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Abstract

A dynamic treatment regime consists of a sequence of decision rules, one per stage of 

intervention, that dictate how to individualize treatments to patients based on evolving treatment 

and covariate history. These regimes are particularly useful for managing chronic disorders, and fit 

well into the larger paradigm of personalized medicine. They provide one way to operationalize a 

clinical decision support system. Statistics plays a key role in the construction of evidence-based 

dynamic treatment regimes – informing best study design as well as efficient estimation and valid 

inference. Due to the many novel methodological challenges it offers, this area has been growing 

in popularity among statisticians in recent years. In this article, we review the key developments in 

this exciting field of research. In particular, we discuss the sequential multiple assignment 

randomized trial designs, estimation techniques like Q-learning and marginal structural models, 

and several inference techniques designed to address the associated non-standard asymptotics. We 

reference software, whenever available. We also outline some important future directions.
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1 Introduction

Personalized medicine is an increasingly popular theme in today’s health care. 

Operationally, personalized treatments are decision rules that dictate what treatment to 

provide given a patient state (consisting of demographics, results of diagnostic tests, genetic 

information, etc.). Dynamic treatment regimes (DTRs) [1, 2, 3, 4, 5, 6] generalize 

personalized medicine to time-varying treatment settings in which treatment is repeatedly 

tailored to a patient’s time-varying – or dynamic – state. DTRs are alternatively known as 

adaptive treatment strategies [7, 8, 9, 10, 11] or treatment policies [12, 13, 14]. These 

decision rules offer an effective vehicle for personalized management of chronic conditions, 

e.g. alcohol and drug abuse, cancer, diabetes, HIV infection, and mental illnesses, where a 

patient typically has to be treated at multiple stages, adapting the treatment (type, dosage, 

timing) at each stage to the evolving treatment and covariate history. DTRs underpin clinical 

decision support systems – described as a key element of the chronic care model [15].
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A simple example of a DTR arising in the treatment of alcohol dependence is: After the 

patient completes an intensive outpatient program, provide the medication naltrexone along 

with face-to-face medical management. If within the following two months the patients 

experiences 2 or more heavy drinking days, then immediately augment the naltrexone with a 

cognitive behavioral therapy. Otherwise at the end of the two months, provide telephone 

disease management in addition to the naltrexone. A second example given in Rosthøj et al. 

[16] is a DTR for use in guiding warfarin dosing to control the risk of both clotting and 

excessive bleeding. Here the decision rules input summaries of the trajectory of International 

Normalized Ratio (a measure of clotting tendency of blood) over the recent past and output 

recommendations concerning how much to change the dose of warfarin (if any). The third 

example, provided by Robins et al. [17] concerns a DTR with decision rules that input 

summaries of the trajectories of plasma HIV RNA and CD4 counts over the recent past and 

output when to start an asymptomatic HIV-infected subject on highly active antiretroviral 

therapy. In Section 3 different statistical methods for constructing the decision rules in a 

DTR are reviewed.

1.1 Decision Problems

Traditionally personalized medicine concerns single stage decision making. In a single-stage 

(non-dynamic) decision problem one observes a random vector, the first observation, O1, 

then one selects an action (here a treatment action), a1, from a set  of actions and then 

depending on which action was selected, observes a second observation, O2(a1). To avoid 

technical details and for simplicity, here and below, we assume sufficient regularity for all 

statements. A decision rule, say d1, is a mapping from the range of O1 into . The quality 

of a treatment for a particular value of O1 is evaluated in terms of its utility, say r(O1, a1, 

O2(a1)), for r a known function. The utility may be a summary of one outcome, such as 

percent days abstinent in an alcohol dependence study or a composite outcome; for example, 

in Wang et al. [18] the utility is a compound score numerically combining information on 

treatment efficacy, toxicity, and the risk of disease progression. The optimal decision rule 

outputs the treatment (action) that maximizes the expected utility, 

; this is personalized decision making since the 

choice of optimal treatment depends on o1. Equivalently the optimal decision rule is given 

by arg maxd1 , where the maximum is taken over all functions on the 

range of O1.  is called the Value of the decision rule d1.

Constructing DTRs involves solving, or estimating quantities relevant in, a multi-stage 

decision problem. In multi-stage decision problems, observations are interweaved with 

action selection; denote such a sequence by 

 where 

and  denotes the observation made at stage j + 1 subsequent to the selection of the 

action sequence . A DTR is a sequence of decision rules, ; the decision 

rule dj is a mapping from the range of  into the jth action space, 
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. When K = 2 and the treatment actions are discrete, the Value of the DTR (d1, d2) can be 

written on one line as

(1)

(the generalization to more than two stages is straightforward). Using this formula we might 

compare two or more DTRs in terms of their Value or equivalently their expected utility. 

The optimal DTR is the set of decision rules, , that maximize the Value.

Constructing the optimal decision rules in multi-stage decision problems is challenging due 

to the time-varying or dynamic nature of this problem. Historically, an early method for 

solving (e.g. construct the optimal decision rules) multi-stage decision problems is dynamic 

programming (DP), which dates at least back to Bellman [19]. The primary reason why 

classical DP algorithms have seen little use in DTR research is due to the fact that these 

algorithms require complete knowledge of, or a full model for, the multivariate distribution 

of the data for any set of actions; this is impractical in many application areas (curse of 

modeling) [20]. Secondly, DP methods are computationally very expensive, and they 

become hard to manage in moderately high-dimensional problems; in other words, they 

suffer from the curse of dimensionality [21]. But DP provides an important theoretical and 

conceptual foundation for research in multi-stage decision problems; in fact, as will be seen, 

many present day estimation methods build on classical DP algorithms, while relaxing its 

stringent requirements.

