Skip to main content
. 2014 Nov 13;55(11):7278–7283. doi: 10.1167/iovs.14-15200

Table A1.

Model Fit Statistics

Model
–2ll
Δχ2
Δdf
P
ΔAIC
Dry eye diagnosis and current use of artificial tears
 1. ACE 2318.66
 2. AE* 2318.66 0 1 1.00 −2.00
 3. CE 2323.32 4.65 1 0.03 2.65
 4. E 2344.28 25.62 2 0.00 21.62
Dry eye symptoms preceding 3 mos
 1. ACE 3914.08
 2. AE* 3914.08 0 1 1.00 −2.00
 3. CE 3916.75 2.67 1 0.10 0.67
 4. E 3937.51 23.43 2 0.00 19.43
Interblink interval
 1. ACE 1488.78
 2. AE* 1488.78 0 1 1.00 −2.00
 3. CE 1491.01 2.23 1 0.14 0.23
 4. E 1496.04 7.26 2 0.03 3.26
Tear osmolarity
 1. ACE −387.54
 2. AE* −387.49 0.05 1 0.81 −1.95
 3. CE −385.21 2.33 1 0.13 0.33
 4. E −362.85 24.69 2 0.00 20.69
Schirmer value
 1. ACE 1386.86
 2. AE* 1387.41 0.55 1 0.46 −1.45
 3. CE 1390.28 3.42 1 0.06 1.42
 4. E 1432.09 45.23 2 0.00 41.23
TBUT
 1. ACE −2960.28
 2. AE −2958.65 1.63 1 0.20 −0.37
 3. CE* −2960.02 0.26 1 0.61 −1.74
 4. E −2935.78 24.50 2 0.00 20.50
Blepharitis
 1. ACE 556.45
 2. AE* 557.51 1.06 1 0.30 −0.94
 3. CE 558.94 2.49 1 0.11 0.49
 4. E 597.54 41.09 2 0.00 37.09

For each model the minus two log-likelihood (−2ll), the change in χ2 comparing submodel to full ACE-model (Δχ2), difference in df compared to full ACE-model (Δdf), corresponding probability (P), and difference in Akaike's information criterion compared to the full ACE-model (ΔAIC) are given.

*

The best fitting model per variable.