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Several body composition and metabolic-associated disorders such as glucose intolerance, insulin resistance,
and lipid abnormalities occur prematurely after spinal cord injury (SCI) and at a higher prevalence compared to
able-bodied populations. Within a few weeks to months of the injury, there is a significant decrease in total lean
mass, particularly lower extremity muscle mass and an accompanying increase in fat mass. The infiltration of fat
in intramuscular and visceral sites is associated with abnormal metabolic profiles. The current review will
summarize the major changes in body composition and metabolic profiles that can lead to comorbidities
such as type 2 diabetes mellitus and cardiovascular diseases after SCI. It is crucial for healthcare specialists
to be aware of the magnitude of these changes. Such awareness may lead to earlier recognition and
treatment of metabolic abnormalities that may reduce the co-morbidities seen over the lifetime of persons
living with SCI.
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Introduction
Spinal cord injury (SCI) causes partial or total interrup-
tion of neural signal transmission across and below the
level of injury. An estimated 250 000–400 000 individ-
uals have SCI in the USA with approximately 12 000
injuries occurring annually, primarily caused by motor
vehicle collisions, sporting accidents, and firearms.1

The injury is generally categorized by the severity of
sensory and motor loss, with injury resulting in
absence of sensory and motor function distal to the
level of injury categorized as complete, and injury result-
ing in limited sensation and motor function categorized
as incomplete.2 The loss of somatic and autonomic
control results in a limited ability to perform physical
activity and a subsequently blunted systemic response
to exercise. The clinical consequences of SCI, paired
with reduction in physical activity, often result in a

deterioration of body composition and metabolic
profile.2–7

Emerging evidence indicates that there are significant
changes in both body composition and metabolic
profiles after SCI, which have significant health conse-
quences and lead to several non-communicable diseases.
Several studies have sought to determine how increased
fat mass (FM) or decreased fat-free mass (FFM) is
responsible for disruption in metabolism of lipid,
glucose, and insulin. The current evidence is based
more on relationships than causality. These studies
operate on the hypothesis that physical inactivity and
decreases in anabolic hormones after SCI are respon-
sible for deterioration in body composition and associ-
ated with metabolic profile disorders. The current
review will be divided into two major sections. The
first section will include an overview of the major
changes in body composition and metabolic profile
that occurs after SCI (Part I). The second section
includes a summary of the functional electrical stimu-
lation or neuromuscular electrical stimulation
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interventions that showed efficacy in influencing
changes after SCI (Part II). We believe that this review
will establish a basis for more research in this area.
There is growing interest from clinicians, rehabilitation
specialists, and the US government (Department of
Veterans Affairs and National Institutes of Health)
and other countries on waging war against obesity and
the associated metabolic health consequences after SCI.

Body composition after SCI
Skeletal muscle, FFM adaptations after SCI
Shortly after injury, individuals with SCI experience
rapid and significant skeletal muscle atrophy mainly
below the level of injury.4,5,8–22 Skeletal muscle cross-
sectional area (CSA) could be as small as 50% compared
to healthy able-bodied (AB) controls.9 Castro et al.,
Gorgey and Dudley and others have reported that
both individuals with complete and incomplete SCI
suffer dramatic muscle atrophy within a few weeks of
injury which continues throughout the end of the first
year.9–11 Castro et al. studied the effects of complete
SCI (C6-T10) on skeletal muscle morphology by analyz-
ing magnetic resonance imaging (MRI) of thigh and leg
muscles 6, 11, and 24 weeks post-injury. They found that
6 weeks post-injury, individuals with complete SCI
experienced an 18–46% decrease in the size of CSA of
sub-lesional skeletal muscles compared to age- and
weight-matched AB controls. Additionally, this study
reported 12 and 24% decreases in the average CSAs of
soleus and gastrocnemius muscles, respectively. The
average CSA of quadriceps, hamstrings, and hip adduc-
tor muscles decreased by 14–16% within the first 24
weeks of SCI.9 The average CSA was 45–80% smaller
compared to AB controls 24 weeks post-injury. A
similar observation was also noted in individuals with
incomplete SCI who were found to have 30% smaller
CSA of the knee extensors 6 weeks post-SCI compared
to AB controls.10,11 Skeletal muscle continues to atrophy
by 43% of the original muscle size 4.5 months post-
SCI.10 The same study noted a three times greater
amount of intramuscular fat (IMF) compared to AB
controls.10 Moreover 4.5 months post-SCI, IMF contin-
ued to increase by 26% compared to the initial measure-
ment at 6 weeks post-SCI.10 Increased IMF has been
associated with glucose intolerance.12

