
Sliding Mode Control of Steerable Needles

D. Caleb Rucker [Member, IEEE],
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA 
(daniel.c.rucker@vanderbilt.edu)

Jadav Das,
Rockwell Automation, Inc., Shirley, NY 11967 USA (jadav.das@gmail.com)

Hunter B. Gilbert [Student Member, IEEE],
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA 
(hunter.b.gilbert@gmail.com)

Philip J. Swaney [Student Member, IEEE],
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA 
(philip.j.swaney@vanderbilt.edu).

Michael I. Miga [Member, IEEE],
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA 
(michael.i.miga@vanderbilt.edu)

Nilanjan Sarkar [Senior Member, IEEE], and
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA 
(nilanjan.sarkar@vanderbilt.edu)

Robert J. Webster III [Member, IEEE]
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA 
(robert.webster@vanderbilt.edu).

Abstract

Steerable needles can potentially increase the accuracy of needle-based diagnosis and therapy 

delivery, provided they can be adequately controlled based on medical image information. We 

propose a novel sliding mode control law that can be used to deliver the tip of a flexible 

asymmetric-tipped needle to a desired point, or to track a desired trajectory within tissue. The 

proposed control strategy requires no a priori knowledge of model parameters, has bounded input 

speeds, and requires little computational resources. We show that if the standard nonholonomic 

model for tip-steered needles holds, then the control law will converge to desired targets in a 

reachable workspace, within a tolerance that can be defined by the control parameters. 

Experimental results validate the control law for target points and trajectory following in phantom 

tissue and ex vivo liver. Experiments with targets that move during insertion illustrate robustness 

to disturbances caused by tissue deformation.
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I. Introduction

Many useful clinical diagnoses and therapies throughout the human body require needle 

insertion, including biopsy, drug injection, regional anesthesia, brachytherapy, and thermal 

ablation, among others. Needle insertion is particularly important in the liver, where it is 

often used to diagnose and even treat diseases. For example, needle-based radio frequency 

ablation is an effective therapy for patients with hepatocellular carcinomas and colorectal 

cancer, providing a viable alternative to open surgery [1]. The efficacy of nearly any needle 

insertion procedure depends on the accuracy of final needle tip position. Needle targeting 

accuracy is currently limited by factors such as needle and tissue deformation during 

insertion, registration error, patient movement, and reliance on human hand-eye 

coordination to insert the needle. While image-guided robotic needle placement systems (see 

[2] for an overview) can improve accuracy, they cannot completely eliminate the 

aforementioned sources of error, because they align the needle before the procedure and 

cannot control the path of the needle (i.e., “steer” it) during insertion. Interventions in the 

liver and other organs often involve obstacles for a needle, including blood vessels and bile 

ducts, making the ability to steer during insertion particularly important.

To address this, several needle steering strategies have been developed, including use of a 

robot to apply lateral forces and torques to the base of a relatively stiff needle during 

insertion [3], [4]. A variation on this approach is to “steer the target” by using external 

actuators to deform the tissue, keeping the target lined up in front of a straight needle during 

insertion [5]. A second approach uses precurved concentric elastic tubes, which can be 

rotated and translated within one another to change the shape of the needle shaft [6], [7]. 

The third, and perhaps most widely investigated method, uses relatively flexible needles 

with asymmetric tips. As the needle is inserted, asymmetric tissue forces cause the tip to 

deflect and follow a curved path through the tissue, which the flexible shaft follows. 

Asymmetric tip designs can be passive (e.g., using a beveled, prebent (kinked), precurved, 

or flexure tip) [8], [9] or actuatable [10], [11]. For passive asymmetric tipped needles (which 

we will henceforth refer to as tip-steered needles), the direction of tip deflection can be 

controlled by axially rotating the needle’s shaft at the base during insertion.

Each of the above needle steering techniques exhibits different strengths and challenges, and 

none has yet emerged as the optimal solution in all applications. Base steering of stiff 

needles works well near the tissue surface, but steerability is reduced with depth, because 

the needle shaft must deform an increasing amount of tissue. Concentric tube needle steering 

does not rely on the surrounding tissue medium to achieve a curved path and, because of 

this, can be used in both free space [6], [7] and tissue-embedded applications [12]. However, 

it requires a priori design of the component tubes [13], and so does not offer as much 

variability in the final trajectory within tissue. Tip steering has the advantage of typically 

traveling along a “follow the leader” trajectory, where the shaft follows the path of the tip, 

and steerability is largely unaffected by insertion depth. Challenges with tip steering include 

the fact that interaction forces depend on tissue and needle mechanical properties [14], and 

nonholonomic constraints complicate the control problem. In this paper, we address these 

challenges by presenting a novel control law for tip-steered needles in 3-D.
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A. Prior Planning and Control Results for Tip Steering

Kallem and Cowan [15] presented a controller that stabilizes a tip-steered needle to a desired 

subspace (e.g., a sphere or a plane in R3), without specifying where the needle goes within 

that subspace. To direct the needle in a plane, Reed et al. [16] coupled this controller to the 

path planners of Alterovitz et al. [17], to create an image-guided tip-steered planning/control 

system, which was experimentally validated. In this system, the planner decides when to 

activate a series of 180° rotations of the base (thus aiming the tip in opposite directions 

within the plane to which it is stabilized). Recent work by Abayazid et al. [18] investigated 

the open-loop accuracy of planar needle deflection models and integrated image feedback in 

a control strategy, which was similarly based on a series of 180° rotations. The effective 

curvature of the needle’s path can be controlled by duty cycling the rotation of the base, 

which has been demonstrated in cadaver brain [19].

