
Alcohol, one-carbon nutrient intake, and risk of colorectal
cancer according to tumor methylation level of IGF2
differentially methylated region1–6

Reiko Nishihara, Molin Wang, Zhi Rong Qian, Yoshifumi Baba, Mai Yamauchi, Kosuke Mima, Yasutaka Sukawa, Sun A Kim,
Kentaro Inamura, Xuehong Zhang, Kana Wu, Edward L Giovannucci, Andrew T Chan, Charles S Fuchs, Shuji Ogino,
and Eva S Schernhammer

ABSTRACT
Background: Although a higher consumption of alcohol, which is
a methyl-group antagonist, was previously associated with colorec-
tal cancer risk, mechanisms remain poorly understood.
Objective: We hypothesized that excess alcohol consumption might
increase risk of colorectal carcinoma with hypomethylation of insulin-
like growth factor 2 (IGF2) differentially methylated region-0 (DMR0),
which was previously associated with a worse prognosis.
Design: With the use of a molecular pathologic epidemiology da-
tabase in 2 prospective cohort studies, the Nurses’ Health Study and
Health Professionals Follow-up Study, we examined the association
between alcohol intake and incident colorectal cancer according to
the tumor methylation level of IGF2 DMR0. Duplication-method
Cox proportional cause-specific hazards regression for competing
risk data were used to compute HRs and 95% CIs. In addition, we
investigated intakes of vitamin B-6, vitamin B-12, methionine, and
folate as exposures.
Results: During 3,206,985 person-years of follow-up, we identified
993 rectal and colon cancer cases with an available tumor DNA
methylation status. Compared with no alcohol consumption, the con-
sumption of $15 g alcohol/d was associated with elevated risk of
colorectal cancer with lower levels of IGF2 DMR0 methylation
[within the first and second quartiles: HRs of 1.55 (95% CI: 1.08,
2.24) and 2.11 (95% CI: 1.44, 3.07), respectively]. By contrast, alco-
hol consumption was not associated with cancer with higher levels of
IGF2 DMR0 methylation. The association between alcohol and can-
cer risk differed significantly by IGF2 DMR0 methylation level
(P-heterogeneity = 0.006). The association of vitamin B-6, vitamin
B-12, and folate intakes with cancer risk did not significantly differ
according to IGF2 DMR0 methylation level (P-heterogeneity. 0.2).
Conclusions: Higher alcohol consumption was associated with risk
of colorectal cancer with IGF2 DMR0 hypomethylation but not risk
of cancer with high-level IGF2 DMR0 methylation. The association
between alcohol intake and colorectal cancer risk may differ by tumor epi-
genetic features. Am J Clin Nutr 2014;100:1479–88.

Keywords molecular pathological epidemiology, biomarker, epi-
genetics, imprinting, one carbon metabolism

INTRODUCTION

DNA methylation plays a critical role as an epigenetic
mechanism in the control of gene expression. Loss of imprinting

(LOI)7 of the insulin-like growth factor 2 (IGF2) gene is
a common epigenetic aberration in various human cancers in-
cluding colorectal, lung, bladder, esophageal, and prostate can-
cers (1–6). LOI of IGF2 was previously associated with increased
risks of colorectal cancer (7) and adenoma (8) as well as
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a poor prognosis of colorectal cancer (9). IGF2 is located in
chromosome 11p15 and expressed predominately from the paternal
allele. The IGF2 gene encodes the IGF2 protein, which has
antiapoptotic and mitogenic functions and plays a role in cell
proliferation (10, 11). DNA methylation is an important epi-
genetic mechanism that plays a major role in gene regulation
and imprinting (12, 13). Hypomethylation at the differentially
methylated region-0 (DMR0) has been related with LOI of IGF2
in colorectal cancer (6, 7), which leads to IGF2 upregulation. The
measurement of IGF2 DMR0 methylation is a well-established
surrogate for IGF2 LOI (8, 14). Moreover, the methylation
level of IGF2 DMR0 is associated with the prognosis in co-
lorectal cancer patients, indicating the clinical usefulness of
this marker (9).