Moreover, SCI has also been shown to greatly affect
the relationship between fast and slow twitch muscle
fibers; this may arise from paralysis below the level of
injury.13–15 Talmadge et al.14 estimated that by 24
weeks, the vastus lateralis, gastrocnemius, and soleus
muscles, approximately 90% of muscle fibers, are fast
twitch fibers compared to 6 weeks at baseline. The

process typically manifests between 4 and 7 months
post-injury and can continue up to 70 months post-
injury before plateauing into a steady state of predomi-
nantly type IIx, fast-glycolytic twitch muscle fibers.14,15

This transformation renders the skeletal muscle to be
highly fatigable and susceptible to skeletal muscle
damage. Bickel et al.16 demonstrated that following
acute isometric exercise using electrical stimulation,
knee extensors showed significant reduction in torque
by 66% post-injury compared to only 33% in AB con-
trols. Moreover, recovery of force between contractions
was decreased in persons with SCI compared to AB con-
trols during repetitive isometric actions.16 Recovery of
force is essential to ensure completion of a specific
task otherwise fatigue ensues and limits performance.
Failure of the muscle force to recover between repetitive
contractions may suggest failure of the excitation con-
traction coupling mechanism or build-up of organic
compounds that may interfere with myosin–actin
cyclic attachments.

Decline in soft tissue FFM is a key feature in persons
with SCI.5,17–30 In a monozygotic twin study, Spungen
et al.17 noticed a significant decline in FFM of twins
with SCI compared to their twins without SCI. The
study noted a decline in rate of FFM of nearly 4 kg
per 5 years, while areas above the level of injury
remained unaffected. The same study reported that the
monozygotic twins with acquired paraplegia had signifi-
cantly more total body FM and percentage fat per unit
body mass index (BMI) than their AB twins. Those with
SCI showed an increase in FM (7%) compared with
their AB co-twins.17 Spungen et al.17 reported that dur-
ation or level of injury and advancing age are negatively
correlated with percentage of FFM in individuals with
SCI. Also completeness and higher level of injury lead
to greater decline in FFM compared to those with
incomplete SCI. In this study, the percentage of FFM
in the arms, legs, trunk, and total mass were 32, 42, 9,
and 27% lower in persons with tetraplegia compared
to AB controls, respectively.5 A recent study confirmed
the loss of arms’ FFM and found that the CSA of
wrist extensors in individuals with tetraplegia were
25% smaller compared to AB controls.19 The findings
may suggest that the detrimental upper extremity func-
tions after tetraplegia may be in part due to significant
loss in muscle mass.

Bauman et al.23 demonstrated significantly reduced
muscle mass and viscera in SCI vs. monozygotic AB
twins using whole-body potassium counts (2534± 911
vs. 3515± 916) with resting energy expenditure (REE)
similarly reduced in SCI vs. AB twins (1634± 290 vs.
1735± 295 kcal/day). Likewise, Monroe et al. reported
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lower FFM in SCI vs. AB controls (69.2± 8.7 vs. 77.2±
7.2 kg), with higher FM (30.8± 8.7 vs. 22.8± 7.2 kg)
despite similar BMIs.24 Considering the health and
clinical implications of estimating FFM, Gorgey
et al.25 established and validated predictive equations
to estimate FFM in persons with SCI. Three equations
were developed for whole body, trunk, and leg FFM.
These equations can be used by SCI specialists to
estimate FFM based on their body weight. Work is in
progress to establish similar equations that can capture
longitudinal adaptations after SCI.