Generalized 3-D planners that account for tissue deformation and inhomogeneity have also 

been developed for tip-steered needles. These include planners based on diffusion [20], 

helical paths [21], and inverse kinematics [22]. The helical path framework of Hauser et al. 

[21] could be considered a planning as-control approach that continually computes a large 

number of potential needle paths during insertion and then selects one that minimizes the 

distance between the needle tip and desired target location. Each of these 3-D planners has 

been validated in simulation, but none have yet been demonstrated experimentally with a 

physical needle. Furthermore, any planner that cannot run in real time will require a 

trajectory-following 3-D controller such as the one we propose in this paper.

B. Contributions

Our primary contribution in this paper is a novel approach for the control of tip-steered 

needles in 3-D, which can be used to target a specific point or to follow a desired trajectory. 

Based on the well-known nonholonomic unicycle model for tip-steered needles, we 

formulate a sliding mode control law, which is computationally efficient and independent of 

any model parameters. Using Lyapunov analysis and piecewise solutions to the model 

differential equations, we prove that this causes the needle model to reach a desired target 

within a specified error bound expressed as a function of the control input speeds. This is the 

first control law for 3-D tip-steered needles of which we are aware whose convergence has 

been proven in this sense. We experimentally validate the proposed approach in phantom 

and ex vivo liver tissue for 3-D target points and trajectories, in the presence of tissue 

deformation, which causes unmodeled needle motion and target motion.

II. Review of Kinematic Model

We adopt the nonholonomic generalized unicycle model presented in [23] that describes the 

trajectory of a flexible asymmetric-tipped needle inserted into tissue. The model describes 

the time derivative of a homogeneous transformation matrix 

 containing the position p ∈ ℝ3 and orientation R ∈ SO(3) 

(a 3 × 3 rotation matrix) of the needle tip as a function of two control inputs, i.e., u1 

(insertion velocity) and u2 (axial rotation velocity), as follows:
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(1)

where k is the curvature of the needle path (a positive constant model parameter). Given the 

input variables as a function of time, computation of the model-predicted needle path would 

entail integration of (1) as an initial value problem from the initial state g0 forward in time to 

obtain g(t).

III. Control Approach

A. Problem Statement

Our objective is to establish a control law to select the input velocities u1 and u2 to drive the 

needle tip position p(t) to a desired point pd ∈ ℝ3, given knowledge of the current needle tip 

frame g. Note that a desired orientation R is not specified, and the elements of R are by 

nature bounded, because (1) forces R to evolve on SO(3).

B. Error Definition and Error Dynamics

For the purposes of formulating our control law and analyzing its convergence, we define a 

vector e(t) as

(2)

This is the positional error expressed in coordinates of the current needle tip frame at time t, 

and e = 0 represents the desired system state. We can explicitly write the dynamics for e, 

which follows directly from the original model (1) as

(3)

C. Manifold Definition

We define a manifold in the state space of (3) as σ = 0, where

(4)

and atan2 is the two argument arctangent function using the numerator first convention. 

Thus, σ has a range of [−π π] and is only zero when ex = 0 and ey < 0 simultaneously (i.e., 

when the target lies in the half plane defined by the z- and negative y-axes of the needle tip 

frame, as depicted in Fig. 1).
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D. Control Law

We now propose a control structure as

(5)

where λ1 and λ2 are positive constants, and the sign function simply returns −1 if the 

argument is negative, 1 if it is positive, and 0 if it is zero. This control approach is 

geometrically intuitive—we always want to rotate the needle toward a state in which it 

would curve toward the target when inserted, i.e., the manifold σ = 0. It also guarantees that 

any desired limits on rotation and insertion speed are not exceeded.

IV. Behavior as λ2/λ1 → ∞

If λ1 > 0, a geometric argument can be made that in the limit as λ2/λ1 approaches infinity, 

the system will reach e = 0 in finite time for all target points located outside a particular 

region. In order to provide an intuitive understanding of the control law, we outline that 

argument for this ideal case before formally analyzing the more practical case of finite λ2/λ1.

As λ2/λ1 → ∞, rotations of the needle frame about its z-axis (due to the control input u2) can 

be considered to happen instantaneously with respect to changes in the tip position. 