Alcohol antagonizes one-carbon metabolism, which is es-
sential for DNA methylation and nucleotide biosynthesis. Ex-
cessive alcohol consumption has previously been related to
higher colorectal cancer risk (15, 16), whereas adequate intakes
of one-carbon nutrients, including vitamin B-6, vitamin B-12,
methionine, and folate, are associated with lower colorectal
cancer risk (17, 18). With consideration of the importance of the
epigenetic regulation of IGF2 DMR0 and the potential impact of
alcohol on aberrant DNA methylation, we hypothesized that
higher alcohol consumption might be associated with higher risk
of colorectal cancer with IGF2 DMR0 hypomethylation.

To test this hypothesis, we assessed whether the association of
alcohol consumption with colorectal cancer risk differed according
to IGF2 DMR0 methylation level in 2 prospective cohort studies
in which alcohol intake has been positively associated with risk of
colorectal cancer (15, 19, 20). In secondary analyses, we exam-
ined intakes of one-carbon nutrients including vitamin B-6, vi-
tamin B-12, methionine, and folate as exposures.

SUBJECTS AND METHODS

Study population

The Nurses’ Health Study (NHS) is a prospective study es-
tablished in 1976, including 121,701 female nurses aged 30–55 y.
The Health Professionals Follow-up Study (HPFS) is a pro-
spective study initiated in 1986, enrolling 51,529 male dentists,
optometrists, osteopaths, pharmacists, podiatrists, and veteri-
narians aged 40–75 y. In this analysis, the baseline year was
the first year for which detailed diet information was available.
We included participants who provided baseline information
on dietary intake in 1980 in the NHS and 1986 in the HPFS.
We excluded participants with a history of cancer (except for
nonmelanoma skin cancer), inflammatory bowel disease, or
familial polyposis at baseline. This study was approved by
Human Subjects Committees at Harvard School of Public
Health and Brigham and Women’s Hospital.

Assessment of dietary intake and other covariates

Alcohol consumption and dietary intakes of vitamin B-6,
vitamin B-12, folate, and methionine were assessed with a self-
administered questionnaire by using semiquantitative food-
frequency questionnaires beginning from the baseline year of
this analysis (21). As described in previous studies of these
cohorts, we used baseline information of alcohol and one-carbon

nutrient intakes for this analysis to take into account the long
induction period of colorectal tumor in relation to alcohol and
one-carbon nutrient intakes (21, 22). We assumed an ethanol
content of 13.1 g for a 12-oz (38-dL) can or bottle of beer, 11.0 g
for a 4-oz (12-dL) glass of wine, and 14.0 g for a standard portion
of spirits (21). We computed nutrient intake by multiplying the
consumption frequency of each unit of food by the nutrient
content of the specified portions by using composition values
from USDA sources (15, 23). In our analyses, we included any
nutrient intake including from supplements to calculate daily
intake of each nutrient. This method of dietary assessment was
extensively validated by 1-wk diet records conducted in both
cohorts (22, 24, 25). We categorized alcohol consumption into 3
fixed categories (none, 1–14 g/d, and $15 g/d) and folate intake
into 4 fixed categories (,200, 200–299, 300–399, and $400 mg/d).
All other one-carbon nutrients were categorized into quintiles. In-
formation on lifestyle factors, including weight, smoking sta-
tus, endoscopy status, regular aspirin use, and postmenopausal
hormone use (only for women), were assessed every 2 y from
questionnaires in both cohorts.

Assessment of colorectal cancer cases

Incident colorectal cancer cases were ascertained by using
a biennial questionnaire, the National Death Index, and a medical
record review. Study physicians, who were unaware of the ex-
posure information, reviewed medical and pathologic records to
retrieve information on tumor location and disease stage. The
International Classification of Diseases (Ninth Edition) codes for
colon and rectal cancers are 153 and154, respectively. A total of
3031 colorectal cancer cases were identified through 1 July 2008.
We collected available tumor specimens from pathology labo-
ratories across the United States, and data on IGF2 DMR0
methylation analysis were obtained in 993 cases. As described
previously, baseline characteristics of participants with colorectal
cancer with available tissue molecular data were similar to those
of participants without available molecular data (26). A single
pathologist (SO) reviewed tumor tissue slides, and recorded
pathologic features.