Energy balance after SCI
After injury, the loss of metabolically active muscle mass
results in reduction of basal metabolic rate (BMR) and
REE.24,26 The BMR is commonly measured by indirect
calorimeter after overnight fast and complete bed rest
for 10–12 hours. The BMR accounts for ∼65% of the
total daily energy expenditure and may result in signifi-
cant disturbance of the energy balance.8,26–28 Previous
studies have focused on measuring REE, because it
does not require complete bed rest for more than 20
minutes. REE is affected by muscle loss and can result
in maladaptive energy balance between energy intake
and energy expenditure.22–27 A significant portion of
those with complete SCI has BMR ranged from 900
to 1500 kcal/day. Previous works showed that BMR
in persons with complete SCI ranged from 1250 to
1480 kcal/day.29–32 The lowest end of the range is
likely to represent persons with tetraplegia and the
other end represents those with paraplegia. It is still
unclear whether regional adaptations in body compo-
sition may influence parameters of BMR or REE in
persons with SCI.30,32

Assuming that total energy expenditure (TEE) is
2200 kcal/day in a healthy AB control, this means
that REE may represent only 41–54% of TEE in
persons with SCI. However, the TEE is diminished
in persons with SCI mainly because of the reduction
in REE (14–27% lower than AB controls) and physical
activity energy expenditure (PAEE, up to 14% lower
than AB controls), with no changes in thermic effect
of food.8 This significant reduction in REE is partially
explained by reduction in FFM and blunted autonomic
actions after SCI. Tanhoffer et al.31 used doubly-labeled
water to measure TEE in a community dwelling persons
with SCI. Their estimates of REE were in the aforemen-
tioned range of 1250–1480 kcal/day. Buchholz et al.8

showed that REE and PAEE represent 61 and 29% of
TEE, respectively. This discrepancy in the results
between Tanhoffer et al.31 and Buchholz et al.8 could
be explained by the fact that estimation of TEE in the

former study exceeded 2200 kcal/day. Daily energy
expenditure and BMR have also been reported as
being directly correlated with level of injury as well as
having a possible correlation with blunted sympathetic
nervous system activity;23–28 without appropriate exer-
cise or dietary interventions, this overwhelms the
energy balance. The high prevalence of obesity is attrib-
uted to the imbalance between energy expenditure and
intake within the SCI population.4,8,26,33 When energy
intake equals to energy expenditure, the body maintains
energy balance (energy homeostasis). However, when
energy intake exceeds energy expenditure, adiposity
will occur. There are three strategies that can optimize
TEE and reduce weight gain in persons with SCI.
First, increase REE by increasing FFM. Second,
increase voluntary energy expenditure though exercise.
Greater daily leisure time physical activity is associated
with improvement in risk factors of cardiovascular con-
ditions after SCI. Third, reduction of calorie intake,
through avoidance of drugs that increase appetite (e.g.
antidepressants), through manipulations of the ratio of
macronutrients (low-carb diet), and possibly through
prescription of anorexic drugs.

Hormonal changes and body composition
The effects of reduced levels of testosterone, human
growth hormone (GH), and insulin growth factors
(IGF) on body composition after SCI have been
studied.34,35 Deterioration in body composition follow-
ing SCI is attributed to reduced levels of circulating tes-
tosterone, human GH, and IGF-1.34,36,37 Low levels of
these hormones can result in a reduced capacity for cel-
lular repair and can lead to a reduced capacity for main-
taining lean muscle mass and strength.34,36–41

Ultimately, low levels of these hormones may indirectly
increase the risk for cardiovascular diseases through
reduction of FFM and increased body FM.38–43