2 Data Sources for Constructing DTRs

Most statistical research in the arena of DTRs concerns: (a) the comparison of two or more 

preconceived DTRs in terms of their Value; and (b) the estimation of the optimal DTR, i.e. 

to estimate the sequence of decision rules, one per stage, that result in the highest Value, 

within a class of DTRs. In each case the data used in comparing or constructing DTRs are 

usually from: (i) sequentially randomized studies, or (ii) longitudinal observational studies, 

or (iii) dynamical system models. Research based on the first source of data, that from 

sequentially randomized studies, is experiencing a period of rapid growth, due to the 

increasing number of clinical trials in which many of the patients are randomized multiple 

times, in a sequential manner. However, by far, the majority of statistical research, led by 

Robins’ pioneering work [1, 2, 3, 4] concerns the use of data from longitudinal, 

observational studies. The third data source, based on simulating from or otherwise using 

existing dynamical system models has seen much less use in DTR development. In this 

section we briefly review the first two types of data sources, their advantages and 

drawbacks, and the assumptions required to perform valid analyses in each, along with some 

examples. Dynamical system models will be discussed in Section 3.

2.1 Sequentially Randomized Trials (SMART)

Initially, beginning with Robins’ work [1, 2, 3, 4], sequentially randomized trials were used 

as a conceptual tool to precisely state the inferential goals in DTR research. More recently 
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trial designs, known as Sequential Multiple Assignment Randomized Trial (SMART) designs 

[7, 22, 11], have been implemented in practice. SMART designs involve an initial 

randomization of patients to available treatment actions, followed by re-randomizations at 

each subsequent stage of some or all of the patients to treatment actions available at that 

stage. The re-randomizations and set of treatment actions at each subsequent stage may 

depend on information collected in prior stages such as how well the patient responded to 

the previous treatment.

Recent SMARTs include: a smoking cessation study [23]; a study involving treatment of 

autism among children [24, 25]; a study involving interventions for children with attention 

deficit hyperactivity disorder [26, 27]; a study involving treatment for pregnant drug abusers 

[28, 25]; and a study involving alcohol-dependent individuals [25]. For a list of some further 

SMARTs see the website http://methodology.psu.edu/ra/adap-treat-strat/projects.

To make the discussion more concrete, see Figure 1 for a hypothetical SMART design based 

on the addiction management example introduced earlier. In this trial, each participant is 

randomly assigned to one of two possible initial treatments: cognitive behavioral therapy 

(CBT) or naltrexone (NTX). A participant is classified as a non-responder or responder to 

the initial treatment according to whether s/he does or does not experience more than two 

heavy drinking days during the next two months. A non-responder to NTX is re-randomized 

to one of the two subsequent treatment options: either a switch to CBT, or an augmentation 

of NTX with CBT (CBT+NTX). Similarly, a non-responder to CBT is re-randomized to 

either a switch to NTX, or an augmentation (CBT+NTX). Responders to the initial treatment 

receive telephone monitoring (TM) for an additional period of six months. One goal of the 

study might be to construct a DTR leading to a maximal mean number of non-heavy 

drinking days over 12 months.

Denote the observable data trajectory for a participant in a two-stage SMART by (O1, A1, 

O2, A2, O3), where O1, O2 and O3 are the pretreatment information, intermediate outcomes 

and final outcomes, respectively. The randomized treatment actions are A1 and A2 and the 

primary outcome is Y = r(O1, A1, O2, A2, O3) for r a known function. For example, in the 

addiction management study above, O1 may include addiction severity and co-morbid 

conditions, O2 may include the participant’s binary response status, side effects and 

adherence to the initial treatment, and Y may be the number of non-heavy drinking days over 

the 12-month study period.

To connect the distribution of the data collected in the above SMART to the distributions 

considered in the multistage decision problem in Section (1.1), we make a short digression 

into the field of causal inference. Recall that in the case of two stages, in Section (1.1), we 

denoted the sequence of random observations by (O1, a1, O2(a1), a2, O3(a1, a2)) for the 

selected actions (a1, a2). These observations are potential outcomes [29, 1]. Potential 

outcomes or counterfactual outcomes are defined as a person’s outcome had s/he followed a 

particular treatment (sequence), possibly different from the treatment (sequence) s/he was 

actually observed to follow. Consider, for example, a single-stage randomized trial in which 

participants can receive either a or a’. Accordingly, any participant in this study is 

conceptualized to have two potential second observations, O2(a) and O2(a’). However, only 
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one of these – the one corresponding to the treatment a participant is randomized to – will be 

observed. Clearly, it is not possible to observe the O2 under both treatments a and a’ without 

further data and assumptions (e.g. in a crossover trial with no carryover effect). Now 

suppose that participants are treated over two stages, and can receive at each stage either a 

or . In this case there are four sequences of potential observations, 

(O2(a), O3(a, a)), (O2(a), O3(a, a’)), (O2(a’), O3(a’, a)), (O2(a’), O3(a’, a’)); only one of 

these sequences will be observed on any given participant.

To connect the potential observations to the observations made during the conduct of a 

SMART, we make two assumptions [4]:

1. Consistency: The potential outcome under the observed treatment and the observed 

outcome agree.

