithm, for which we can apply the pool 

adjacent violators algorithm (PAVA) from isotone regression to yield a non-negative and 

monotonic estimator. We demonstrate the advantages of our new estimator over current ones 

through extensive simulation studies in Section 4. We apply our estimator to the CORE-PD 

study in Section 5 and conclude the paper in Section 6. Technical details are in the 

Appendix, and additional numerical results are available in the Supplementary Material.

2. Binomial Likelihood Estimation

To simplify the presentation, we focus on a mixture distribution with two components; the 

techniques presented can be easily extended to more than two components.

For i = 1, …, n, we observe a quantitative measure Si known to come from one of p = 2 

populations with corresponding distributions F1, F2 and densities dF1, dF2. For example, in 

the Parkinson’s disease study, Si is the age of disease-onset, F1 is the distribution for the 

PARK2 mutation carrier group, and F2 is for the non-carrier group. The exact population to 

which Si belongs is unknown (i.e., we do not know whether a family member is a mutation 

carrier or non-carrier), but one can estimate the probability qki that Si was generated from the 

kth population, k = 1, 2. We suppose the mixture probability Qi has a discrete distribution, 

denoted as pQ(qi), with finite support u1, …, um. We also suppose that q1i + q2i = 1, and 

hence, sometimes write q1i ≡ λi and q2i ≡ 1 − λi. In this case, instead of referring to the 

discrete distribution pQ(qi), we simply refer to the distribution of λi, denoted as η(λi). 

Furthermore, Si is subject to right-censoring, so we observe Xi = min(Si,Ci), where Ci is a 

random censoring time independent of Si. We let G(·) denote the survival function of Ci and 

dG(·) its corresponding density. Lastly, we let Δi = I(Si ≤ Ci) denote the censoring indicator.

Our objective is to use the independent, identically distributed (iid) data (Qi = qi, Xi = xi, Δi 

= δi) to form a nonparametric estimator of F(t) = {F1(t), F2(t)}T that is consistent, monotone 

on the support of Si, and efficient. Identifiability of F(t) is ensured since the mixture 

probabilities are assumed known and Qi are not all the same Wang et al. (2007). In fact if Qi 
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has at least k distinguished the support points, then the model is identifiable. To estimate 

F(t), we first consider the nonparametric log-likelihood

Because pQ(qi) is independent of the estimation of F(t), and the censoring times are random, 

the log-likelihood above simplifies to

(1)

Different maximizations of (1) result in the commonly used NPMLEs (see Appendix A.1). 

Unfortunately, for the mixture data problem, they turn out to be inconsistent or inefficient 

(Ma and Wang, 2012).

2.1. Motivation for binomial likelihood formulation

As an improvement over the NPMLEs, we consider a binomial likelihood estimator. To 

motivate this estimator, we first consider a non-mixture model without censoring. That is, 

we observe independent observations S1, …, Sn generated from a common distribution F. 

Without loss of generality, we suppose S1 ≤ S2 ≤ ⋯ ≤ Sn (i.e., ties may occur). We 

demonstrate that, in this setting, the NPMLE and the binomial likelihood estimator of F are 

the same. Thus, because the NPMLE is most efficient in this setting, the binomial likelihood 

estimator is as well.

For non-mixture data without censoring, the nonparametric estimator of F maximizes

with respect to dF(si) subject to  and dF(si) ≥ 0. From first principles, the 

maximizer is the well-known empirical distribution function, .

On the other hand, the empirical distribution function is also the maximizer of the following 

binomial log-likelihood. For distinctive time points t1 < t2 < ⋯ < th and each Si, denote a 

success if Si > tj and a failure if Si ≤ tj i = 1, …, n, j = 1, …, h. The probability of a success is 

F̄ (tj) ≔ 1 − F(tj), and the probability of a failure is F(tj). The times t1, …, th can be 

arbitrary, but are typically chosen to span the support of the events Si so as to estimate the 

cumulative distribution function over the full support.

Accounting for all possible successes and failures, the binomial log-likelihood is
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Maximizing the above with respect to each F(tj) and subject to the monotonic constraint 

F(t1) ≤ F(t2) ≤ … ≤ F(th) gives

However, this is exactly the empirical distribution function which, by definition, satisfies the 

monotonic constraint.

Therefore, in the non-mixture case, maximizing the nonparametric log-likelihood with 

respect to dF is equivalent to maximizing the binomial log-likelihood with respect to F 

subject to the monotonic constraint F(t1) ≤ F(t2) ≤ … ≤ F(th). Because the two estimators 

are equivalent and the NPMLE is known to be most efficient, the resulting binomial 

likelihood estimator is fully efficient. Motivated by this result, we anticipate that 

maximizing the binomial log-likelihood may yield highly efficient estimators in more 

general mixture models.

2.2. Binomial Likelihood Estimator for Censored Mixture Data

We now construct a binomial likelihood estimator for mixture data with censoring. Again, 

consider arbitrary time points t1 < ⋯ < th, such that for each event time Si, a success occurs 

if Si > tj and a failure if Si ≤ tj, i = 1, …, n, j = 1, …, h. As in Section 2.1, we allow for ties in 

the event times Si, and choose times t1, …, th to span the support of the event times.