Human GH release is blunted and chronically depressed
after SCI, as evidenced by reduced levels of IGF-1, a
convenient indicator of chronic GH secretion.34 In the
rat and human models, reduction in IGF-1 has been
associated with skeletal muscle atrophy and increase in
FM accumulation.37,40 Bauman et al.35 have recently
examined the effects of low-dose baclofen therapy
(20 mg/day) on plasma IGF-1 deficiency (<250 ng/
ml) in persons with SCI. The findings suggested that 8
weeks of baclofen therapy managed to improve
plasma IGF-1 but not in a predictable fashion.
Diminished levels of circulating testosterone and free
testosterone have been postulated to produce alterations
in body composition after SCI.36,42,43 In a recent study,
43% of individuals with SCI had a testosterone level

Gorgey et al. Effects of SCI on body composition and metabolic profile

The Journal of Spinal Cord Medicine 2014 VOL. 37 NO. 6 695



below 325 ng/dl, with testosterone deficiency linked to
the severity of injury.43 This is accompanied with age-
related decline in total serum testosterone up to 0.6%
per year.44

Spasticity of paralyzed skeletal muscle may defend
against skeletal muscle atrophy.29,35,45,46 Those with a
spastic knee extensor (modified Ashworth Score
(MAS)> 2) have 22% greater knee extensor CSA and
less infiltration of IMF compared to non-spastic individ-
uals with SCI.35 In a follow-up study, there was a nega-
tive association between spasticity and total body and
regional FM, and positive associations with between
spasticity and percentage FFM, and between FFM
and BMR29 suggesting that spasticity may play a role
in several obesity-associated disorders following SCI.29

This led the same investigators to hypothesize that the
inhibitory effects of oral baclofen on spasticity may
obliterate the aforementioned effect.46 Contrary to the
hypothesis, oral baclofen administration did not attenu-
ate the protective effects of spasticity on body compo-
sition and metabolic profile after SCI and was
negatively associated with the homeostatic model assess-
ment index.46 The positive relationship between spasti-
city and muscle size as well as lean mass has recently
been explained by the effect of spasticity on the circulat-
ing plasma IGF-1.47 Those with MAS greater than 2
have 44% higher plasma IGF-1 than those with lower
MAS.47

In summary, the above findings suggest that body
composition adaptations after SCI occur at cellular,
muscular, regional, and whole-body levels. The wide
variance and inconsistences in the results may be a
factor of using different body composition assessment
techniques. These adaptations suggest that loss of lean
mass after SCI may be responsible for energy imbalance
and increase in adiposity. The evidence suggests that
decline in anabolic hormones may be responsible for
the overall body composition changes after SCI.
Factors similar to spasticity and hormonal disturbances
need to be considered when evaluating the extent of lean
mass loss after SCI.

FM after SCI
BMI is a well-established criterion for classifying those
who are at risk of being overweight or obese. BMI can
be calculated by dividing the weight (kg) by the height
squared (m2). Several studies have reported that BMI
underestimates the % FM after SCI and recommended
the need to lower the BMI criteria to accurately define
the magnitude of obesity following SCI.5,48–53

Laughton et al.49 have suggested lowering the BMI cri-
teria to 22 kg/m2 to accurately define obesity following

SCI. Gorgey and Gater30 found that 50% of the studied
cohort had FM greater than 30% despite their normal
BMI because of the lower mass below the level of the
injury. Therefore, the use of BMI as an estimate to
reflect adiposity in this population is misleading and
clear BMI-criteria needs to be well established to
define the cut-off points for persons with SCI. This is
still problematic for SCI because it depends on age as
well as level and completeness of injury. The disagree-
ment between BMI and accurately defining the percen-
tage FM has led several laboratories to accurately
evaluate the appropriate methodologies of evaluating
body composition in persons with SCI.35,45 Several tech-
niques are currently being validated against the 4-com-
partment model assessment of body composition to
calculate the error in measuring %FM, which may influ-
ence the outcome of each technique in persons with SCI.
The details of body composition assessment are beyond
the scope of the current review; however, other helpful
reviews can be used for this purpose.4,51