2. No unmeasured confounders: For any treatment sequence , treatment Aj is 

independent of future (potential) outcomes, 

, conditional on the history 

. That is, for any possible treatment sequence ,

The consistency assumption subsumes Rubin’s [30] more explanatory Stable Unit Treatment 

Value Assumption (SUTVA), which is: each participant’s potential outcome is not 

influenced by the treatment applied to other participants. In clinical trials SUTVA is most 

often violated when the treatment is not well defined. For example the treatment as defined 

may not specify that some aspects of the treatment are provided in a group setting containing 

multiple participants from the trial. In this case the response of one participant to treatment 

may influence the response of another participant if they are in the same group.

Under the consistency assumption, the potential outcomes in a two stage SMART are 

connected to the observable data by O2 = O2(A1) and O3 = O3(A1, A2). The “no unmeasured 

confounders” assumption holds in a SMART design if the randomization probabilities 

depend at most on the past observations; more precisely, the randomization probabilities for 

A1 and A2 may depend on O1 and (O1, A1, O2), respectively. Under this assumption, 

P(O2(a1) ≤ o2∣O1 = o1) = P(O2 ≤ o2∣O1 = o1, A1 = a1), and P(O3(a1, a2) ≤ y∣O1 = o1, O2(a1) 

= o2) = P (O3 ≤ y∣O1 = o1, A1 = a1, O2 = o2, A2 = a2). This implies that the Value for a DTR 

can be written as a function of the multivariate distribution of the observable data obtained 

from a SMART; in the case of two stages (1) can be written as
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(recall H1 = O1 and H2 = (O1, A1, O2)). A similar result holds for settings with more than 

two stages. Thus the validity of the two assumptions ensures that data from SMARTs can be 

effectively used to evaluate pre-specified DTRs or to estimate the optimal DTR within a 

certain class.

2.1.1 Some Practical Considerations in Designing a SMART—A variety of 

authors recommend that the design of a SMART be no more complicated than necessary. 

Indeed the class of treatment options at each stage should not be unnecessarily restricted [22, 

11]. For example it is better to use a low dimensional summary criterion (e.g. responder/

non-responder status, as used in the example addiction management SMART) instead of all 

intermediate outcomes (e.g. improvement of symptom severity, side-effects, adherence etc.) 

to restrict the class of possible treatments. Furthermore a SMART is best viewed as one trial 

among a series of randomized trials intended to develop and/or refine a DTR. It should 

eventually be followed by a confirmatory randomized trial that compares the developed 

regime and an appropriate control [11]. That is, the construction of DTRs is a developmental 

endeavor as opposed to confirmatory. In this sense a scientist employing a SMART design 

has a similar goal to Box’s [31] goal of developing multicomponent treatments. Indeed the 

SMART can be viewed as an extension of the factorial design to the setting in which time 

and sequencing of treatments play a crucial role [32]. As a result often the primary 

hypothesis, that is, the hypothesis used to determine the sample size for the trial, concerns a 

main effect. However due to the multiple randomizations, a variety of interesting secondary 

research questions can be addressed with randomized data. Note that the SMART may or 

may not be powered to address these secondary hypothesis questions.

Most often the primary hypothesis concerns the main effect of the first stage treatment. For 

example, in the addiction management study an interesting primary research question would 

be: “marginalizing over secondary treatments, what is the best initial treatment on 

average?”. In other words, here the researcher wants to compare the mean primary outcome 

of the group of patients receiving NTX as the initial treatment with the mean primary 

outcome of those receiving CBT. Another interesting primary question could concern the 

main effect of a second stage treatment: “on average what is the best secondary treatment, a 

‘switch’ or an ‘augmentation’, for non-responders to initial treatment?”. Here the researcher 

might compare the mean primary outcome of non-responders assigned to switch with the 

mean primary outcome of non-responders assigned to augmentation. In all of these cases 

sample size formulae are standard or easily derived.

Alternatively the primary research question may concern the comparison of two of the 

embedded DTRs. In the example addiction management SMART there are 4 embedded 

DTRs, corresponding to 2 options for the first stage treatment and 2 options for the second 

stage treatment for nonresponders (note that there is only one option for the responders). For 

example, one embedded regime in this SMART is: ‘treat the patient with NTX at stage 1; 

give TM at stage 2 if the patient is a responder, and give CBT at stage 2 if the patient is a 

non-responder’; other embedded regimes can be described similarly. Determining 

appropriate sample sizes to compare two embedded DTRs in terms of a continuous outcome 

was considered by Murphy [11], Oetting et al. [33], and Dawson and Lavori [34, 35]. A web 

application that calculates the required sample size for a SMART design for a continuous 
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endpoint can be found at http://methodologymedia.psu.edu/smart/samplesize. Much work 

has concerned survival endpoints [12, 13, 14, 36]. Relevant sample size formulae can be 

found in Feng and Wahed [37] and Li and Murphy [38]. A web application for sample size 

calculation in this case can be found at http://methodologymedia.psu.edu/logranktest/

samplesize.

2.1.2 SMART versus Other Designs—The SMART design discussed above involves 

stages of treatment and/or experimentation. In this regard, it bears superficial similarity with 

adaptive designs [39]. The term, “adaptive design” is an umbrella term used to denote a 

variety of trial designs that allow certain trial features to change based on accumulating data 

while maintaining statistical, scientific, and ethical integrity of the trial [39]. In a SMART 

design, each participant moves through multiple stages of treatment, while in adaptive 

designs each stage involves different participants. The goal of a SMART is to develop a 

good DTR that could benefit future patients. Many adaptive designs try to provide the most 

efficacious treatment to each patient in the trial based on the current knowledge available at 

the time that a participant is randomized. In a SMART, unlike in an adaptive design, the 

design elements such as the final sample size, randomization probabilities and treatment 

options are pre-specified. SMART designs involve within-participant adaptation of 

treatment, while adaptive designs involve between-participant adaptation. While in some 

settings it is possible to incorporate some adaptive elements into a SMART design [10, 40], 

how to optimally do this is an open question that warrants further research.

