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Abstract

Despite high classification accuracies (~95%) of myoelectric control systems based on pattern 

recognition, it is unclear how well offline measures translate to real-time closed-loop control. 

Recently, a real-time virtual test analyzed how well subjects completed motions using a multiple–

degree of freedom (DOF) classifier. Although this test provided real-time performance metrics, 

the required task was oversimplified: motion speeds were normalized and unintended movements 

were ignored. We included these considerations in a new, more challenging virtual test, the Target 

Achievement Control (TAC) Test. Users attempted to move a virtual arm into a target posture 

using myoelectric pattern recognition. Five transradial amputees performed the test with various 

classifier (one vs. three DOF) and task complexities (one vs. three required motions per posture). 

No significant difference was found in classification accuracy between the one- and three- DOF 

classifiers (97.2%±2.0% and 94.1%±3.1%, respectively) (p=0.14). Subjects completed 31% fewer 

trials in significantly more time using the three-DOF classifier. Subjects took 3.6±0.8 times longer 

to reach a three-motion posture compared to a one-motion posture. The results highlight the need 

for closed-loop performance measures and demonstrate that the TAC Test provides a useful and 

more challenging tool to test real-time pattern recognition performance.
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Introduction

Myoelectric control systems based on pattern recognition have been proposed for the next 

generation of multifunctional upper-limb prostheses (1–3). Ideally, a multifunctional 

prosthesis will restore functionality to a patient and provide a measurable improvement in 

their quality of life. Unfortunately, the only validated prosthetic outcomes measure is the 

Assessment for Capacity of Myoelectric Control (ACMC) (4, 5). This test measures users' 

ability to perform a series of two-handed tasks and requires a physical prosthesis under 

volitional control. The Upper Limb Prosthetics Outcome Measures (UPLOM) Group, was 

formed in 2005 to address the lack of outcomes measures for upper-limb prosthetics (6). In 

2009, this group presented findings that identified a wide range of variables that contribute 

to prosthesis usability. One variable, “Control of the Prosthesis”, included the desire to have 

a measurement tool that is sensitive enough to differentiate between control schemes and 

show changes in the ability to control the prosthesis over time (7). The group recognized 

that the evolution of prosthesis design constitutes a continuum from research, development, 

clinical work, and ultimately home use. They recommended that a series of tests be used to 

iteratively test each preceding stage in the continuum. In this contribution, we are working 

in the development portion of the continuum and are attempting to develop a test which may 

be used to quantify control algorithms which have previously been researched, prior to the 

time when it is realistic to implement with physical devices, which may or may not yet exist 

Specifically, we wished to develop a test to measure the patient’s ability to control pattern 

recognition systems of varying complexity and comprised of different components.

During pattern recognition control, a computer program identifies an individual’s intended 

movements by looking at the pattern produced by several channels of surface 

electromyographic (EMG) signals (8). The pattern is classified and a movement command is 

sent to the prosthesis. A large focus of pattern recognition research is to provide better EMG 

decoding through use of various classifiers and feature sets (3, 9–12). The performance of a 

classifier is commonly assessed by calculating its classification accuracy after all data has 

been collected. Classification accuracy is the ability of the algorithm to correctly decode 

users’ movements. Pattern classification techniques, such as linear discriminate analysis (1, 

13), fuzzy logic (3, 14), or artificial neural networks (10, 11, 13) commonly achieve offline 

classification accuracies above 95%.

It is relatively unclear, however, how a pattern classifier’s performance in offline tests 

translates to its performance in real-time closed-loop control (15). Data is collected while 

the subject tries to produce a specific motion. After the experiment is over, the data is 

processed and classification accuracy is calculated as the percent of time the classifier 

correctly identifies the motion. Therefore classification accuracies are calculated during an 

open-loop task in which the user has no feedback. At the beginning stages of development, 

offline accuracies provide useful information without the need for a multifunctional 

prosthesis. With offline performance established, the need for evaluation tools based on real-

time performance becomes more apparent, as it is important to investigate what happens to 

performance when the user is interacting with the decoded movement.
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Virtual environments can provide an alternative setting for evaluating real-time pattern 

recognition performance (16–19). Through the use of a virtual clothespin task, Hargrove et 

al. showed that system controllability and functional performance improved when the 

transient portion of EMG signals was included in classifier training (17). This is of noted 

importance because including this information may have the opposite effect on offline 

classification accuracy by lowering the reported performance of the system (17). More 

recently, Kuiken et al. designed a virtual test, called Motion Test, which examined the 

clinical robustness and accuracy of pattern recognition control (18) with amputees who had 

undergone targeted muscle reinnervation (TMR) surgery (20, 21). During this test, subjects 

were instructed to follow prompts for a movement and observe a virtual prosthesis that 

decoded their movements. Subjects were told to maintain their muscle contractions until the 

virtual prosthesis moved through its full range of motion (18). Previous Motion Test results 

suggest that the reinnervated muscles of TMR amputees can produce sufficient EMG 

information for real-time pattern recognition control (18). Although this test provides real-

time performance metrics, the required task is oversimplified; motion speeds are normalized 

and unintended movements (i.e. misclassifications) are ignored.