Evidence supports that two-third of individuals with
SCI are either overweight or obese.4,48,52,53 These
reviews raised concerns that the prevalence of obesity
after SCI exceeds that of the general population.4,53

This was established based on the fact that, although
obesity is defined as a %FM that exceeds 20%,
%FM can easily exceed 30% despite a BMI less than
30 kg/m2.3–5,17,18,20 The majority of studies reported
an increase in whole body and regional FM after
SCI.5,17,18,20,21,30,54 Spungen et al.5 have demonstrated
that 133 men with SCI were 13.1% fatter per unit of
BMI compared with age-, height-, and ethnicity-
matched AB controls.

Spungen et al.17 reported that twins 16 years post-SCI
had 11.7% greater FM in the lower limbs than their twin
counterparts without SCI. Spungen et al.5 also reported
8% greater FM in the arms of people with tetraplegia
than in people with paraplegia. We have recently estab-
lished the association between regional adiposity and
metabolic profile in persons with SCI. In this study,
we provided evidence that 50% of individuals with SCI
have BMI less than 30 kg/m2; however, their %FM
easily exceeds 30%.30 Individuals with tetraplegia have
greater leg FM/trunk FM (45%) and leg FM/body
FM (26%) and lower trunk FM/body FM (29%)
ratios than individuals with paraplegia.30 %FM
increases with age and decreases with physical activity
level.5,32

Waist circumference (WC) plays a simple role in iden-
tifying individuals with SCI who are at risk of develop-
ing metabolic syndrome (MS) as well as altered lipid
profiles post-injury.52–63 In the AB population, WC
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has been used as an index of central obesity and increas-
ing visceral adipose tissue (VAT) with a WC> 100 cm
used as a surrogate for a VAT of >130 cm2 as measured
by MRI.57,58,61 In a previous SCI study, WC was not
related to VAT as measured by MRI.59 Maki et al.
have shown that increased WC negatively (r=−0.42)
associated with HDL-C and positively associated with
triglycerides (TG) (r= 0.57) after SCI.56 Increasing
VAT has been shown to be strongly correlated to
glucose intolerance, insulin resistance, and hyperlipide-
mia in various populations.55,60 A recent study showed
that after matching WC between individuals with SCI
and AB, VATwas greater in persons with SCI compared
to matched healthy controls.55 AVAT CSA greater than
100 cm2 was found to correspond with elevated choles-
terol: high-density lipoproteins ratios and increased
fasting plasma glucose levels. This same study also
found a direct association between VAT volume and
total cholesterol as well as low-density lipoproteins.60

The roles of VAT subcutaneous adipose tissue (SAT)
influencing the metabolic profile are not clearly under-
stood. Gorgey et al. showed that despite visceral adi-
posity representing only 6% of total body FM in
persons with complete SCI,59 visceral adiposity
remains metabolically active and negatively influences
the metabolic profile after SCI.60 The study documented
positive relationships between VAT CSA and fasting
plasma glucose as well as triglyceride levels.59 It was pre-
viously suggested that a ratio of VAT to SAT greater
than 0.4 indicates a high risk of developing metabolic
abnormalities. Individuals with SCI have a ratio of
VAT to SAT close to 0.7,59 suggesting that they are at
high risk of developing metabolic disorders.56,64

%FFM varies inversely with VAT and SAT.59 It is still
unclear whether the level of injury influences VAT or
SAT distribution between persons with tetraplegia or
paraplegia. A preliminary report suggested that despite
the metabolic differences between persons with tetraple-
gia and paraplegia, the level of SCI did not influence the
volume or CSA of VAT or SAT.62 However, an earlier
study that used the SCI animal model contradicted
these findings and showed that rats with T3 level of
injury or above had greater VAT accumulation.63 The
regional role of VAT and SAT in determining the meta-
bolic profile warrants further investigation. Reducing
insulin resistance and other metabolic derangements is
a valuable goal; studies should examine whether there
are rehabilitation strategies that by maintaining FFM
through diet and exercise, among other things, can
attenuate the infiltration of adipose tissue in non-subcu-
taneous sites.