SMART designs have some operational similarity with classical crossover trial designs; 

however they differ greatly in the scientific goal. In particular a crossover design is typically 

used to contrast the effects of stand-alone treatments whereas the SMART is used to develop 

a DTR, that is, a sequence of treatments. Note that treatment allocation at any stage after the 

initial stage of a SMART typically depends on a participant’s intermediate outcome 

(response/non-response). However, in a crossover trial, participants receive all the candidate 

treatments irrespective of their intermediate outcomes. And most importantly, it is crucial in 

a crossover trial to attempt to wash out the carryover effects, whereas the process of 

constructing a DTR involves harnessing carryover effects so as to lead to improved 

outcomes. That is, carryover effects such as synergistic interactions between treatments at 

different stages may lead to a better DTR as compared to a DTR in which there are no 

carryover effects.

2.2 Observational Studies

In observational studies the treatments are not randomized; in particular, the reasons why 

different individuals receive differing treatments or the reasons why one individual receives 

different treatments at different times are not known with certainty. Certainly data in which 

the treatments are (sequentially) randomized, when available, is preferable for making 

inferences concerning DTRs. However observational studies are the most common source of 

data for constructing DTRs and indeed most research in statistics has concentrated on how 

best to use observational data.
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In observational data associations observed in the data (e.g., between treatment and 

outcome) may be partially due to the unobserved or unknown reasons why individuals 

receive differing treatments as opposed to the effects of the treatments. Thus to conduct 

inference, assumptions are required. Assumptions such as the consistency assumption and 

the no unmeasured confounders assumption discussed earlier can be used to justify 

estimation and inference based on observational data; the plausibility of these assumptions is 

generally best justified by scientific, expert knowledge. A variety of studies aimed at 

constructing DTRs from observational data have been undertaken. Data sources include 

hospital databases [16, 17, 41, 42], randomized encouragement trials [43], and cohort studies 

[44].

The assumption of no unmeasured confounders must be given careful consideration and 

thought in the observational data setting. Recall the no unmeasured confounders is the 

assumption that conditional on the past history, treatment received at stage j is independent 

of future potential observations and outcome: 

. This 

assumption allows us to effectively view the observational data as coming from a 

sequentially randomized trial, albeit with unknown as opposed to known randomization 

probabilities at stage j. The assumption may be (approximately) true in observational 

settings where all relevant common causes of outcomes and treatment have been observed.

In addition to careful consideration of causal inference issues, using observational data to 

construct DTRs requires careful thought concerning how the data may restrict the set of 

DTRs that can be assessed absent further assumptions. This set is called the feasible [45] or 

viable [18] DTRs. Feasibility of a DTR  requires a positive probability that some 

participants in the study will have followed .

3 Data Analysis

As mentioned in Section 2, two common goals are: (a) the estimation/comparison of a small 

number of DTRs in terms of their Value; and (b) to estimate the optimal DTR within a 

certain class. In the following, we review the analysis strategies for both. Throughout we 

assume that both the no-unmeasured confounding and consistency assumptions hold and that 

all DTRs considered are feasible.

Weighting is often used to address both (a) and (b). Weights or inverse probability of 

treatment weights (IPTW) were originally developed to estimate the Value of non-dynamic 

regimes [46, 47], but later adapted to the problem of estimating the Value of DTRs. IPTWs 

were used to estimate the Values of a small number of DTRs in Murphy et al. [48] and 

Wang et al. [18]. To see why weights might be used, consider a SMART as in Figure 1, with 

only one option for responding participants (e.g. telephone monitoring). Suppose that the 

treatment assignment probabilities at stage 1 and also for the non-responders are uniform 

(randomization probability is 0.5). Suppose further that we want to estimate the Value of the 

embedded DTR, “treat the patient with NTX at stage 1; give TM at stage 2 if the patient is a 

responder, and give CBT at stage 2 if the patient is a non-responder.” To estimate the Value 
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we utilize the outcome of all participants with treatment patterns consistent with this DTR. 

However within this group of participants there is an over-representation of responders 

compared to non-responders because the non-responders were subdivided in the trial but the 

responders were not. The IPTWs are used to adjust for over-representation of participants 

across the treatment patterns consistent with a given DTR. In this example, data from 

responders would have a weight of  as responders have been randomized only in stage 1 

(with a probability of 0.5) whereas data from non-responders would have a weight of 

 as they have been randomized twice (each with a probability of 0.5). See Wang et 

al. [18] and Nahum-Shani et al. [26] for detailed explanations of how IPTWs can be used to 

account for this over/under representation in SMARTs. Lunceford et al. [12], Wahed and 

Tsiatis [13, 14], and Miyahara and Wahed [49] use ITPW weights in estimating the Value of 

DTRs in the survival analysis setting. Improved versions of IPTW estimator are available in 

papers by Robins and colleagues [48, 17, 41, 50] and Zhang et al. [51].