Therefore, the condition of σ = 0 can be considered to be true at all times, since for any tip 

frame location and orientation, instantaneous rotation about the z-axis by an angle of σ will 

bring the system to the manifold σ = 0.

Now, let the following condition be satisfied at t = 0:

(6)

This condition constitutes the target location existing on or outside of the surface of a Horn’s 

torus of radius r = 1/k centered at the initial tip location and aligned with the initial z-axis. In 

the next instant, according to the control law, the action of u2 will rotate the needle shaft by 

the minimum angle necessary to reach the sliding manifold, as shown in Fig. 1(a). Since the 

initial target position was outside the torus given by (6), the needle state now corresponds to 

that shown in Fig. 1(b). The control law then maintains the sliding condition continuously 

during insertion, and the needle traverses an arc of radius r = 1/k until the tip tangent vector 

points directly through the target (i.e., ex = ey = 0 and ez ≥ 0). This is a singular point in the 

definition of the manifold variable σ, and further insertion with no rotation would cause a 

finite change in σ. However, in the limit as λ2/λ1 → ∞, the control action will instantly 

correct this deviation and maintain the tangent state exactly. Thus, the needle tip must 

eventually pass through the target, reaching it in finite time due to the constant insertion 

velocity λ1. Appropriate terminal behavior can be achieved by simply stopping the insertion 

when some criteria are met (e.g., when the needle tip is sufficiently close to the target, or 

when the error begins to increase as the needle passes the target).
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If the target location was such that (6) was not satisfied at t = 0, then the initial rotation to 

the sliding manifold would occur as before, but the tangent state will never be achieved due 

to the fixed curvature of the needle path. In this case, the needle tip would circle the target 

point on the sliding manifold until insertion is terminated, corresponding to a limit cycle. An 

informed choice of the needle’s initial pose should always be made to ensure this situation 

does not occur.

V. Convergence for Finite λ2/λ1

For finite λ2/λ1, the system can eventually reach a state where the error does not satisfy the 

torus condition, and some amount of tip error will be incurred even if the model is perfectly 

accurate. In this section, we analyze the behavior of the nonholonomic model system (1) 

under the control approach proposed in (5) for finite λ2/λ1. We show that the manifold σ = 0 

is always reached in finite time, and that it is a stable system state until the needle tip tangent 

points directly at the target. Then, we analyze the cycle of reaching the manifold state 

repeatedly until the target error reaches its minimum value, which we find an upper bound 

for as a function of the control input speeds.

A. Model Solution for Constant Inputs

If u1 and u2 are constant over an interval t ∈ [0 T ], then (1) and (3) are linear, and their 

solutions can be written as

(7)

where p*(t) and R*(t) are the solutions to (1) with R(0) = I and p(0) = 0, given by

(8)

and where

(9)

Furthermore, e(t) can be written as follows:
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(10)

where the coefficients are listed explicitly in the Appendix.

B. Reaching the Manifold

We can show that σ = 0 is always reached in finite time by examining the error solution in 

(10) (since under the control law, the inputs are constant until the manifold is reached). First, 

we note that  from (3) and (5). Since σ has the same sign as ex (every where 

except σ = π, where ex = 0), then  only when ey < 0. Thus, ex can 

only reach zero if ey < 0, which implies that the zeros of σ(t) must correspond to the zeros of 

ex (t) in (10) with u2 = λ2sign (σ).

Examination of (10) shows that ex (t) oscillates between two linear functions 

 and , and ex(t) periodically equals 

each function with a period of 2π/q. Therefore, ex(t) must equal zero (and hence σ = 0) at 

some time t ∈ [τ τ+ 2π/q], where τ ≥ 0 is the soonest time when f1(t) and f2(t) have different 

signs (τ is guaranteed to exist because  and sign(cx) = −sign(ex(0)) under the 

control law). We, therefore, conclude that the control law will force the system from any 

state to the manifold σ = 0 within a time less than 2π/q from τ.

C. Remaining on the Manifold

In order to show that the system stays on the manifold once it has been reached, we employ 

the candidate Lyapunov function . The derivative of L is straightforward to obtain 

from (4) and (3) as follows:

(11)

If ey = 0, then there exists some neighborhood around σ = 0 within which  is always 

negative, regardless of how large ez may be, since ex → 0 as σ → 0. Therefore, σ = 0 is a 

stable equilibrium point as long as ey = 0. If the tangent state (ey = ex = 0, ez ≥ 0) is 

eventually reached, then σ becomes undefined, and the system will leave the manifold. We 

discuss when this happens and the implications in the following section.

D. Reaching the Tangent State

We note that the axial rotation of the needle base at t = 0 is somewhat arbitrary and could be 

chosen such that σ = 0 before insertion begins. If we assume this initial rotation has been 
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performed, then the control law will keep the system on the manifold (with ex= 0) until ey 

also becomes zero as we showed in the previous section.