Metabolic profile after SCI
A host of processes detrimental to bodily health, includ-
ing unhealthy blood glucose and lipid levels, have been
investigated after SCI.5–7,23,25 Changes in body compo-
sition after SCI have been associated with numerous
metabolic sequelae (Table 1), including glucose intoler-
ance, insulin resistance (50–75% of persons with
SCI),7,64,67 hyperlipidemia,64,68 and cardiovascular dis-
eases.2–4,69 Unlike AB and other clinical populations,
there is not enough evidence explaining what factors
trigger such metabolic sequelae after SCI. However,
many investigators agree that alterations in body com-
position are a key element to such deterioration.2–7 It
is also possible that increases in FM are associated
with inflammatory biomarkers that trigger MS after
SCI.70

Persons with SCI are at high risk of developing
glucose intolerance or insulin resistance compared to
the AB population due to the associated changes in
body composition (see above) and lower physical
activity levels after paralysis.64,65,67–73 Duckworth
et al.67 previously reported that approximately 50% of
patients with chronic SCI had diabetes mellitus (DM)
despite having normal fasting glucose levels.
Additionally, Bauman and Spungen64 found that 62%
of individuals with tetraplegia and 50% with paraplegia
had abnormal oral glucose tolerance test, compared to
only 18% in the AB-control group. Aksnes et al. noted
an association between whole-body insulin-mediated
glucose uptake and skeletal muscle mass in tetraplegics,
suggesting that loss of muscle mass is the primary reason
for insulin sensitivity.65 Duckworth et al.67 found that
insulin-resistant individuals with SCI were more obese
than SCI and AB controls and showed insulin levels
far exceeding the levels reported in controls. Elder
et al.12 reported that accumulation of IMF and skeletal
muscle atrophy in the thigh accounted for 70% of
glucose intolerance after SCI. Lavela et al. documented
that DM is age dependent in persons with SCI and
increases with aging. Those with SCI who were 45–59
years of age had a higher prevalence of DM than
other age-matched veterans.71 The aforementioned
studies suggest that the greater prevalence of glucose
intolerance and insulin resistance is an outcome of
altered body composition, significant loss of skeletal
muscle, and infiltration of IMF.
Defined as multiple risk factors for cardiovascular

disease existent in a given person, MS has been
reported to effect as many as 55% of individuals
with SCI.73 Metabolic syndrome is defined as a
group of metabolic and body composition
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Table 1 Associations related to body size, composition, and metabolic markers after SCI

Reference Participants Body composition Metabolic Other Conclusions

Wilmet et al.18 31 SCI within 8 weeks of
injury T2–L3 and followed
for 1 year

DXA to measure lean
mass and fat mass

Spasticity • Fat mass increased in lower extremity.
• Fat-free mass decreased in lower extremity and

spasticity attenuates the loss compared to
those with flaccid SCI

Maki et al.56 46 men with spinal cord injury
of >6 months duration

Abdominal
circumference (AC)
was measured in
duplicate

Lipid profile • AC was inversely correlated with HDL-C and
positively correlated with LDL-C

Aksnes et al.65 Nine patients with C5–C7 and
10 patients with age-
matched controls

DXA to measure FFM
or FM

A euglycemic–hyperinsulinemic
clamp procedure to evaluate
insulin sensitivity

Muscle biopsy for
GLUT-4

• Insulin-mediated glucose transport was 43%
lower in tetraplegia compared to controls.

• Fiber CSA was 44% smaller in tetraplegia
compared to controls. Lean body mass was
19% lower in tetraplegia compared to controls.