3.1 Direct Methods for Estimating an Optimal DTR

For notational simplicity, let d denote the DTR, , in the following. Recall from Section 1 

that the Value of a DTR is the mean of the utility, marginalized over all observations that 

might be impacted by the treatment. In direct methods one specifies a class of DTRs  (see 

below for an example), estimates the Value for each candidate DTR , say  and then 

selects the DTR in  with maximal estimated Value.

The use of IPTWs for estimating an optimal DTR was pioneered by Robins and colleagues 

[17, 41]. For a simple example consider DTRs that use a risk score to indicate when to 

initiate treatment. At the clinic visit at which the risk score is greater than or equal to x, 

treatment is initiated. The Value varies by DTR, that is, by x. In Robins et al. [17] the Value 

is parameterized as a polynomial function in x and pretreatment variables; for example, V(x; 

β) = β0 + β1x + β2x2. The optimal DTR is to initiate treatment when the risk score is greater 

than or equal to x0 where x0 = arg maxx V(x, β). To estimate the optimal DTR, we need 

estimators of the β’s. In the simplest setting the β’s are estimated by solving an IPTW 

weighted estimating equation. To improve efficiency in the estimation of the β’s, Robins et 

al. [17] take advantage of the fact that some individuals’ treatment sequence will be 

consistent with more than one DTR. For example if the individual initiates treatment with a 

risk score of 12 and at the prior office visits the individual’s risk score was always lower 

than 10, then this individual has a treatment sequence consistent with x = 10, 11 and 12. To 

improve efficiency this individual’s data is used to estimate the Value V (x; β) for x = 10, 11, 

12. Operationally, the estimating equation uses three replicates of this individual’s data. In 

the above example the individual is replicated twice to produce three replicates and the 

replicated outcome Y is relabeled as Y10, Y11, Y12 (Y10 = Y11 = Y12). In general the number of 

replicates of an individual’s data is equal to the number of DTRs with which their observed 

treatment is consistent.

The β’s can be estimated by solving the weighted estimating equation
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where the  is an average over the augmented data set (containing the replicates). Nahum-

Shani et al. [26], in the context of SMART, provides an intuitive discussion of why 

replication of participants can be used to account for the fact that a participant’s observed 

treatment is consistent with more than one DTR. The observational data setting can be more 

complicated; see Robins et al. [17] and Shortreed and Moodie [52] for detailed expositions. 

Related work that compares a range of candidate DTRs by incorporating a treatment-

tailoring threshold can be found in Hernán et al. [53], Petersen et al. [54], van der Laan and 

Petersen [55], and Cotton and Heagerty [42].

Direct methods for a one-stage decision making setting (e.g. K = 1) has seen a great deal of 

research; here the single decision rule is often called an individualized decision rule. As 

highlighted by Qian and Murphy [56], the one stage decision making problem has a close 

connection with classification. Subsequently, methods based on classification [57, 58] have 

been proposed for estimating the decision rule. Other work in the one-stage decision setting 

include Cai et al. [59] and Imai and Ratkovicz [60].

3.2 Indirect Methods for Estimating an Optimal DTR

Indirect approaches to estimating the optimal DTR are commonly employed when scientists 

wish to consider decision rules that may depend on multiple covariates or depend on 

covariates in a complex manner. In the indirect approach the stage-specific conditional mean 

outcomes (called Q-functions) or contrasts thereof are modeled first, and then the optimal 

decision rules are found via maximization of these estimated conditional means or contrasts. 

These methods were originally developed in the reinforcement learning literature within 

computer science, but later adapted to statistics. One such procedure that has become 

particularly popular in the DTR literature is Q-learning [21]. Q-learning is an approximate 

dynamic programming method – approximate because the Q-functions are approximated by 

the use of data and models. In its simplest incarnation, Q-learning uses linear models for the 

Q-functions, and can be viewed as an extension of least squares regression to multi-stage 

decision problems [61]. However, one can use more flexible models for the Q-functions, e.g. 

regression trees [62] or kernels [63]. The version of Q-learning considered in the DTR 

literature is most similar to the fitted Q-iteration algorithm [62] in the reinforcement 

learning literature.

3.2.1 Q-learning with Linear Models—For clarity, here we will define Q-functions and 

describe Q-learning for studies with two stages only; generalization to K (≥ 2) stages is 

straightforward [61]. For simplicity, assume that the data come from a SMART with two 

possible treatments at each stage, Aj ∈ {−1, 1) and that the treatment is randomized with 

known randomization probabilities. The data from a SMART involving n subjects will 

consist of n data trajectories of the form (O1, A1, O2, A2, O3); as before the histories are 

defined as H1 = O1 and H2 = (O1, A1, O2). The study can have either a single terminal utility 

(primary outcome) Y observed at the end of stage 2, or two stage-specific utilities Y1 and Y2 
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adding up to the primary outcome Y = Y1 + Y2 (in general Y can be any known function of 

the data). The interest lies in estimating a two-stage DTR (d1, d2), with dj(Hj) ∈ {−1, 1}.

The optimal Q-functions for the two stages are defined as: Q2(H2, A2) = E[Y2∣H2, A2], and 

Q1(H1, A1) = E[Y1 + maxa2 Q2(H2, a2)∣H1, A1]. A backwards induction argument [21] can 

be used to prove that the optimal treatment at a particular stage is given by the value of the 

action that maximizes the associated Q-function. In particular, if these two Q-functions were 

known, the optimal DTR (d1, d2) would be dj(hj) = arg maxaj Qj(hj, aj), j = 1, 2. In practice, 

the true Q-functions are not known and hence must be estimated. Since Q-functions are 

conditional expectations, a natural approach to model them is via regression models. A 

dynamic programming (moving backwards through the stages) approach is used to estimate 

the parameters. Consider linear regression models for the Q-functions. Let the stage j (j = 1, 

2) Q-function be modeled as , where Hj0 and Hj1 

are two (possibly different) features of the history Hj.