Pyrosequencing of IGF2 DMR0 methylation

We measured methylation at IGF2 DMR0 by using a previously
described bisulfite-pyrosequencing assay (GenBank nucleotides
631–859, accession no. Y13633) (9). We categorized IGF2 DMR0
methylation levels into quartiles.

Statistical analysis

We followed participants from the date of return of the baseline
questionnaire through 1 July 2008. Participants whose IGF2
DMR0 methylation level in tumor was unknown (n = 2038)
and those who died of causes other than colorectal cancer
(n = 21,970) were censored during 28 y of follow-up. To examine
differential associations of baseline alcohol consumption with
colorectal cancer risk by IGF2 DMR0 methylation level, we
used Cox proportional cause-specific hazards regression models
with a duplication method for competing risk data (27, 28),
which is also called a joint Cox proportional (29). This method
accommodates different baseline hazard functions of each dis-
ease subtype and permits the estimation of separate associations
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of a risk factor (e.g., alcohol consumption) with each tumor
subtype and has been used to assess whether a risk factor has
statistically different regression coefficients for different tumor
subtypes (21, 30, 31). In the incidence analysis of one subtype,
incidences of other tumor subtypes or tumor of unknown sub-
type were treated as censored data. A trend test across exposure
categories was performed by assigning the median value to
each category and treating these variables as continuous terms
in the model. With the use of a random effects meta-regression
analysis (32), we assessed whether the magnitude of the exposure-
subtype association had an increasing or decreasing ordinal
trend across quartiles of tumor IGF2 DMR0 methylation level,
and the statistical significance of this trend was presented as
P-heterogeneity. Cox model analyses were based on the counting
process data structure (33) and were stratified by age (in mo), sex
(in the combined cohort analysis), and calendar year of the
questionnaire cycle. In multivariable Cox model analyses, we
further adjusted for BMI, a family history of colorectal cancer in
any first-degree relative, pack-years smoked, lower endoscopy
status, regular aspirin use, postmenopausal hormone use (for
women only), leisure-time physical activity, number of servings
of red meat consumed per day, total caloric intake, calcium
intake, current multivitamin use, and each of the other nutri-
ents under evaluation (i.e., intakes of alcohol, vitamin B-6,
vitamin B-12, folate, and methionine). With the exception of
alcohol, vitamin B-6, vitamin B-12, folate, and methionine,
for which we used baseline information, we used the most-
updated available information for covariates before each 2-y
follow-up period. We did not observe evidence of a violation
of the proportional hazard assumption on the basis of in-
teraction terms between alcohol consumption and follow-up
time (P . 0.5).

We used SAS software (version 9.3; SAS Institute) for all
statistical analyses. All P values were 2 sided. Because multiple
hypothesis testing is inherent to subgroup analyses in molecular
pathologic epidemiology (34), we set a heterogeneity test be-
tween colorectal cancer subtypes according to IGF2 DMR0
methylation level in relation to alcohol consumption as our
primary hypothesis testing in which a P value for significance
was set as 0.05. In the primary analysis, median intake within
each of alcohol intake categories was used and tested for a sta-
tistical trend. All other analyses, including the evaluation of
individual HR estimates for alcohol, and analyses of other ex-
posures were secondary analyses, and any positive finding was
to be interpreted cautiously, given multiple hypothesis testing.
No analysis in this study was planned when cohort studies be-
gan, and all analyses were post hoc by definition.

RESULTS

Alcohol consumption and colorectal cancer risk by IGF2
DMR0 methylation level

At baseline, there were 87,805 women in the NHS and 45,770
men in the HPFS. Table 1 shows baseline characteristics of all
participants according to the amount of alcohol consumption.
During 3,206,985 person-years of follow-up, we identified 993
colorectal cancer cases with available data for IGF2 DMR0
methylation level. Before pooling data from the NHS and HPFS,
we conducted heterogeneity tests based on the Q statistic. We

did not observe significant heterogeneity between cohorts for the
association of alcohol consumption with risk of any specific
cancer subtypes (P . 0.2 for Cochran’s Q test) (Supplemental
Table S1). Thus, the NHS and HPFS were combined to increase
the statistical power.