Under censoring, we observe Xi = min(Si, Ci), which means a success, I(Si > tj), is 

unobservable for those subjects who are lost to follow-up before tj. A natural approach then 

is to view the unobserved successes as missing data and to use an EM algorithm to 

maximize the constructed binomial log-likelihood.

Let Vij = I(Si > tj), the unobserved success. For mixture data, when Vij is observable (i.e., 

non-censored data), we have that P(Vij = 1) = λiF̄1(tj)+(1 − λi)F̄2(tj), and P(Vij = 0) = λiF1(tj) 

+ (1 − λi)F2(tj), where F̄k(tj) = 1 − Fk(tj), k = 1, 2. Considering all time points t1, …, th, and 

all possible successes and failures, the complete data binomial log-likelihood of {I(Si > tj)}, i 

= 1, …, n, j = 1, …, h, is

If Vij = I(Si > tj) were observable, we could estimate F(tj), j = 1, …, h, by maximizing the 

binomial log-likelihood with respect to F1(tj) and F2(tj). However, because Vij is 

unobservable, we instead use an EM algorithm for maximization. An EM algorithm at a 
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single tj was given in Ma and Wang (2013), but, they did not further pursue it. In fact, Efron 

(1967) did impute this.

The EM algorithm we propose is an iterative procedure where at the bth step, the imputed 

Vij is

(2)

based on the observed data Xi = xi. The E-step is then the imputed binomial log-likelihood

(3)

The M-step then maximizes the above with respect to F1(tj) and F2(tj); specifically, the M-

step involves solving

(4)

for j = 1, …, h. The solution to (4) leads to the new estimate  and . 

Iterating the E- and M-steps until convergence leads to the binomial likelihood estimator F̂

(tj), j = 1, …, h, for censored mixture data. We now make several observations about this 

proposed estimator.

The estimating equations in (4) are optimally weighted (Godambe, 1960), and are, in fact, 

self-consistent estimating equations (Efron, 1967). The self-consistency stems from the 

imputation procedure of the EM algorithm, analogously to the work of Efron (1967). In the 

special case of right censoring but no mixture, the above approach has a closed form 

solution, which is the celebrated Kaplan-Meier estimator (Efron, 1967). In the general case, 

it can be shown that the proposed estimator F̂ is consistent. The proof is trivial if F takes 

discrete finite many values. On the hand if F is a continuous distribution, one may use the 

law of large sample and Kullback-Leibler information inequality to prove it. Details are 

given in the Appendix A.2. Asymptotics of F̂(tj) are much more involved, however, and 

require solving a complex integral equation which is impractical. Hence, inference is usually 

performed using a Bootstrap approach.

Solving for F̂(t) in practice is also a computationally intensive task. No closed form solution 

to (4) exists, and ensuring monotonicity and non-negativity of F̂(t) would actually require 

solving (4) subject to the constraints Fk(t1) ≤ Fk(t2) ≤ … ≤ Fk(th), k = 1, 2, for t1 ≤ ⋯ ≤ th. 

Such a constraint only further complicates the already demanding estimation procedure. 

Still, requiring monotonicity is essential when the data is censored. Without monotonicity, 

the imputed weights  may not be in the range (0,1), which could lead to non-
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convergence when solving (4). Thus, to ensure monotonicity and avoid the complexities of 

directly solving (4), we now describe another approach for obtaining the binomial likelihood 

estimator.

3. Genuine Nonparametric Distribution Estimators

To construct a monotone and non-negative estimator F̂(t) at times t1 < ⋯ < th, we maximize 

a binomial log-likelihood using a combined EM algorithm and pool adjacent violators 

algorithm (PAVA). Before describing the new method, we first provide a brief overview of 

PAVA.

3.1. Pool Adjacent Violator Algorithm

Isotone regression (Barlow et al., 1972) is the notion of fitting a monotone function to a set 

of observed points y1, …, yn in a plane. Formally, the problem involves finding a vector a = 

(a1, …, an)T that minimizes the weighted least squares

subject to a1 ≤ ⋯ ≤ an for weights ri > 0, i = 1, …, n. The solution to this optimization 

problem is the so-called max-min formula (Barlow et al., 1972):

Rather than solving this max-min formula, the weighted least squares problem is instead 

solved using PAVA (Ayer et al., 1955; Barlow et al., 1972): a simple procedure that yields 

the solution in O(n) time (Grotzinger and Witzgall, 1984). The history of PAVA, its 

computational aspects, and a fast implementation in R are discussed in Leeuw et al. (2009). 

Variations of PAVA implementation include using up-and-down blocks (Kruskal, 1964) and 

recursive partitioning (Luss et al., 2010).

Our idea is to apply PAVA to a variant of our binomial loglikehood and yield a monotone 

estimator F̂(t). It is important to note that we cannot simply apply PAVA to the estimator 

solving (4). The E-step in (3) is not in the exponential family, which is a requirement of 

PAVA (Robertson et al., 1988). Furthermore, applying PAVA to maximize a binomial 

loglikelihood has been used in current status data (Jewell and Kalbfleisch, 2004), but not in 

the context of mixture data as we do.