There are many versions of the Q-learning algorithm depending on whether there are 

parameters that are common across the stages and depending on the form of the dependent 

variable used in the stage 1 regression. One form for the Q-learning algorithm consists of the 

following steps:

1.
Stage 2 regression: .

2.
Stage 1 dependent variable: .

3. Stage 1 regression: 

.

Note that in step 2. above, the quantity  is a predictor of the unobserved random variable 

Y1i + maxa2 Q2(H2i, a2), i = 1, … , n. The estimated optimal DTR using Q-learning is given 

by , where the stage j optimal rule is specified as 

.

Q-learning (with K = 2) has been implemented in the R package qLearn, freely available 

from: http://cran.r-project.org/web/packages/qLearn/index.html, and in the SAS procedure 

QLEARN: http://methodology.psu.edu/downloads/procqlearn. Q-learning can be extended 

for application to observational data by incorporating appropriate adjustments to account for 

confounding; more precisely, this can be done either by including all the measured 

confounders – or simply the propensity score as a proxy for all measured confounders – in 

the models for Q-functions, or instead weighting the stage-specific regressions by the 

inverse of the propensity scores [64]. Q-learning is a version of Robins’ optimal structural 

nested mean model [6] developed in the causal inference literature; see Chakraborty et al. 

[23] for a detailed discussion and derivation.
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Q-learning has been generalized in a variety of ways. Lizotte et al. [65, 66] generalize Q-

learning for use when different patients may make different tradeoffs between multiple 

outcomes and thus a data analysis of one composite outcome is insufficient. Q-learning has 

also been generalized to settings in which Y is a, possibly censored, survival time [67, 68]; 

both these papers provide a Q-learning method with the aim of maximizing a truncated 

survival time.

3.2.2 Approaches based on Dynamical Systems Models—An alternate indirect 

approach to estimating an optimal DTR is to use dynamical systems models. By dynamical 

systems models we mean a time-ordered sequence of nested conditional models (each model 

conditions on past data) for the multivariate distribution of the data. In this approach one 

first develops a dynamical systems model; this model may be constructed using expert 

opinion or may be estimated using observational or sequentially randomized data sets. 

Indeed these types of models are quite attractive when there are strong biological, behavioral 

or social theories that can be employed to guide the formation of the nested conditional 

models. Once the dynamical systems model is in hand, algorithms from control theory, such 

as dynamic programming or constrained optimization algorithms are used to estimate the 

optimal DTR [69]. This is a common approach in applications in engineering, economics 

and business. In the clinical field there has been much less development. Bayesian methods 

have been employed in simple, low dimensional problems; one example is Thall et al. [70].

Rosenberg et al. [71], and Banks et al. [72] discussed how a variety of data sources with 

models based on ordinary differential equations can be used to build a dynamical systems 

model for use in estimating an optimal DTR in AIDS treatment. In this setting the treatment 

is a continuous dose of antiviral therapy, and the optimal DTR is chosen to bring the 

dynamical system to its “steady state”. Rivera and colleagues, in a series of presentations 

available at http://csel.asu.edu/node/13 and papers [69, 73], discussed how common 

dynamical systems models might be used to describe behaviorial dynamics and thus form 

the basis for DTRs involving behavioral treatments in obesity and addiction treatment. 

Gaweda et al. [74, 75] discussed the use of control theoretic approaches to anemia 

management in patients with end-stage renal disease. Bennett and Hauser [76] discussed a 

framework for simulating clinical decision making from electronic medical records data. In 

summary, while the dynamical systems approaches to develop DTRs are emerging, from a 

statistical perspective they still lag behind the other approaches presented earlier; hence this 

area is ripe for further development.

4 Confidence Sets

High quality measures of confidence are needed in the development of DTRs both for (i) the 

parameters indexing the optimal DTR; and (ii) the Value of a DTR – either a pre-specified 

DTR, or an estimated DTR. Inference for the Values of pre-specified regimes has been 

addressed by numerous authors [12, 13, 14, 9, 10]; however there is little work on inference 

for the Value of an estimated regime. We return to this problem after discussing the 

construction of confidence intervals (CIs) for the parameters indexing the optimal regime. 

Measures of confidence for these parameters are important for the following reasons. First, 

if the CIs for some of these parameters contain zero, then the corresponding patient variables 
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need not be collected in future, thus lowering the data collection burden. Second, CIs for the 

coefficient of the treatment variable can be used to indicate if there is insufficient support in 

the data to recommend one uniquely best treatment over another, thereby suggesting 

considerations other than the treatment effect be used to decide on treatment, e.g. cost, 

patient/clinician familiarity, preference etc.