We can determine from (10) that while on the manifold, ey must eventually become zero 

with ez ≥ 0 if and only if , which is identical to the torus condition given by (6) at 

t = 0. Thus, for all targets outside the initial torus, the tangent state (i.e., ex = ey = 0, ez ≥ 0) 

will eventually be reached.

E. Cycle of Two Phases

After the tangent state is reached, further insertion of the needle will cause σ to jump from 0 

to either π or −π in the next instant of time. Thus, the system trajectory will consist of two 

alternating phases, which may repeat multiple times. There will be a σ = 0 phase where the 

system reaches the manifold in a finite time and the needle is executing a helical trajectory. 

There will also be a σ = 0 phase where the system is on the manifold and the needle is 

executing a circular trajectory. If the tangent state is reached in either phase, then the helical 

phase will begin again. If the target location is ever inside the torus (6) when the circular 

phase begins, then the system will stay in the circular phase until insertion is terminated.

F. Upper Bound on the Error

Assuming the tangent state has initially been reached, we would like to know the minimum 

value of ||e(t)|| (using the 2-norm) over the insertion, and we would also like to establish a 

rule for when insertion should be terminated. More generally, we are interested in finding an 

upper bound on min (||e(t)||) for a given λ1 and λ2. For this quantity to be useful and 

convenient for choosing control parameters, we would like it to: 1) be as small as possible, 

preferably close to the least upper bound; 2) be easily expressed in a closed algebraic form; 

and 3) approach zero as λ2/λ1 approaches infinity.

If we consider the candidate Lyapunov function L = eT e, its derivative is . This 

reflects the intuition that the error will decrease with insertion as long as the target is “in 

front of” the needle. When an initial tangent state is reached, ez(t) > 0; therefore, ez(t) must 

reach zero at some subsequent time (if not, then the system converges to e = 0 anyway), and 

we should then stop inserting because the error will have stopped decreasing. In order to 

derive our upper bound on the minimum error, we now consider the two possible cases for 

the time when the system reaches ez(t) = 0 : 1) during a helical phase, or 2) during a circular 

phase.

1) Case 1: Assign t = 0 to be the time when the helical phase began (when the most recent 

tangent state was reached). Then, the manifold will be reached at some time t ∈ [0 2π/q], 

since f1(0) and f2(0) have different signs. Since in case 1, ez(t) = 0 before the manifold is 

reached, then  on the interval. Analysis of the 

derivative of the right-hand side then shows that its maximum occurs when ey (t) = 0 (which, 

according to (10), necessarily happens sometime within the interval); therefore, 

. By inspection of the form of ex (t) in (10), we see that 
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. Using the coefficient formulas listed in the Appendix, and 

noting that ex(0) = ey(0) = 0, this implies the following dimensionless error bound:

(12)

where  and  are dimensionless quantities, and the left-hand side is 

the dimensionless error. Noting that the right-hand side is a function of ez(0), we can find an 

absolute upper bound by noting that since ez(t) = 0 somewhere on the interval, then cz2π/q + 

dz − |az|-|bz| ≤ 0. Again using coefficients in the Appendix, we get

(13)

which holds as long as the denominator is positive, which is equivalent to λ2/λ1 > k. 

Substituting this result into (12) yields our final error bound for case 1:

(14)

Thus, the needle is guaranteed to reach a sphere of radius β1/k around the target in case 1 

(with the proviso that λ2/λ1 > k). We note that β1 is conservative because of the bounding 

approach taken (it is not the least upper bound), but it is easily expressed, and it does 

approach zero in the limit as  approaches infinity.

2) Case 2: As in case 1, let t = 0 be the time when the most recent helical phase began, and 

let t = τc be the time when the current circular phase began (when the manifold was reached 

with ez(τc) ≥ 0). Since, in case 2, ez(t) becomes zero before the next helical phase would 

begin, we know that ey(t) = 0 is never reached, and thus, e(τc) does not satisfy the torus 

condition (6). This fact already gives us an absolute error bound of ke(t) ≤ 1 for case 2, since 

the trajectory of the needle lies on the surface of the torus.

The minimum value of ||e(t)|| during the circular phase will occur when ez(t) = 0, and will 

equal the shortest distance from e(τc) to the surface of the torus. Thus, a dimensionless error 

bound for the circular phase is

(15)

If |key (τc)| ≤ 1, then maximizing |ey (τc)| will also maximize the right-hand side of (15) for a 

given |ez (τc)|. As in case 1, examination of (10) and use of the coefficient formulas in the 
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Appendix allows us to bound |key (τc)| via the triangle inequality (|ey (τc)| ≤ |ay| + |by| + |dy|), 

obtaining

(16)

Noting again that the right-hand side is a function of ez (0), we consider that cz2π/q + dz − |

az| − |bz| ≤ ez (τc) and get

(17)

where again we have the constraint that λ2/λ1 < k. Substitution of (17) into (16), and (16) 

into (15), gives the error bound as a function of ez (τc) in the case that k|ey(τc)| ≤ 1. 