3.2. PAVA-based Binomial Likelihood Estimator for Censored Mixture Data

We now modify the construction of the binomial likelihood estimator for censored mixture 

data (Section 2.2) so that PAVA may be applied. In our earlier construction (Section 2.2), 

we viewed the event I(Si > tj) as the only missing data, i = 1, …, n, j = 1, …, h. Now, we 

also consider the unobserved population membership as missing. Let Li denote the 

unobserved population membership for observation i.
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Analogous to the argument in Section 2.2, we first consider the ideal situation when Li and 

I(Si > tj) are observable. We suppose Li = 1 when Si is generated from F1, and Li = 0 when Si 

is generated from F2. In this case, P(Li = 1) = λi and P(Li = 0) = 1 − λi. For mixture data, the 

probability Si > tj is λiF̄1(tj) when Li = 1, and is (1 − λi) F̄2(tj) when Li = 0. Likewise, the 

probability Si ≤ tj is λiF1(tj) when Li = 1 and is (1 − λi)F2(tj) when Li = 0. Therefore, the 

complete data log-likelihood of {Li, I(Si ≤ tj)}, i = 1, 2…, n, j = 1, 2, …, h, is the binomial 

log-likelihood

However, neither the population membership Li, nor the event I(Si > tj) are available. Hence, 

these values must be imputed, and an EM algorithm will be used for maximization.

At the bth step of the EM algorithm, we compute E{LiI(Si ≤ tj)|xi} = E{Li|Si ≤ tj}E{I(Si ≤ tj)|

xi} and E{LiI(Si > tj)|xi} = E{Li|Si > tj}E{I(Si > tj)|xi} based on observed data Xi = min(Si, 

Ci) with Xi = xi. We found earlier that  as defined in (2). Using a 

similar calculation, we obtain

Therefore, at the bth step, with observed data O(b) = {Xi}, i = 1, …, n, the E-step is

The M-step then maximizes the above expression with respect to F1(tj) and F2(tj) at each tj. 

To ensure monotonicity, however, the M-step actually involves maximizing E(ℓc|O(b)) 

subject to the monotonic constraints Fk(t1) ≤ Fk(t2) ≤ … ≤ Fk(th), k = 1, 2. Though 

constrained maximization is typically a challenging procedure, the task is simplified because 

the log-likelihood E(ℓc|O(b)) belongs to the exponential family, in which case PAVA is 

applicable. From the theory of isotonic regression (Robertson et al., 1988), we have
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where  and .

These formulations suggest that  is the weighted isotonic regression of 

 with weights . Likewise,  is the weighted isotonic 

regression of  with weights . Thus, the max-min results of 

isotone regression apply and yield solutions

Rather than solving these max-min formulas, we instead use the PAVA algorithm 

implemented in R (Leeuw et al., 2009). Iterating through the E- and M- steps with PAVA 

leads to a genuine estimator of the mixture distributions.

For non-censored data (i.e., δi = 1, i = 1, …, n),  in (2) simplifies to . In 

this case, the proposed EM algorithm with PAVA in the M-step remains as stated but with 

 throughout.

Finally, the proposed EM-PAVA algorithm converges to the maximum likelihood estimate 

of the binomial likelihood. This follows because E(ℓc|O(b)) belongs to the exponential family 

and is convex (Wu, 1983). Thus, the derived estimator is the unique maximizer and satisfies 

the monotonic property of distribution functions.

3.3. Hypothesis Testing

For a two mixture model, one key interest is testing for differences between the two mixture 

distributions; i.e., testing H0 : F1(t) = F2(t) vs. H1 : F1(t) ≠ F2(t) for a finite set of t values or 

over an entire range. To test this difference, we suggest the following permutation strategy 

(Churchill and Doerge, 1994). For the data set given, obtain the estimate F̃(0) (t) using the 

EM-PAVA algorithm, and compute . Then, for k = 1, …, K, 

create a permuted sample of the data by permuting the pairs (Xi, δi) and coupling them with 

the mixture proportions q1, …, qn. For the kth permuted data set, compute F̃(k) (t) and 

. Finally, the p-value associated with testing H0 is 

. In practice, we recommend using K = 1000 permutation data sets. 

We compare the power of various tests in Section 4.
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4. Simulation Study

4.1. Simulation Design

We performed extensive simulation studies to investigate the performance of the proposed 

EM-PAVA algorithm. We report here the results of three experiments comparing EM-

PAVA to existing estimators in the literature: the type I NPMLE, type II NPMLE (see 

Appendix A.1 for the forms of the NPMLEs), and the oracle efficient augmented inverse 

probability weighting estimator (Oracle EFFAIPW) of Wang et al. (2012, sec. 3). “Oracle” 

here refers to the assumption that the underlying density dF(t) is known exactly and is not 

estimated using nonparametric methods.

The three experiments were designed as follows:

Experiment 1: F1(t) = {1 − exp(−t)}/{1 − exp(−10)} and F2(t) = {1 − exp(−t/2.8)}/{1 − 

exp(−10/2.8)} for 0 ≤ t ≤ 10.