As previously described (15, 19, 20), compared with no alcohol
consumption, higher alcohol consumption at baseline was asso-
ciated with higher risk of overall colorectal cancer [multivariable-
adjusted HR: 1.28 (95% CI: 1.05, 1.55) for consumption of$15 g
alcohol/d; P-trend = 0.043 across alcohol intake categories]
(Table 2). Higher alcohol consumption was significantly associ-
ated with higher risk of colorectal cancer with first and second
quartiles of IGF2 DMR0 methylation [comparing consumption of
$15 g alcohol/d to no consumption; multivariable-adjusted HRs:
1.55 (95% CI: 1.08, 2.24; P-trend = 0.009) and 2.11 (95% CI:
1.44, 3.07; P-trend = 0.0004), respectively]. In contrast, alcohol
consumption was not associated with risk of colorectal cancer
with third and fourth quartiles of IGF2 DMR0 methylation
(P-trend $ 0.15; P-heterogeneity = 0.006 across IGF2 DMR0
methylation quartiles).

In sensitivity analyses, we used covariates measured at
baseline and examined the association between baseline alcohol
consumption and colorectal cancer incidence. Compared with no
alcohol consumption, multivariable-adjusted HRs in the $15 g
alcohol/d category were 1.44 (95% CI: 1.00, 2.07; P-trend =
0.027) and 1.89 (95% CI: 1.29, 2.77; P-trend = 0.002) for cancer
with first and second quartiles of IGF2 DMR0 methylation,
respectively, whereas multivariate HRs were 1.13 (95% CI: 0.79,
1.63); P-trend = 0.27; and 0.82 (95% CI: 0.55, 1.23); P-trend =
0.21; for cancer with third and fourth quartiles of IGF2 DMR0
methylation, respectively (P-heterogeneity = 0.012). In addition,
we used the most-updated information for all the variables in-
cluding alcohol, one-carbon nutrients, and other covariates
measured before each 2-y follow-up and modeled these vari-
ables as time-varying variables. In the sensitivity analysis, re-
sults were also consistent with those in our main analysis; the
consumption of $15 g alcohol/d was significantly associated
with cancer with first and second quartiles of IGF2 DMR0
methylation [multivariable-adjusted HRs: 1.86 (95% CI: 1.25,
2.77; P-trend, 0.0001) and 2.06 (95% CI: 1.36, 3.13; P-trend =
0.0001), respectively], whereas higher alcohol consumption
was not significantly associated with cancer with third and
fourth quartiles of IGF2 DMR0 methylation [multivariable-
adjusted HRs: 0.99 (95% CI: 0.66, 1.49; P-trend = 0.63) and
0.95 (95% CI: 0.62, 1.45; P-trend = 0.72), respectively;
P-heterogeneity = 0.0008).

One-carbon nutrients and colorectal cancer risk by IGF2
DMR0 methylation level

In secondary analyses, we examined the relation of one-carbon
nutrient intakes with colorectal cancer risk according to IGF2
DMR0 methylation level. In Supplemental Tables S2 and S3,
we show sex-specific results for the analysis of vitamin B-6,
vitamin B-12, methionine, and folate. In both cohorts combined,
we did not observe prominent differential associations between
one-carbon nutrient intakes and colorectal cancer incidence by
IGF2 DMR0 methylation status (Table 3). Although the test
for heterogeneity was significant in our methionine analyses
(P-heterogeneity = 0.007), none of the tests for trend across
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methionine quintiles were significant (P-trend . 0.09), and HRs
did not consistently show a significant risk elevation with in-
creasing levels of methionine intake.

In sensitivity analyses, in which we used covariates measured
at baseline, tests for trend across quintiles of baseline intakes of
vitamin B-6, vitamin B-12, and folate were not significant in any
levels of IGF2 DMR0 methylation (P-trend . 0.11). Tests for
heterogeneity were also not significant in analyses of vitamin
B-6, vitamin B-12, and folate (P-heterogeneity . 0.18). We
observe lower risk of colorectal cancer with the fourth quintile
of IGF2 DMR0 methylation with increasing baseline intake of
methionine (P-trend = 0.0008; P-heterogeneity = 0.010). When
we used the most-updated information for all variables, all trend
tests across quintiles of vitamin B-6, vitamin B-12, methionine,
and folate were not significant (P-trend . 0.075).