• Intact peripheral insulin signaling at the skeletal
muscle level

Monroe et al.24 Ten male SCI subjects with
levels ranged from C6 to L3
and 59 able-bodied
controls

DXA to measure FFM
or FM

24-h TEE, RMR, BMR, sleeping
metabolic rate was measured over
1 day in the respiratory chamber

• Physical activity
• Caloric intake

• Caloric intake and TEE were both 21% lower
after SCI compared to controls.

• RMR was 20.5% lower after SCI compared to
controls.

• FFM was significantly associated with both TEE
(r= 082) and RMR (r= 0.78)

Kemp et al.66 188 Participants with SCI
(46% tetraplegia and 54%
paraplegia)

Adiposity measured by
DXA

Lipid panel Depression • Serum total cholesterol, LDL-C, and TG were
all higher among persons with paraplegia who
were depressed compared to those who were
not depressed.

• Persons with paraplegia who were depressed
had significantly more adiposity than those not
depressed

Elder et al.12 12 complete SCI and 9 able-
bodied controls

MRI of thighs to
measure muscle
CSA and IMF

OGTT • Skeletal muscle size of thigh was 38% smaller
in SCI compared to controls.

• IMF was four-fold greater after SCI compared
to controls.

• Absolute and relative IMF was related to the 90
or 120 min of plasma glucose or plasma
insulin (r2= 0.71–0.40).

Bauman et al.23 13 pairs of monozygotic twins,
13 of them were with
complete and incomplete
SCI C5–L1

DXA to measure FFM
or FM

BMR or RMR was measured using
an indirect calorimeter

• BMR or RMR was significantly lower in twins
with SCI compared to their able-bodied co-
twins

Edwards et al.55 Thirty-one men and women
(n= 15 SCI and 16 AB)
participated in a cross-
sectional study

Abdominal adipose
tissue by computed
tomography at L4-
L5. Waist
circumferences at 3
sites

Serum blood sample for insulin,
glucose, lipid panel, and CRP.
Plasma adiponectin

• Persons with SCI had a 58% greater VAT, 48%
greater mean VAT:SAT ratio than did matched
AB controls.

• VAT and log insulin (r= 0.551, P< 0.05) and
log HOMA (r= 0.589, P< 0.05) were
significantly correlated.
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abnormalities.74–76 Persons with SCI have increased
levels of TG, low-density lipoprotein cholesterol
(LDL-C) and very low-density lipoprotein cholesterol
(VLDL). Bauman et al.68 showed that greater than
37% of persons with SCI have HDL-C level less than
35 mg/dl and 18% of this population has LDL-C
greater than 160 mg/dl. This dyslipidemia is worsened
with aging and leads to accelerated coronary artery
disease (CAD) after SCI.68,69 Nash et al.69 reported
that 76% of individuals with paraplegia had HDL-C
less than 40 mg/dl and 34% had the Adult
Treatment Panel III- defined MS. The increases in
non-esterified fatty acids and TG result in elevated
VLDL, LDL, and apolipoprotein B, a sub-fraction
protein of LDL that has been strongly correlated
with CAD. The increased level of TG also reduces
the production level of apolipoprotein A, a sub-frac-
tion protein of cardio-protective HDL-C.4,76,77 The
results of increased triglycerides, VLDL, LDL, and
decreased HDL-C are associated with higher risk of
CAD and peripheral vascular diseases.4,76–80 The
aforementioned phenotype leads to atherogenic
profile and increases susceptibility to cardiovascular
disease.