Maximizing the right-hand side with respect to ez (τc) by minimizing the quadratic under the 

radical then gives

(18)

for case 2 with k|ey (τc)| ≤ 1. This holds for all  larger than some fixed value because a 

monotonically decreasing (with respect to ) bound on k|ey(τc)| can be found by substituting 

(17) into (16) and noting that ez(τc) < 1/k in case 2. If  is not large enough to guarantee that 

this bound is less than 1, then we appeal to the fact that k||e(t)|| ≤ 1 for any termination in the 

circular phase as stated above.

Comparison then reveals that β1 > β2 for k|ey (τc)| ≤ 1, and β1 > 1 for k|ey (τc)| > 1; therefore, 

a conservative upper bound for all cases is β = β1 . As noted above, β approaches zero as 

λ2/λ1 approaches infinity. This confirms the geometric argument that the control law drives 

the needle to the exact target location in the limit as λ2/λ1 approaches infinity.

VI. Simulation Study to Validate Error Bound

We performed a set of 1000 simulations to check our theoretical upper bound against the 

actual minimum error for various desired target points, curvature values, and control 

parameters. In each simulation, a random curvature value in the range [1 20] m−1 was 

assigned, and a random target point was selected such that: 1) the torus condition was 

satisfied, and 2) the initial target error was of the form e = [0 ey ez]T with ey ∈ [−2/k 0] and 

ey ∈ [0 2/k] (simulating the initial rotation to σ = 0). Control parameters were chosen as λ1 = 

1 cm/s and λ2 was determined by randomly selecting the dimensionless parameter 

in the range [1 100]. The kinematic model was then simulated using the control law and was 
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ended as soon as ez (t) = 0. The magnitude of the error at the end of the simulation was 

recorded for each run.

The results of this study are plotted in Fig. 2, which compares the upper bound on the 

minimum dimensionless error given by (14) to the actual minimum errors generated by the 

simulations, as a function of the dimensionless group . The reason for the gap between the 

simulation data and the upper bound plot is that the triangle inequality was used in obtaining 

the closed-form algebraic expression for the bound. Thus, β is a conservative upper bound 

on the error. Obtaining the least upper boundwould involve solving several nonlinear 

equations, and the answer may not be expressible in a convenient algebraic form.

VII. Use of the Error Bound

One reason for finding the above error bound for this control law was to verify that there are 

no theoretical stability or convergence issues, and that the error bound indeed approaches 

zero as λ2/λ1 increases to infinity.

Since the upper bound is formulated in terms of the dimensionless quantity  alone, (14) and 

Fig. 2 are valid for a needle with any curvature and may be used as design tool for selecting 

appropriate control parameters to achieve a desired level of accuracy. It is important to note 

that the bound only provides a maximum theoretical error assuming that the model is 

perfectly correct. Thus, the bound should only ever be used to check that a set of control 

parameters at least achieves a desired accuracy in theory. For instance, if a needle’s 

curvature is 10 m−1, then an ideal system with  will always achieve submillimeter 

accuracy.

The actual accuracy in implementation will of course be affected by many factors, such as 

error in the model parameter k, error in the structure of the model itself (which could arise 

from torsion, tissue deformation, etc.), and the accuracy of sensors and actuators. All of 

these will contribute to produce a larger error in any physical needle steering system.

However, the control law itself is likely to perform well to the extent that the basic structure 

of the model is correct (i.e., as long as the tip moves in the direction the needle shaft is 

pointing, and as long as the tip tangent rotates toward the asymmetric-tip direction as it is 

inserted). These requirements are obviously influenced by the environmental factors listed 

above, and our bench-top experiments in Section IX provide validation of the performance 

in a real system in both phantom and ex vivo biological tissue.

VIII. Variations on the Basic Law

A. Linear Control in a Boundary Layer

Many sliding mode control strategies use a linear control law near the sliding manifold in 

order to smooth out the discontinuity of the switched control law and eliminate chattering 

behavior [24]. This is an appropriate modification to make in the case of our proposed 

control approach since we would like to command continuous actuator speeds. Employing a 

boundary layer also makes simulation of the needle system easier from a computational 
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standpoint by making the model differential equations continuous so that they become 

amenable to standard routines for numerical integration of initial-value problems. We can 

employ the standard boundary layer approach as follows:

(19)

where ε is the thickness of the boundary layer.

We note that if sensor noise is considered, temporary chattering behavior near σ = ±π is 

possible if ex happens to be sensed alternately positive and negative, which would cause the 

commanded rotation speed to alternate back and forth. However, we note that the system 

will tend to quickly break free from any such cycle because σ = ±π is never a stable system 

state. This issue can be further mitigated by dynamically smoothing the sensor data and 

completely eliminated if the commanded rotational velocity is large enough to move the 

system more than one noise bandwidth away from the boundary between sensor 

measurements

B. Limiting Total Rotation

If we integrate the control input u2 over time, we get the total angular displacement that has 

been applied to the base of the needle

(20)

The control laws given by (19) or (5) allow θ(t) to grow un-bounded with time, but this may 

be undesirable if there is additional instrumentation which attaches to the base of the needle 

or travels through it (e.g., sensors or ablation wires).