DISCUSSION

In 2 large, prospective cohort studies, we showed that excess
alcohol consumption was associated with higher risk of co-
lorectal cancer with IGF2 DMR0 hypomethylation and lower
levels of IGF2 DMR0 methylation but not risk of colorectal

cancer with higher levels IGF2 DMR0 methylation. The asso-
ciation of alcohol intake with colorectal cancer risk significantly
differed according to tumor IGF2 DMR0 methylation level.
Within the IGF2 DMR0 hypomethylated subtype, the elevation
in risk appeared to follow a linear dose-response with increasing
risks associated with increasing levels of alcohol intakes. Overall,
our data support a possible mechanistic link between alcohol
intake and colorectal cancer risk through IGF2 DMR0 hypo-
methylation during colorectal carcinogenesis. In our secondary
analysis, we did not show prominent differential associations of
vitamin B-6, vitamin B-12, methionine, and folate intakes with
risk of colorectal cancer according to IGF2 DMR0 methylation
level.

Tumor molecular analyses of colorectal cancer are increasingly
important in clinical and epidemiologic research (35–38). Pre-
vious studies assessed the relation of alcohol and one-carbon
nutrients with changes in various molecular features, including
CpG island methylation and TP53 expression status, in co-
lorectal cancer (39–42). A previous study also indicated that
high alcohol consumption was associated with higher risk of
colon cancer with hypomethylation in long interspersed nucleo-
tide element-1, which is an indicator of global DNA methylation

TABLE 2

Baseline alcohol intake and risk of colorectal cancer according to IGF2 DMR0 methylation level1

Alcohol intake, g/d

P-trend2 P-heterogeneity30 1–14 $15

Person-years 946,353 1,765,554 495,078 — —

All colorectal cancers —

Cases, n 258 523 212 —

Age-adjusted HR (95% CI) 1 (referent) 1.10 (0.95, 1.28) 1.32 (1.10, 1.59) 0.006

Multivariable-adjusted HR (95% CI) 1 (referent) 1.13 (0.97, 1.32) 1.28 (1.05, 1.55) 0.043

IGF2 DMR0 methylation level 0.006

First quartile (#25%)

Cases, n 63 125 59 —

Age-adjusted HR (95% CI) 1 (referent) 1.08 (0.80, 1.46) 1.60 (1.12, 2.29) 0.003

Multivariable-adjusted HR (95% CI) 1 (referent) 1.11 (0.82, 1.50) 1.55 (1.08, 2.24) 0.009

Second quartile (26–50%)

Cases, n 51 138 63 —

Age-adjusted HR (95% CI) 1 (referent) 1.49 (1.08, 2.06) 2.15 (1.48, 3.12) 0.0001

Multivariable-adjusted HR (95% CI) 1 (referent) 1.55 (1.12, 2.14) 2.11 (1.44, 3.07) 0.0004

Third quartile (51–75%)

Cases, n 72 123 53 —

Age-adjusted HR (95% CI) 1 (referent) 0.94 (0.70, 1.25) 1.27 (0.89, 1.82) 0.080

Multivariable-adjusted HR (95% CI) 1 (referent) 0.96 (0.71, 1.28) 1.22 (0.85, 1.76) 0.15

Fourth quartile (.75%)

Cases, n 72 137 37 —

Age-adjusted HR (95% CI) 1 (referent) 1.05 (0.79, 1.40) 0.86 (0.58, 1.29) 0.33

Multivariable-adjusted HR (95% CI) 1 (referent) 1.08 (0.81, 1.44) 0.84 (0.56, 1.26) 0.24

1Cox proportional cause-specific hazards regression for competing risk data were used to compute HRs and 95% CIs.