Orellana et al. [41] discussed construction of confidence sets for parameters indexing the 

optimal DTR when direct methods of estimation using IPTW are employed. These 

confidence sets are based on standard Taylor series arguments, and are asymptotically valid 

under a set of smoothness assumptions. Robins [6] pointed out that non-regularity arises in 

the indirect estimation of DTRs. By non-regularity, we mean that the asymptotic distribution 

of the estimator of the treatment effect parameter does not converge uniformly over the 

parameter space; see below for further details. Indeed the treatment effect parameters at any 

stage prior to the last can be non-regular. This phenomenon has practical consequences, 

including bias in estimation and poor frequentist properties of Wald-type or other standard 

CIs in small samples. Any inference technique that aims to provide good frequentist 

properties such as nominal Type I error and/or nominal coverage of CIs in small samples has 

to address this problem of non-regularity. The problem can be better understood with a 

simple but instructive example discussed by Robins [6]; here we present a slightly modified 

version as presented by Chakraborty et al. [23]. Consider the problem of estimating ∣μ∣ 

based on n i.i.d. observations X1, … , Xn from . Note that  is the maximum 

likelihood estimator of ∣μ∣, where  is the sample average. The asymptotic distribution of 

 for any μ ≠ 0 is a standard normal, whereas for μ = 0 it is nonnormal; that 

is, the change in the distribution as a function of μ is abrupt. Thus  is a non-regular 

estimator of ∣μ∣; an exact proof of non-regularity of this estimator uses local alternatives as 

in Leeb and Pötscher [77]. Also, for . This 

asymptotic bias [6] is one symptom of the underlying non-regularity.

Next we review the problem of non-regularity in the context of Q-learning. Suppose we 

want to construct CIs for the parameters ψj’s appearing in the model for Q-functions. In a 

two-stage set-up, the inference for the stage 2 parameters ψ2 is straightforward since this 

falls in the standard linear regression framework. In contrast, inference for ψ1 is 

complicated. Note that the stage 1 dependent variable in Q-learning for the i-th participant is 

, which is a 

non-differentiable function of  (due to the presence of the absolute value function). Since 

 is a function of , it is in turn a non-smooth function of . As a 

consequence, the distribution of  does not converge uniformly over the 

parameter space [6]. More specifically, the asymptotic distribution of  is 

normal if φ2 is such that , but is non-normal if p > 0, and this 
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change in the distribution happens abruptly. Below we present several different approaches 

to address the problem.

4.1 Adjusted Projection Confidence Intervals

As discussed in Robins [6], a joint CI for all of the parameters (in our two stage example 

both the first and second stage regression coefficients) can be formed by inverting 

hypothesis tests. That is, if the parameters are φ = (φ1, φ2) and a hypothesis test of φ = φ0 

for each value of φ0 is well behaved, then a joint (1 − α)% CI,  for φ can be constructed. 

This is the case in Q-learning since it is easy to construct a well-behaved hypothesis test 

statistic when all of the regression coefficients are set to fixed values (the test statistic is 

based on a quadratic form involving the estimating functions evaluated at the fixed values). 

Next a projected CI for φ1 is given by . Unfortunately this interval 

is very conservative. As a result, Robins [6] using ideas as advanced by Berger and Boos 

[78] adjusts the usual projection CI. We discuss this idea in the context of the two stage Q-

learning method presented above.

Recall that we are interested in a CI for φ1. In this context, φ2 is a nuisance parameter. If the 

true value of φ2 were known, then the asymptotic distribution of  would be 

regular (in fact, normal), and standard procedures could be used to construct an 

asymptotically valid CI. Let  denote a (1 − α)% asymptotic CI for φ1 if φ2 were 

known. Let  be a (1 − ∊)% asymptotic CI for φ2. Then, it follows that 

 is a (1 − α − ∊)% CI for φ1. To see this, note that 

. Thus, this CI is 

the union of the CIs  over all values , and is an asymptotically valid (1 − α − 

∊)% CI for φ1. The main downside of this approach is that it appears to be computationally 

di cult to implement; to our knowledge this CI has not yet been implemented.

4.2 Adaptive Confidence Intervals

Laber et al. [79] developed an adaptive bootstrap procedure to construct CIs for linear 

combinations , where c is a known vector. In this procedure, they decomposed the 

asymptotic expansion of  as , where the first term  is smooth 

and asymptotically normally distributed, while the distribution of the second term 

depends on the underlying data-generating process “non-smoothly”. The adaptive 

confidence intervals (ACIs) are formed by first constructing smooth data-dependent upper 

and lower bounds on , and thereby on . The data-dependent upper/lower 

bounds use a pretest [80] that partitions the data into two sets: (i) patients for which there 

appears to be a treatment effect, and (ii) patients where it appears there is no treatment 

effect. The pretests are performed using a critical value λn, which is a tuning parameter of 

the procedure and can be varied; Laber et al. [79] used λn = log log n in their analysis.
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Let the upper and lower bounds on  be given by  and 

respectively; both these quantities are functions of λn. Laber et al. [79] showed that the 

asymptotic distributions of  and  are all equal in the regular 

case when p = 0. That is, when there is a large treatment effect for almost all patients then 

the bounds are asymptotically tight. However, when there is a non-null subset of patients 

with no treatment effect, then the asymptotic distribution of  is stochastically larger 

than the asymptotic distribution of , and likewise the asymptotic 

distribution of  is stochastically smaller. This adaptivity between non-regular and 

regular settings is a key feature of this procedure. The distributions of  and  are 

approximated using the bootstrap. Let  be the 1 − α/2 quantile of the bootstrap distribution 

of , and let  be the α/2 quantile of the bootstrap distribution of . Then 

 is the ACI for  Laber et al. [79] proved the consistency 

of the bootstrap in this context, and in particular that 

, where the probability 

statement is with respect to the bootstrap distribution. Furthermore, if p = 0, then the above 

inequality can be strengthened to equality. This result shows that the adaptive bootstrap 

method can be used to construct valid – though potentially conservative – CIs regardless of 

the underlying parameters of the generative model. This method is implemented in the SAS 

procedure QLEARN: http://methodology.psu.edu/downloads/procqlearn.