Experiment 2: F1(t) = 0.8/[1 + exp{−(t − 80)/5}] for 0 ≤ t ≤ 100 and F1(t) = 0.678 + 

0.001t for 100 ≤ t ≤ 300. F2(t) = 0.2/[1 + exp{−(t − 80)/5}] for 0 ≤ t ≤ 100 and F2(t) = 

−0.205 + 0.004t for 100 ≤ t ≤ 300. Data is generated as specified, however, the 

estimation procedure focuses on estimates of F(t) for 0 ≤ t ≤ 100.

Experiment 3: F1(t) = {1−exp(−t/4)}/{1−exp(−2.5)} for 0 ≤ t ≤ 10 and F2(t) = {1 − 

exp(−t/2)}/{1 − exp(−2.5)} for 0 ≤ t ≤ 5.

The second experiment is designed to mimic the Parkinson’s disease data in Section 5. In all 

experiments, we set the random mixture proportion qi = (λi, 1 − λi) to be one of m = 4 vector 

values: (1, 0)T, (0.6, 0.4)T, (0.2, 0.8)T and (0.16, 0.84)T. The four vector values had an 

equally likely chance of being selected. Our sample size was 500 and we generated a 

uniform censoring distribution to achieve 0%, 20%, and 40% censoring rates.

The primary goal of the simulation studies is to compare the bias, efficiency and power of 

detecting distribution differences. Bias and efficiency were evaluated at different t values. 

First, we evaluated the pointwise bias, F̂(t) − F0(t), at different t values, where F0(t) denotes 

the truth. Specifically, we ran 500 Monte Carlo simulations and evaluated the pointwise bias 

at t = 1.3 in Experiment 1 (Table 1); at t = 85 in Experiment 2 (Table 1); and at t = 2 in 

Experiment 3 (Supplementary Material, Table ??).

Second, we evaluated the estimators over the entire range of t values based on results from 

500 Monte Carlo simulations; see Tables 2 and ?? (Supplementary Material). In this case, 

we evaluated the estimators based on the integrated absolute bias (IAB), average pointwise 

variance, and average pointwise 95% coverage probabilities. The integrated absolute bias 

(IAB) is , k = 1, 2, where F̄k(t) is the average estimate over the 500 

data sets, and Fk0 is the truth. In our simulation study, the integral in the IAB was computed 

using a Riemann sum evaluated at 50 evenly spaced time points across the entire range (i.e., 

over (0,10) in Experiments 1 and 3, and over (0,100) in Experiment 2). The IAB for F2(t) in 

Experiment 3 was computed over (0,5) because it is only defined on this interval. The 

average pointwise variance and average pointwise 95% coverage probabilities were also 

computed over 50 time points evenly spaced across the entire range (i.e., over (0,10) in 
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Experiments 1 and 3, and over (0,100) in Experiment 2). Specifically, for each of the 50 

time points, we computed the pointwise variance and pointwise 95% coverage probabilities 

of the 500 data sets. Then, we reported the average of the 50 pointwise values.

Third, we evaluated the type I error rate and power in detecting differences between F1(t) 

and F2(t) over the entire range of t values. We investigated the type I error rate under H0 : 

F1(t) = F2(t) based on 1000 simulations. In this case, we generated data so that F2(t) was set 

to the form of F1(t) in each experiment (see the description of Experiment 1, 2, 3). 

Everything else was left unchanged. The type I error rate was then computed using the 

permutation test in Section 3.3 using 1000 permutations. The power was computed based on 

200 Monte Carlo simulations. That is, we tested for differences between F1(t) and F2(t) 

when F1(t), F2(t) were evaluated at 50 time points evenly spaced across the entire range: 

over (0,10) in Experiments 1 and 3, and over (0,100) in Experiment 2. To compute the 

empirical power under H1 : F1(t) ≠ F2(t), we used the permutation test in Section 3.3 with 

1000 permutations. Results are in Tables 3 and ?? (Supplementary Material).

4.2. Simulation Results

Among all four estimators considered, the type I NPMLE has the largest estimation 

variability and the type II has the largest estimation bias (see Tables 2 and ?? 

(Supplementary Material)). In all experiments, as the censoring rate increases from 0% to 

40%, the inefficiency for the type I and the bias for the type II worsens. These poor 

performances alter the 95% coverage probabilities, especially for the type II NPMLE which 

has coverage probabilities well under the nominal level (see Table 2). The inconsistency of 

the type II NPMLE is most apparent in Experiments 1 and 2, where the estimated curve and 

95% confidence band completely miss the true underlying distributions; see Figures 1 and 2. 

The type II NPMLE is also not consistent in Experiment 3, but to a lesser extent; see 

Figure ?? (Supplementary Material).