We can modify our control policy to respect a hard limit on θ as follows:

(21)

where W is a switched variable that is initialized as W = 0 at t = 0 and assigned a value of 1 

when the desired absolute limit θmax is violated. W remains at 1 until |θ| falls below a lower 

threshold α, at which point it is reassigned a value of zero. We verified this approach in 

simulation with θmax = 270° and α = 45°, but we cannot guarantee that the error bound (14) 

will still apply for this control law. However, the accuracy can still always be increased by 

increasing λ2/λ1.
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C. Tracking a Desired Trajectory

The proposed control approach may also be used to drive the needle along a specified 

continuous trajectory in ℝ3, such as might be produced as the output of a path-planning 

algorithm. If we define the desired path as a function of time pd(t), the control law can be 

modified as follows:

(22)

where kp is a proportional gain coefficient.

While a formal analysis of trajectory tracking accuracy is beyond the scope of this paper, we 

show a test of this control law for a desired trajectory in Fig. 3. The control parameters used 

were λ1 = 5 mm/s, λ2 = 2π rad/s, and kp = 0.5 s−1 , with a boundary layer thickness of ε = 1°. 

The simulated needle curvature was k = 10 m−1, and the following desired path was tracked 

from t = 0 s to t = 25 s:

(23)

where A = 300 mm, B = 0.4 mm/s2, α = 12 mm/s, and w = 0.5 rad/s.

We note two aspects of the resulting plots in Fig. 3. First, the desired trajectory curvature 

increases beyond the modeled curvature of the simulated needle, illustrating the physical 

limitations of the system to follow a completely arbitrary curve. Second, the desired tip 

trajectory begins coincident with the needle tip, but misaligned with the needle tangent axis 

by 4.6 ° (the needle tip frame is aligned with the global axes). As shown in Fig. 3, the 

trajectory tracking error during the simulation sometimes exceeds the upper bound we 

derived for the stationary target case. However, the plot suggests that 1) the stationary bound 

may represent a reasonable expectation of theoretical accuracy for the trajectory tracking 

case and that 2) the control approach is capable of correcting initial misalignments between 

the desired path and needle tangent. As in the stationary case, we hasten to add that any 

physical needle steering system will exhibit less accuracy because of modeling and sensing 

uncertainty.

D. Considerations for Path Planning

While the only theoretical restriction on a planned path is that it does not exceed the 

maximum achievable needle curvature at any point, the simulation results suggest that paths 

with curvatures close to the maximum may also be difficult for the control law to follow 

with predictable accuracy. In Fig. 3, the error begins to grow when the desired path 

curvature is approximately 75% of the theoretical maximum. We suggest that this could be a 

good guideline for path-planning considerations, acting as a heuristic to account for sensor 

uncertainty and physical perturbations from tissue inhomogeneity that could render a desired 

maximum possible curvature path unfollowable. Furthermore, there is some uncertainty in 

the estimation of the maximum achievable curvature for a particular application, since it will 
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depend on tissue properties, making it desirable to plan paths of somewhat less than 

maximum needle curvature.

IX. Experimental Validation

We now describe several experiments designed to validate the effectiveness of our control 

law for steerable needles. We performed a number of target-hitting and trajectory following 

tests in both phantom tissue and ex vivo bovine liver. As noted above, the control law was 

completely ignorant of the needle path curvature k, and the accuracy of the approach is made 

evident by the low errors reported below.

A. Benchtop Setup

Our experimental testbed, which is shown in Fig. 4, consists of a needle insertion robot, a 

bevel-tipped needle, and an electromagnetic tracking system. The robot controls both needle 

insertion and axial rotation via DC motors, with low-level PID control implemented using a 

Galil DMC 4080 Motion Control unit, and high-level control implemented on a PC, which is 

connected to the DMC 4080 via Ethernet. The needle was a 0.86 mm diameter Nitinol tube 

with an approximately 35° beveled brass tip, which was inserted 1–2 mm into the tip of the 

tube, and fixed in place with adhesive. We embedded a five-degree-of-freedom (DOF) 

magnetic tracking coil within the tip of the tube just behind the beveled tip insert. The 

position and tangent vector along the sensor coil was measured by the Aurora magnetic 

tracking system (Northern Digital, Inc., Waterloo, ON, Canada). We note that the position 

and tangent vector at the tip of the needle could also be acquired within other sensory 

frameworks, e.g., biplane flouroscopy.

As shown in Fig. 4, the robotic actuation unit contains a single carriage actuated by lead 

screw. The needle is gripped by a collet, which is housed in a rotary bearing attached to the 

carriage. The collet grips the tube and is fixed in a toothed pulley via two set screws. The 

pulley is actuated via belt drive by a motor attached to the carriage. Needle buckling during 

insertion was prevented by the fixed entry point at the front of the actuation unit and also by 

using an external telescoping sheath between the collet and the entry point [23].