All analyses were stratified by age (in mo), year of questionnaire return, and sex. Multivariable-adjusted HRs were further

adjusted for BMI (in kg/m2; ,25 compared with 25–29.9 compared with $30), pack-years smoked (0 compared with 1–19

compared with 20–39 compared with $40 pack-years), family history of colorectal cancer in any first-degree relative,

endoscopy status (no endoscopy compared with history of adenomatous polyps compared with negative endoscopy),

physical activity level (quintiles of mean metabolic equivalent task-hours per week), red meat intake (quintiles of servings/d),

total calorie intake (quintiles of kcal/d), calcium intake (quintiles of mg/d), current multivitamin use, regular aspirin use, and

intakes of vitamin B-6, vitamin B-12, folate, and methionine. DMR0, differentially methylated region-0; IGF2, insulin-like

growth factor 2.
2Linear trend test by using the median value of each category.
3Test for the heterogeneity of the association between alcohol intake and colorectal cancer risk according to IGF2

DMR0 methylation level.
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(21). However, to our knowledge, no previous epidemiology
study assessed the influence of alcohol and one-carbon nutri-
ents on colorectal cancer risk according to tumor IGF2 DMR0
methylation level. Alcohol has been implicated in colorectal
cancer initiation possibly through the inhibition of one-carbon
metabolism as well as the action of acetaldehyde (43). Excess
alcohol has been reported to antagonize methyl donors in-
cluding vitamin B-6, vitamin B-12, methionine, and folate,
leading to a lower concentration of S-adenosylmethionine
in the liver (43–45). In both human and animal studies, a
reduction of S-adenosylmethionine concurrently increased
S-adenosylhomocysteine and homocysteine concentrations in
the plasma (46, 47), resulting in a lower methylation capacity and
hypomethylation in various tissues including the colonic mucosa
(48–50). The IGF2 gene is maternally imprinted and expressed
only from the paternal allele. IGF2 controls cell development,
growth, and proliferation, and LOI of IGF2 has been implicated in
colorectal cancer (6, 7) and various other cancers (51). Previous
studies reported that IGF2 expression is controlled by DMRs,
which are close to the IGF2 promoter (6, 7, 52–54). Particularly,
the hypomethylation of IGF2 DMR0 can be a surrogate marker
of LOI of IGF2 in colorectal cancer (8, 14). IGF2 upregulation
by DMR0 hypomethylation may promote tumorigenesis in co-
lorectal tissue. Taken together, besides the reported global DNA
hypomethylation, our findings suggest that excess alcohol con-
sumption might cause DNA hypomethylation at IGF2 DMR0,
leading to the epigenetic dysregulation of IGF2 activity and co-
lorectal carcinogenesis. To our knowledge, our study provides
new information about the role of excess alcohol consumption in
transcriptional control through aberrant local DNA methylation
changes.

Our study had several important strengths. First, because of the
availability of detailed, updated information on several dietary
and lifestyle covariates relevant to colorectal cancer over 28 y of
follow-up, we were able to examine long-term exposures to
alcohol and one-carbon nutrients and take into consideration
important confounding factors. Second, because of the pro-
spective nature of our study, differential recall bias, particularly
with regard to our dietary assessments, was not of concern. Third,
our molecular characterization of colorectal cancer enabled us to
conduct molecular pathologic epidemiology research (34, 55),
which could link the risk factor (alcohol) to a molecular signature
of disease (IGF2 DMR0 hypomethylation) and, hence, give us
unique insights on pathogenic mechanisms and causal inference.

Limitations of note related to the relatively low alcohol
consumption in our cohorts of health professionals. We also
acknowledge that we could not completely exclude a possibility
of residual and unmeasured confounding. In addition, we were
unable to obtain tumor tissue from all cases of confirmed co-
lorectal cancer in the 2 cohorts. Nonetheless, risk factors in cases
unavailable for tissue analysis did not significantly differ from
those in cases with tumor tissue available (31). We believe that
the generalizability of our findings needs to be assessed by in-
dependent studies.

In conclusion, we showed that the association of higher alcohol
consumption with colorectal cancer risk varies by tumor IGF2
DMR0 methylation level and is stronger for tumor with IGF2
DMR0 hypomethylation. Taken together with previous data,
these results suggest that alcohol consumption may increase
risk of a potentially more aggressive type of colorectal tumorT
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because of the poorer prognosis in colorectal cancer patients
with IGF2 DMR0 hypomethylation (9). Hypomethylation of
IGF2 DMR0 may be one mechanism by which alcohol con-
sumption affects colorectal cancer risk. Additional studies are
needed to further elucidate genetic and epigenetic alterations
attributable to excess alcohol consumption.
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