In contrast, across all experiments and censoring rates, the EM-PAVA estimator performs 

satisfactorily throughout the entire range of t (see Figures 1, 2 and ?? (Supplementary 

Material)). The EM-PAVA estimator is as efficient as the Oracle EFFAIPW, but with much 

smaller bias especially when censoring is present. The EM-PAVA also performs well in 

detecting small differences between F1(t) and F2(t). In Table 3, the type I error rates for all 

estimators adhere to their nominal levels. When F1(t) and F2(t) are largely different (i.e., 

Experiment 2), then both EM-PAVA and the Oracle EFFAIPW have similar power in 

detecting differences. However, when F1(t) and F2(t) are different but to a lesser degree 

(i.e., Experiment 1) then EM-PAVA has larger power in detecting the difference than all 

other estimators, including the Oracle EFFAIPW. The larger power of the EM-PAVA 

estimator is not too surprising considering that it estimates F(t) across a range of time 

points, unlike the point-wise estimation of the Oracle EFFAIPW.

A benefit of EM-PAVA over the Oracle EFFAIPW (and the two NPM-LEs) is that EM-

PAVA yields a genuine distribution function (i.e., the estimator is monotone, non-negative 

and has values in the [0,1] range). The curves shown in Figures 1, 2 and ?? (Supplementary 

Material) for Oracle EFFAIPW are the result of doing a post-estimation procedure to yield 

monotonicity. The ingenuity of the Oracle EFFAIPW estimator, however, is evident from its 
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95% confidence band, which was constructed from the 2.5% and 97.5% pointwise quantiles 

of the 500 Monte Carlo data sets. Figure ?? (Supplementary Material) shows that the Oracle 

EFFAIPW estimator can have 95% confidence bands outside of the [0,1]; for large t in 

Figure ??, the upper confidence bound is larger than 1. In contrast, the EM-PAVA estimator 

is always guaranteed to be within [0,1], and thus its 95% confidence bands are always within 

this range.

5. Application to the CORE-PD study

5.1. CORE-PD data and mixture proportions

We applied our estimator to the CORE-PD study introduced in Section 1.1. Data from the 

CORE-PD study include information from first-degree relatives (i.e., parents, siblings, and 

children) of PARK2 probands. The probands had age-at-onset (AAO) of Parkinson’s disease 

(PD) less than or equal to 50 and did not carry mutations in other genes (i.e., neither LRRK2 

mutations nor GBA mutations, Marder et al. (2010)). The key interest is estimating the 

cumulative risk of PD-onset for the first-degree relatives belonging to different populations:

1. PARK2 mutation carrier vs. non-carrier: We compared the estimated cumulative 

risk in first-degree relatives expected to carrying one or more copies of a mutation 

in the PARK2 gene (carriers) to relatives expected to carry no mutation (non-

carrier).

2. PARK2 compound heterozygous (or homozygous) mutation carrier vs. 

heterozygous mutation carrier vs. non-carrier: We considered first-degree relatives 

who have the compound heterozygous genotype (two or more different copies of 

the mutation) or homozygous genotype (two or more copies of the same mutation). 

We compared distribution of risk in this population to two different populations: (a) 

relatives who are expected to have the heterozygous genotype (mutation on a single 

allele), and (b) relatives who are expected to be non-carriers (no mutation). These 

comparisons will bring insight into whether heterozygous PARK2 mutations alone 

increase the risk of PD, or if additional risk alleles play a role.

In the CORE-PD study, the ages-at-onset for the first-degree relatives are at least 90% 

censored. Information discerning to which population a relative belongs is available through 

different mixture proportions. The mixture proportions are vectors (pi, 1 − pi), where pi is 

the probability of the ith first-degree relative carrying at least one copy of a mutation. This 

probability was computed based on the proband’s genotype, a relative’s relationship to a 

proband under Mendelian transmission assumption. For example, a child of a heterozygous 

carrier proband has a probability of 0.5 to inherit the mutated allele, and thus a probability of 

0.5 to be a carrier. A child of a homozygous carrier proband has a probability of 1 to be a 

carrier. More details are given in Wang et al. (2007, 2008). Summary statistics for the 

populations and the mixture proportions are listed in Table 4.

5.2. Results

We estimated the cumulative risk based on the EM-PAVA estimator and compared its 

results with the type I NPMLE. The Oracle EFFAIPW estimator could not be used because 

the high censoring led to unstable estimation: the inverse weights in the estimator were close 
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to zero. Estimates for the PARK2 compound heterozygous (or homozygous) mutation 

carriers were based on a Kaplan-Meier estimator because these subjects were observed to 

carry two or more mutations and there is no uncertainty about the relatives’ genotype status 

(i.e., the data is not mixture data). We report the cumulative risk estimates along with 95% 

confidence intervals based on 100 Bootstrap replicates.

Figure 3 (top-right) shows that by age 50, PARK2 mutation carriers have a large increase in 

cumulative risk of PD onset compared to non-carriers. Based on EM-PAVA, the cumulative 

risk (see Table 5) of PD-onset for PARK2 mutation carriers at age 50 is 17.1% (95% CI: 

8.5%, 25.6%) whereas the cumulative risk for non-carriers at age 50 is 0.8% (95% CI: 0%, 

2.1%). This difference between PARK2 mutation carriers and non-carriers at age 50 was 

formally tested using the permutation test in Section 3.3. We found that carrying a PARK2 

mutation significantly increases the cumulative risk by age 50 (p-value< 0.001, Table 7), 

suggesting that a mutation in the PARK2 gene substantially increases the chance of early 

onset PD. The difference is smaller yet still significant at age 70 (p-value=0.04, Table 7). 