In our tests, we used the ballistic test media SIM-TEST from Corbin Manufacturing & 

Supply, Inc. as a phantom designed to simulate muscle tissue, and we also performed tests in 

freshly excised ex vivo bovine liver that we obtained from a local butcher shop. In order to 

obtain the full pose of the needle tip, we implemented a Kalman filter on the 5-DOF 

magnetic sensor data and the control inputs. Our filter implementation used the unicycle 

motion model (1) and an estimate of the needle path curvature (although not used in the 

control law itself), which we obtained experimentally by gathering magnetic tracker data 

points during an insertion without axial rotation. We least-squares fit a plane to these points 

and then fit a circle to the planar projections of the points, thus finding a radius of curvature 

of 12.8 cm for the phantom tissue and 40 cm for the ex vivo liver. A more robust estimate 

could be made by fitting the data from multiple insertion tests.
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B. Target-Hitting Phantom Experiments

We chose target points in space expressed in coordinates of the initial tip frame and inserted 

the bevel-tipped needle under closed-loop control to each target location. We implemented 

(19) as the control law with λ1 = 5 mm/s, λ2 = 2π rad/s, and a boundary layer thickness of ε 

= 10°. We selected these control parameters a priori, considering them modest and safe 

velocities, and we used our error bound to verify that the system would be capable of 

achieving submillimetric error.

Each insertion was terminated when the sign of ez reached zero (when the error stopped 

decreasing). After each experiment, the needle was removed from the phantom and 

repositioned at a different entry point to minimize the chance of a previous needle path 

channel influencing the current experiment. This process was repeated for nine reachable 

target locations in phantom tissue, and for five target locations in liver.

The resulting trajectories are plotted in Fig. 5 (in the coordinate system of the initial tip 

frame). The target points and resulting tip errors (between desired point and the filtered 

position) at the end of each experiment are recorded in Tables I and II. The mean error was 

0.5 mm for the nine phantom trials and 0.4 mm for the five liver trials. Phantom trial 5 

displayed significantly higher error than the others. We executed it a second time and 

obtained an error of 0.2 mm. A possible cause for the higher error is diversion of the needle 

trajectory by a channel in the phantom made by one of the previous insertions.

Several of the liver trials had to be terminated early and retried at a different insertion point 

because the needle encountered an obstacle that it could not penetrate (e.g., a membrane or 

vessel) and buckled. This was expected since our insertion locations were chosen without 

knowledge of interior structures, and it illustrates the importance of path planning for needle 

steering problems. In some of the recorded liver trials, the needle encountered obstacles and 

partially buckled but was successful in penetrating them and proceeding to the target. One 

such disturbance in the needle trajectory can be seen in Fig. 5 in the second liver path from 

the left.

Overall, the submillimeter targeting error results from these experiments serve to validate 

the proposed control approach, and the prospect of using such an approach in clinical 

procedures is promising. We note that even 2–3 mm errors are tolerated by most surgical 

needle placement procedures, and human manual placement error is approximately 3–5 mm 

[25].

C. Trajectory-Following Experiments

We also performed trajectory-following experiments in both phantom and liver to test the 

control law given by (22). We used the same ratio of λ2/λ1 as in the target-hitting 

experiments, and we manually tuned the proportional gain to balance tracking accuracy and 

smoothness of the commanded insertion profile, arriving at k = 2 s−1 p. We chose a desired 

(and achievable) trajectory given by
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(24)

where A = 0.3 mm/s2, B = 3 mm/s, w = 0.05 rad/s for the phantom case, and w = 0.03 rad/s 

for the liver case. The control law was employed to follow this trajectory and was manually 

stopped after 22 s in each case. The resulting sensed trajectories are shown in blue in Fig. 6 

with the desired trajectory superimposed in red. The resulting tip error magnitude is plotted 

as a function of insertion time in Fig. 7. The plots indicate that if trajectory error is incurred 

due to some disturbance, it can take some time to overcome it, even if the desired path 

curvature stays beneath the maximum achievable curvature. In these experiments, the 

maximum curvatures of the desired trajectories were 46% and 95% of their respective 

estimated maximum needle curvatures for the phantom and liver cases, respectively.

D. Phantom Experiments With Deformation and Target Motion

In the experiments described above, the targets and desired trajectories were fixed in space 

rather than fixed to the tissue itself. A small amount of deformation was observed during 

these experiments, which disturbed the needle trajectory, but the control law was still able to 

guide the needle to the target location. To test the ability to hit points in the tissue while it is 

undergoing significant deformation, we performed a second set of target-hitting experiments 

with a magnetically tracked coil (the “target coil”) embedded within the phantom.