Link between body composition and metabolic
profile
Evidence suggests that reduction in physical activity and
increased fat accumulation can have adverse effects on
whole-body carbohydrate and lipid metabolism.77,79–85

Excessive body fat, especially in the trunk and lower
extremities of those with SCI can lead to an increase
in the amount of non-esterified fatty acids due to
increased lipolysis (Table 1). This takes place even
though increased insulin usually suppresses lipolysis
under normal levels of adiposity.76 In a recent study,
whole-body FM was negatively associated to HDL-C
in 32 individuals with motor complete SCI after control-
ling for %trunk FM. A similar negative relationship was
identified between leg FM and HDL-C.30 These find-
ings suggest that storage of adipose tissue as ectopic or
SAT may impact the metabolic profile differently in
persons with SCI.30

The increased level of non-esterified fatty acids in the
circulating blood increases their influx into muscle and
liver cells.76 This in turn increases the level of triglycer-
ide in the liver which contributes to insulin resistance in
the liver.76 Additionally, increased non-esterified fatty
acids in the cells of muscle and liver change cell mem-
brane concentration gradients decreasing passage of
glucose into the cells.76 Non-esterified fatty acid in the
muscle causes serine phosphorylation of the insulinG
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receptors because of an increased number of metabolites
within the muscle cells.78,79 The phosphorylation of the
receptors inhibits the activation of GLUT-1 and GLUT-
4 (insulin-regulated glucose transporters) receptor
translocation to the cell membrane causing decreased
facilitation of glucose entrance.4,78,82

Likewise, increased fat accumulation in the liver
increases insulin resistance and allows increased gluco-
neogenesis and glucose export out of the liver adding
to hyperglycemia which is a precursor of type II
DM.77,79–85 Glucose intolerance is found along with
hyperinsulemia, demonstrating that the lack of glucose
uptake into the muscle and liver cells is not related to
the amount of insulin present in the circulation but
rather due to factors inhibiting the ability of muscle
and liver cells to receive glucose.77,80,81 Physical inactiv-
ity results in decreased muscle GLUT-4 content which
is associated with insulin resistance. Physical inactivity
due to bed rest for as little as 7 days results in a signifi-
cant reduction in insulin sensitivity in inactive
muscles.81,82

Another important regulator of the relationship
between body composition and metabolic profile after
SCI is leptin.86–88 Leptin is a hormone responsible for
achieving satiety and maintaining energy homeostasis.
Leptin is released by adipose tissue and it is regulated
by the adrenergic system.87,88 Leptin levels are reported
to be is ∼32% higher in persons with SCI compared to
AB controls (7 vs. 4.7 ng/ml).88 Moreover, it is non-sig-
nificantly higher in persons with tetraplegia compared
to paraplegia. This leads to the development of what is
called the leptin paradox. The loss of inhibitory effects
of adrenergic control, especially above T6 SCI, may be
responsible for such increases in the circulating leptin
level after SCI.86 Despite the higher level of leptin,
there is increased adiposity and a diminished stimulatory
effect of leptin on resting metabolic rate (RMR).87

Manns et al.70 and Gater and Pai76 agree that
increases in FM and other alterations in body compo-
sition are in close association with inflammatory bio-
markers that trigger MS. The fat cells may be
responsible for the release of C-reactive protein (CRP),
tumor necrosis alpha and inter-lukin-6. These inflam-
matory biomarkers have been shown to interfere with
insulin signaling and lead to insulin resistance. Liang
et al.89 showed that individuals with SCI are more
likely to have higher CRP than their age and race-
matched AB controls and this is associated with
decreased HDL-C. Another study showed that CRP
was greater in persons with tetraplegia compared to
those with paraplegia. Those with higher CRP had
greater WC and percentage body FM.90

Conclusion
SCI is associated with a myriad of body composition
and metabolic adaptations that are of serious health
concerns. Studies have supported the associations
between body composition and metabolic profile;
however more importantly, interventional trials are
needed to see if changing body composition proves to
be beneficial. If confirmed, the link between body com-
position and metabolic health concerns could open a
new avenue for prevention and treatment through the
restoration of a more healthy body composition. There
is a shift in studying whole-body composition to more
focused regional composition. In regional adiposity,
percentage trunk and leg FM have been shown to be
associated with abnormal metabolic profile. Moreover,
separation of trunk FM into VAT and SAT indicated
that VAT is associated with a spectrum of metabolic
abnormalities compared to SAT.
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