Even across the age range (20,70), the cumulative risk for PARK2 mutation carriers was 

significantly different than the cumulative risk for non-carriers (p-value=0.010, see Table 7). 

These findings are consistent with other clinical and biological evidence that PARK2 

mutations contribute to early age onset of PD (Hedrich et al., 2004; Lücking et al., 2000).

To further distinguish the risk of PD among compound heterozygous or homozygous 

carriers (with at least two copies of mutations) from heterozygous carriers, we separately 

estimated the distribution functions in these two groups and compared them to the risk in the 

non-carrier group. The numerical results in Table 6 and a plot of the cumulative risk in 

Figure 3 (bottom panel) indicate a highly elevated risk in compound heterozygous or 

homozygous carriers combined. In contrast, the risk for heterozygous carriers closely 

resembles the risk in non-carriers. This result that being a heterozygous carrier has 

essentially similar risk to being a non-carrier was also observed in another study (Wang et 

al., 2008). Further investigation in a larger study is needed to examine whether risk differs in 

any subgroup. Using a permutation test, we also formally tested for differences between the 

distribution functions for each group. Results in Table 7 show that there is a significant 

difference between compound heterozygous carriers and heterozygous carriers as well as a 

significant difference between compound heterozygous and the non-carriers over the age 

range (20,70), and at particular ages 50 and 70. Furthermore, there is no significant 

difference between heterozygous carriers and non-carriers. These analyses suggest a 

recessive mode of inheritance for PARK2 gene mutations for early onset PD.

In comparison to the EM-PAVA, the type I NPMLE had wide and non-monotone 

confidence intervals, which altered the inference conclusions and is undesirable (see Table 

7). Moreover, the type I NPMLE provided a higher cumulative risk in non-carriers by age 70 

(17%) which appear to be higher than reported in other epidemiological studies (e.g., Wang 

et al. (2008)). The poor performance of the type I NPMLE can be due to instability and 

inefficiency of the type I especially at the right tail area. In contrast, EMPAVA always 

provided monotone distribution function estimates, as well as monotone and narrower 

confidence bands. The EM-PAVA also gave a lower cumulative risk in non-carriers by age 

70 (9.4%) which better reflects the population based estimates. The increased risk in PARK2 
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carriers at earlier ages compared to population based estimates can also suggest that there 

are other genetic and environmental causes of PD in early onset cases that are different than 

late onset.

6. Concluding Remarks

In this work, we provide nonparametric estimation of age-specific cumulative risk for 

mutation carriers and non-carriers. This topic is an important issue in genetic counseling 

since clinicians and patients use risk estimates to guide their decisions on choices of 

preventive treatments and planning for the future. For example, individuals with a family 

history of Parkinson’s disease generally stated that if they were found to be a carrier and in 

their mid-thirties, they would most likely elect to not have children (McInerney-Leo et al., 

2005). Or, in the instance they did choose to start a family, PARK2 mutation carriers were 

more inclined to undergo prenatal testing (McInerney-Leo et al., 2005).

It is well known that the NPMLE is the most robust and efficient method when there is no 

parametric assumption for the underlying distribution functions. Unfortunately, in the 

mixture model discussed in this paper, the NPMLE (type II) fails to produce consistent 

estimates. On the other hand, the maximum binomial likelihood method studied in this paper 

provides an alternative consistent estimation method. Moreover, to implement this method 

we have used the combination of an EM algorithm and PAVA, which leads to genuine 

distribution function estimates. For a non-mixture model, the proposed method coincides 

with the NPMLE. As a result, we expected the proposed method to have high efficiency 

which was apparent through the various simulation studies. Even though we only considered 

two-component mixture models, in principle the proposed method can be applied to more 

than two components mixture models without essential difficulty.

In some applications, it may be desirable to consider parametric or semi-parametric models 

(e.g., Cox proportional hazards model, proportional odds model) in a future work. However, 

diagnosing model misspecification has received little attention in the genetics literature. Our 

maximum binomial likelihood method can be used as a basis to construct numerical 

goodness-of-fit tests. In this case, we can test whether the distributions conform to a 

particular parametric or semiparametric model. That is, the interest is in testing H0 : F1(t) = 

F1(t, β1), F2(t) = F2(t, β2) for some parametric models F1(t, β1) and F2(t, β2). To perform 

this test, we can use the Kolmogorov-Smirov goodness of fit

where β̂1, β̂2 are the parametric maximum likelihood estimates of β1 and β2. Moreover if one 

is interested in estimating other quantities of the underlying distribution functions, for 

example the densities, one may use the kernel method to smooth the estimated distribution 

functions.