The sensed pose of the embedded 5-DOF target coil was used to define the target position 

13 mm away from the coil along its tangent vector. The position of the coil itself was not 

used directly in this experiment because it is not desirable to have the needle actually hit the 

tracking coil. If it did, it might damage the coil, and it is also possible that two tracking coils 

(the one in the needle tip and the one used as the target) might interfere with one another by 

distorting the magnetic field if placed in very close proximity. In addition, the tissue at the 

target coil and at the target point 13 mm away from it was made to move with approximately 

the same displacement.

We then executed four target-hitting experimental runs where the phantom tissue was 

manually deformed during insertion by pushing downward on the surface near the target 

coil. The resulting needle tip trajectories and target motion over time are plotted in Fig. 8. 

The tip errors and magnitude of the target displacement during each experiment are reported 

in Table III.

X. Conclusion

We have presented a new category of control laws for asymmetric-tipped needles based on a 

sliding mode approach. We showed convergence of the basic control law within a 

theoretical error tolerance and experimentally validated the control approach in phantom 

tissue and ex vivo liver tissue, hitting target points and following desired trajectories with 

submillimetric average accuracy. The control law itself is independent of any model 

parameters (e.g., the intrinsic curvature of the needle path, tissue properties, or boundary 
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conditions), and it performed well even in the case of significant deformation and tissue 

inhomogeneities in the liver. Based on the high accuracies obtained in our experimental 

results, in future work, we intend to replace the magnetic tracking data with information 

sensed from medical images and deploy our needle steering control technique in vivo.
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Fig. 1. 
(a) An arbitrary target position is projected onto the needle tip xy plane. The angle σ ∈ [−π 

π] is our metric for the (signed) distance away from the manifold. It is the minimum angle 

through which the needle tip would need to rotate in order to instantaneously satisfy ex = 0 

and ey < 0. If the target projection resides in the blue region, then σ > 0, while σ < 0 in the 

red. (b) When σ = 0, the target lies in the negative yz plane of the needle tip frame. Under 

ideal controller action with λ2/λ1 → ∞, the system will stay on the manifold, and the 

trajectory of the needle will follow the arrows and converge to the target unless it is inside 

the dotted circle of radius 1/k, in which case the needle will circle the target until insertion is 

terminated.
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Fig. 2. 
Comparison of our upper bound on the minimum dimensionless error given by (14) to actual 

minimum errors generated by simulations of 1000 needle insertions with randomized target 

locations, model curvatures, and control parameters. The data and theoretical bound are 

plotted with respect to the dimensionless group . We note that the derivation of the error 

bound assumes that the model is perfectly correct, but it may still be used in practice to 

select control parameters that are at least capable of achieving a desired accuracy. The actual 

accuracy in implementation will of course be affected by the structural correctness of the 

model and sensory limitations.
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Fig. 3. 
Simulation of our proposed control law used to track a desired trajectory in space. The 

desired path spirals with a linearly decreasing radius. The simulated needle path diverges 

when the curvature of the desired trajectory exceeds the needle curvature (k = 10 m−1 for 

this simulation).
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Fig. 4. 
Our experimental testbed consists of an electromagnetically tracked bevel-tipped needle, a 

2-DOF robotic actuation unit for rotation and insertion driven by a low-level motion 

controller, and phantom or ex vivo tissue samples.
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Fig. 5. 
Plots of the needle tip trajectory sensed by the magnetic tracker during execution of our 

control law in phantom tissue and ex vivo liver. The target locations are shown by the red 

circles.
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Fig. 6. 
Desired needle tip trajectory and the trajectory sensed by the magnetic tracker and Kalman 

filtered during execution of our control law in phantom and liver tissue.
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Fig. 7. 
Sensed error over time between the desired trajectory and actual trajectory of the needle in 

phantom and liver tissue.
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Fig. 8. 
Plots of the sensed needle tip trajectory during manual deformation of the phantom tissue, 

which caused the embedded target to move. The final target locations are shown by the red 

circles and the motion of the targets during insertion is shown by the black lines.
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TABLE I

Experimental Tip Errors in Phantom

Trial # Target Point (mm) Tip Error (mm)

1 [−20 − 20 85] 0.4

2 [0 − 20 85] 0.2

3 [20 − 20 85] 0.4

4 [−20 0 85] 0.5

5 [0 0 85] 1.3

6 [20 0 85] 0.3

7 [−20 20 85] 0.4

8 [0 20 85] 0.3

9 [20 20 85] 0.3
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TABLE II

Experimental Tip Errors in Liver

Trial # Target Point (mm) Tip Error (mm)

1 [0 0 100] 0.4

2 [7.5 7.5 100] 0.5

3 [−7.5 − 7.5 100] 0.1

4 [−7.5 7.5 100] 0.8

5 [7.5 − 7.5 100] 0.2
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TABLE III

Tip Errors with Deformation

Trial # Target Displacement (mm) Tip Error (mm)

1 9.1 1.4

2 6.5 0.7

3 11.3 1.3

4 10.3 0.9
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