4.3 m-out-of-n Bootstrap Confidence Intervals

The m-out-of-n bootstrap is a tool for producing valid CIs for non-smooth functionals [81]. 

This method is the same as the ordinary bootstrap except that the resample size (m) satisfies: 

m → ∞ as n → ∞, but m = o(n). Chakraborty et al. [82] proposed a data-driven method for 

choosing m in the context of Q-learning that is directly connected to an estimated degree of 

non-regularity. This method is adaptive in that it leads to the usual n-out-of-n bootstrap in 

regular settings (p = 0) and the m-out-of-n bootstrap otherwise.

In this approach, Chakraborty et al. [82] considered a class of resample sizes of the form 

, where η > 0 is a tuning parameter. For implementation, one first needs to 

estimate p using a plug-in estimator, , where 

 is the plug-in estimator of the asymptotic covriance matrix of  and  is the (1 

− ν) × 100 percentile of a χ2 distribution with 1 degree of freedom. Then the data-driven 

choice of the resample size is given by . Note that for fixed  is a monotone 

decreasing function of , taking values in the interval . Thus, η governs the smallest 

acceptable resample size. The procedure has been shown to be robust to the choice of ν. 

Once  is computed, a (1 − α) × 100% m-out-of-n bootstrap CI for  is given by 

 where  and  are the (α/2) × 100 and (1 − α/2) × 100 
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percentiles of  respectively  is the m-out-of-n bootstrap analog of 

. This bootstrap procedure is consistent, and 

, where the probability 

statement is with respect to the bootstrap distribution. Furthermore, if p = 0, then the 

procedure possesses the adaptive property in that the above inequality is an equality. The 

method has been implemented in the R package qLearn on http://cran.r-project.org/web/

packages/qLearn/index.html.

See the online Supplemental Materials for a simulation study that illustrates the performance 

of the above approaches to forming a CI.

4.4 Confidence Intervals for the Value of an Estimated DTR

The topic of constructing CIs for the Value of an estimated DTR has not been adequately 

addressed in the literature yet, but some insight can be gained by exploiting its connection 

with classification. As highlighted by Qian and Murphy [56] and Zhao et al. [58], the Value 

of a DTR can be expressed in a similar form as the misclassification error rate in a weighted 

classification problem. Thus constructing a CI for the Value of an estimated DTR is 

equivalent to constructing a CI for the test error of an estimated weighted classifier. 

Unfortunately even in an unweighted classification problem, constructing a CI for the test 

error is di cult due to the inherent non-smoothness; standard methods like normal 

approximation or usual bootstrap fail. Laber and Murphy [83] developed a method for 

constructing such CIs using smooth data-dependent upper and lower bounds on the test 

error; this method is similar to the ACI method described in Section 4.2. While intuitively 

one can expect that this method could be successfully adapted for the Value of an estimated 

DTR, more targeted research is needed to extend and fine-tune the procedure to the current 

setting.

5 Discussion and The Future

Dynamic treatment regimes comprise an increasingly active area of current statistical 

research with much interest from the clinical science community. SMART studies are 

increasing in number indicating that for some time the design of, and data analysis for, these 

trials will provide a steady source of new statistical problems. For example, many 

interventions are administered in group settings; in case of DTRs this requires the design 

and analysis of cluster-randomized SMARTs. At the design level, cluster randomization 

would imply increased sample size requirements due to intra-class correlation. At the 

analysis level, it would open up questions as to how best to incorporate random effects 

models or generalized estimating equations into the existing framework of estimation, how 

the intra-class correlation would impact the non-regularity in inference, and so on. 

Furthermore the development of statistical methods that can be used in the analysis of 

longitudinal observational data sets will likely continue to be necessary in this area. In either 

case methods for variable selection and model checking in the context of constructing data-
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driven DTRs, both of which pose slightly different issues than similar topics in the 

prediction literature are under-developed, and warrant further research.

Inference in the domain of DTRs is a particularly challenging problem due to non-regularity 

of the estimators under certain underlying longitudinal data distributions. This challenge 

occurs both when the targets of inference are the parameters indexing the optimal DTR and 

when the target is the Value of an estimated DTR. Optimality principles and statistical 

methods aiming to achieve optimal CIs in these non-regular problems is an open area of 

research. There is growing interest in confidence intervals for other parameters. One 

example is data-dependent parameters such as the first stage regression coefficients that 

would result in a future study in which the estimated second stage decision rule is used to 

assign treatment. Confidence intervals for this type of parameter is as yet undeveloped.

In today’s health care, there is an increasing use of sophisticated mobile devices (e.g. smart 

phones, actigraph units containing accelerometers, etc.) to remotely monitor patients’ 

chronic conditions and to intervene, when needed. This is an instance in which methods 

from online reinforcement learning in the infinite horizon setting may be useful. 

Development of sound estimation and inference techniques for such a setting is an important 

future research direction.

The field of DTRs is in its infancy and is quickly evolving. These methods and trial designs 

hold much promise for informing sequential decision making in health care. To achieve this 

promise many of the problems discussed above require further efforts on the part of the 

statistical community. In addition, dissemination of the newly developed methods into the 

medical domains and collaboration with clinical scientists will be crucial.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Hypothetical SMART design schematic for the addiction management example (an “R” 

within a circle denotes randomization at a critical decision point).
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