In our analysis of CORE-PD data, probands were not included due to concerns of potential 

ascertainment bias that may be difficult to adjust (Begg, 2002). In studies where a clear 

ascertainment scheme is implemented, adjustment can be made based on a retrospective 
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likelihood. Lastly, the computational procedure of the proposed estimator is simple and 

efficient. An R function implementing the proposed method is available from the authors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

APPENDIX A

SKETCH OF TECHNICAL ARGUMENTS

A.1. The type I and type II NPMLEs

For the type I NPMLE, let  and , i = 1, …, n, j = 1, 

…, m. The type I NPMLE maximizes

with respect to sj(xi)’s and subject to  for j = 1, …, m. 

Because this is equivalent to m separate maximization problems, each concerning sj(·) and 

Sj(·) only, the maximizers are the classical Kaplan-Meier estimators:

with sj(t) = Sj(t−) − Sj(t) for all t. With Ŝ (t) = {Ŝ1(t), …, Ŝm(t)}T, and U = (u1, …, um)T, the 

type I NPMLE is

Let the variance-covariance matrix of Ŝ (t) be Σ, which is a diagonal matrix because each of 

the m components of Ŝ (t) is estimated using a distinct subset of the observations. Then, 

F̃w(t) = (UTΣ−1U)−1UTΣ−1{1m − Ŝ (t)} is a weighted version of the type I NPMLE and is 

more efficient than the type I NPMLE.

The type II NPMLE has no closed form solution, and an EM algorithm is typically 

employed. Specifically, for k = 1, 2, we form at the bth step in the EM algorithm:

and update the type II NPMLE estimate as
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The procedure is iterated until convergence.

A.2. Consistency of Imputed Log-Likelihood

We first demonstrate consistency for the non-censored data case. When F takes discrete 

finite many values, the result holds true trivially. If F is a continuous distribution function, 

then for non-censored data, the binomial log-likelihood is

This can be written as

where

By the Law of Large Numbers, it can be shown that

where η0(λ) is the marginal distribution of λ and

Here, the subscript 0 denotes the truth. By the Kullback-Leibler information inequality, the 

above limiting value achieves the maximum if and only if F1 = F10 and F2 = F20. Therefore, 

the maximum binomial likelihood estimation is consistent.
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For the censored data case, consistency also holds following a similar argument. The only 

difference in the log-likelihood is that the indicator function I(Si ≤ tj) is replaced by wij = 

E{I(Si ≥ tj)|Si ≥ xj}. If ŵi(tj) is replaced by an initial consistency estimation, then the log 

censored binomial likelihood will converge to Δ again.
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Fig 1. 
Experiment 1. True cumulative distribution function and the mean of 500 simulations along 

with 95% confidence band (dotted) for the four proposed estimators. Sample size is 500, 

censoring rate is 40%.
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Fig 2. 
Experiment 2. True cumulative distribution function and the mean of 500 simulations along 

with 95% confidence band (dotted) for the four proposed estimators. Sample size is 500, 

censoring rate is 40%.
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Fig 3. 
CORE-PD study. Estimated cumulative distribution function for age-at-onset of Parkinson’s 

disease for Parkin mutation carrier vs. non-carrier (top), and Parkin compound heterozygous 

or homozygous carrier vs. Parkin heterozygous carrier and non-carrier (bottom).
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Table 3

Empirical rejection rates for Experiment 1 and 2. Test of F1 (t) = F2 (t) over the entire time range was 

performed using a permutation test with 1000 permutations. Results based on 1000 simulations (for test under 

H0) and 200 simulations (for test under H1), with sample size n = 500 and 40% censoring (under H1).

Nominal Levels

Estimator 0.01 0.05 0.10 0.20 0.01 0.05 0.10 0.20

Experiment 1

Under H0 : F1 (t) = F2 (t) Under H1 : F1 (t) ≠ F2 (t)

EM-PAVA 0.0120 0.0560 0.0950 0.1920 0.9000 0.9800 0.9900 1.0000

Oracle EFFAIPW 0.0090 0.0500 0.0900 0.1820 0.6150 0.7950 0.8650 0.9350

type I NPMLE 0.0130 0.0550 0.1020 0.1970 0.6200 0.7650 0.8450 0.9000

type II NPMLE 0.0060 0.0490 0.1020 0.2020 0.4400 0.5150 0.5550 0.5900

Experiment 2

Under H0 : F1 (t) = F2 (t) Under H1 : F1 (t) ≠ F2 (t)

EM-PAVA 0.0170 0.0551 0.1022 0.2094 0.9950 0.9950 0.9950 1.0000

Oracle EFFAIPW 0.0140 0.0600 0.1100 0.2050 0.9950 0.9950 0.9950 1.0000

type I NPMLE 0.0080 0.0550 0.1120 0.2100 0.9200 0.9400 0.9500 0.9600

type II NPMLE 0.0100 0.0550 0.1120 0.2150 0.7000 0.7300 0.7500 0.7700
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Table 5

Results for Parkin mutation carriers vs. non-carriers: estimated cumulative distribution function and 95% 

confidence intervals (in parentheses) based on type I NPMLE and EM-PAVA.

Age type I NPMLE EM-PAVA type I NPMLE EM-PAVA

Carrier Non-Carrier

20 0.015 (0.000, 0.043) 0.017 (0.000, 0.048) −0.011 (−0.009, 0.000) 0.000 (0.000, 0.000)

25 0.023 (0.007, 0.061) 0.026 (0.008, 0.068) −0.011 (−0.013, −0.001) 0.000 (0.000, 0.000)

30 0.032 (0.008, 0.073) 0.036 (0.009, 0.083) −0.011 (−0.016, −0.002) 0.000 (0.000, 0.000)

35 0.061 (0.026, 0.116) 0.068 (0.029, 0.134) −0.011 (−0.026, −0.007) 0.000 (0.000, 0.000)

40 0.072 (0.030, 0.128) 0.081 (0.034, 0.143) −0.011 (−0.030, −0.008) 0.000 (0.000, 0.000)

45 0.121 (0.058, 0.198) 0.137 (0.067, 0.217) −0.011 (−0.044, −0.015) 0.000 (0.000, 0.000)

50 0.150 (0.074, 0.225) 0.171 (0.085, 0.256) −0.011 (−0.053, −0.005) 0.008 (0.000, 0.021)

55 0.166 (0.091, 0.263) 0.190 (0.104, 0.299) −0.011 (−0.057, −0.008) 0.008 (0.000, 0.021)

60 0.166 (0.086, 0.262) 0.190 (0.105, 0.299) −0.011 (−0.053, 0.016) 0.023 (0.000, 0.053)

65 0.321 (0.117, 0.505) 0.266 (0.138, 0.400) 0.117 (−0.039, 0.250) 0.027 (0.000, 0.060)

70 0.321 (0.109, 0.495) 0.266 (0.148, 0.400) 0.170 (−0.005, 0.323) 0.094 (0.009, 0.193)
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Table 6

Results for Parkin compound heterozygous or homozygous carrier (Compound Carrier), Parkin heterozygous 

carrier and non-carrier: estimated cumulative distribution function and 95% confidence intervals (in 

parentheses).

Age Kaplan-Meier* type I NPMLE EM-PAVA

Compound Carrier Heterozygous Carrier

20 0.118 (0.000, 0.258) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

25 0.118 (0.000, 0.258) 0.009 (0.000, 0.027) 0.010 (0.000, 0.030)

30 0.186 (0.000, 0.355) 0.009 (0.000, 0.027) 0.010 (0.000, 0.030)

35 0.389 (0.087, 0.591) 0.009 (0.000, 0.027) 0.010 (0.000, 0.030)

40 0.389 (0.087, 0.591) 0.023 (0.000, 0.049) 0.026 (0.000, 0.056)

45 0.644 (0.252, 0.830) 0.037 (0.000, 0.089) 0.041 (0.000, 0.100)

50 0.822 (0.391, 0.948) 0.037 (−0.004, 0.088) 0.041 (0.000, 0.100)

55 0.822 (0.391, 0.948) 0.056 (0.000, 0.119) 0.063 (0.000, 0.130)

60 0.822 (0.391, 0.948) 0.056 (−0.001, 0.116) 0.064 (0.000, 0.131)

65 0.911 (0.432, 0.986) 0.177 (0.042, 0.304) 0.100 (0.016, 0.206)

70 0.911 (0.432, 0.986) 0.177 (0.027, 0.288) 0.100 (0.016, 0.206)

Non-Carrier

20 −0.002 (0.000, 0.000) 0.000 (0.000, 0.000)

25 −0.002 (−0.007, 0.000) 0.000 (0.000, 0.000)

30 −0.002 (−0.007, 0.000) 0.000 (0.000, 0.000)

35 −0.002 (−0.007, 0.000) 0.000 (0.000, 0.000)

40 −0.002 (−0.014, 0.000) 0.000 (0.000, 0.000)

45 −0.002 (−0.018, 0.000) 0.000 (0.000, 0.000)

50 −0.002 (−0.015, 0.014) 0.008 (0.000, 0.022)

55 −0.002 (−0.023, 0.011) 0.008 (0.000, 0.022)

60 0.009 (−0.022, 0.044) 0.023 (0.000, 0.055)

65 0.142 (−0.006, 0.259) 0.032 (0.000, 0.076)

70 0.199 (0.009, 0.334) 0.106 (0.015, 0.181)

*
Genotype for subjects in this group are known. When there is no mixture, both methods reduce to Kaplan-Meier.
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Table 7

P-values associated with testing H0 : F1 (t) = F2 (t) at different t-values for CORE-PD study. H0 was tested 

using the permutation test with 1000 permutations.

type I NPMLE EM-PAVA

Carrier vs. Non-Carrier

t ∈ [20, 70] 0.013 0.010

t = 50 <0.001 <0.001

t = 70 0.073 0.04

Het. Carrier vs Non-Carrier

t ∈ [20, 70] 0.790 0.594

t = 50 0.341 0.386

t = 70 0.813 0.969

Compound Het./Hom. Carrier vs Het. Carrier

t ∈ [20, 70] 0.013 0.006

t = 50 <0.001 <0.001

t = 70 0.013 0.017

Compound Het/Hom. Carrier vs Non-Carrier

t ∈ [20, 70] 0.011 0.007

t = 50 <0.001 <0.001

t = 70 0.013 0.017
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