We included these considerations (i.e. motion speeds and misclassifications) in a new more 

challenging virtual test, the Target Achievement Control (TAC) Test. This test evaluated 

users’ control and positioning of a multifunctional prosthesis. Users were instructed to move 

a virtual prosthesis into a target posture (Figure 1) and maintain the posture for a period of 

time (i.e. 2 seconds). If the user overshot the target posture or produced unnecessary 

movements (either through volitional control or motion misclassifications), these 

movements needed to be corrected to achieve success.

In this study, individuals with a transradial amputation controlled a virtual prosthesis using 

myoelectric pattern recognition with proportional control. To illustrate the flexibility of the 

new virtual performance test, subjects performed the TAC Test with two classifier 

complexities (a one–degree of freedom classifier and a three–degree of freedom classifier) 

and two task complexities (one or three motions required to achieve target posture success). 

The results showed that the TAC Test provided valuable information about users’ 

myoelectric control and the pattern recognition control algorithms that could not be obtained 

with existing performance measures (e.g. offline classification accuracy) or existing real-

time virtual performance tests (e.g. Motion Test).

Methods

Subjects

Five individuals with a transradial (TR) amputation participated in this study (Table 1). The 

experimental protocol was approved by the Northwestern University Institutional Review 

Board and all subjects gave written informed consent to participate.

EMG and Pattern Recognition Configuration

Six self-adhesive silver/silver chloride bipolar surface electrode (Noraxon Dual electrodes) 

pairs were used to record muscle activity. The electrode pairs had a 1 cm diameter circular 
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conductive area and an inter-electrode distance of 2 cm. Four electrode pairs were placed in 

a ring at the proximal portion of the residual forearm around the apex of the muscle bulge (2 

to 3 cm distal to the elbow crease) and the other two electrode pairs were positioned on the 

distal end of the residual limb. For subjects with short residual limbs, all six electrodes were 

placed in the ring at the proximal portion of the forearm. The EMG signals were amplified, 

sampled at a frequency of 1 kHz, and high-pass filtered at 20 Hz to reduce motion artifact.

Subjects trained the system to recognize seven motion classes (wrist flexion, wrist 

extension, wrist supination, wrist pronation, hand open, one hand grasp, and no movement). 

For training of the pattern recognition system, subjects were prompted with a demonstration 

of each movement and asked to perform the movement at a comfortable and consistent level 

of effort. Each contraction was held for 3 s and repeated eight times. The data were split into 

two groups with 12 s of data used to train a linear discriminate analysis (LDA) classifier and 

12 s of data used to test the classifier. The pattern recognition system segmented data from 

all EMG channels into a series of 150 ms analysis windows with a 50 ms window increment. 

Four time-domain features (mean absolute value, number of zero crossings, waveform 

length, and number of slope sign changes) were extracted from each analysis window. With 

this classifier, only one class decision was made at a time (i.e. sequential control). This 

pattern recognition scheme has been previously described (1) and has shown to produce 

effective real-time control (18, 22). After the classifier was trained, it was used to predict 

user commands and control a virtual prosthesis in real time. Classification accuracy was 

assessed offline by dividing the number of correct class decisions by the total number of 

class decisions.

For this experiment, the proportional movement speed was calculated by averaging the mean 

absolute values (MAV) of all channels, k, of EMG signals for a given data window and 

multiplying by a class gain factor, G (15, 23).

(1)

Desired speed gains were configured for each class such that subjects could achieve full 

dynamic range where the maximum EMG amplitude corresponded to 100 degrees per 

second. Subjects practiced in the virtual environment for 5 to 10 min. prior to testing.

Target Achievement Control Test

A target posture and a virtual prosthesis that responded to classifier output were displayed 

on a screen (Figure 1). Subjects were instructed to move the virtual prosthesis, which started 

from a non-neutral position, to a neutral target posture. The neutral position was zero 

degrees of wrist flexion/extension and zero degrees of wrist rotation (see Figure 1, 

successful trial end) To provide visual feedback, the virtual hand turned green when it was 

within an acceptable tolerance of the target (±5 degrees for each degree of freedom) (Table 

2). Tests were completed more quickly if subjects only produced the motion(s) necessary to 

reach the target. If a subject overshot the target posture or produced unnecessary 

movements, he/she had to correct for those motions to achieve success. Trials ended 
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successfully when subjects were able to keep the virtual prosthesis in the target for 2 s. 

Target postures were never at the end of DOF ranges which ensured controlled stopping and 

dwelling within the target posture as part of the required task. Trials ended unsuccessfully if 

subjects were unable to achieve and maintain the target posture by the specified trial 

timeout. Three conditions were tested in this study:

Condition 1—Subjects controlled a one–degree of freedom virtual prosthesis and 

performed the TAC Test with one required motion per trial. Each degree of freedom was 

tested separately. For wrist rotation, only the data for wrist supination, wrist pronation, and 

no movement were used to build and test the LDA classifier. The target posture required 

subjects to either supinate or pronate the virtual wrist across a movement distance of 75 

degrees to achieve success. The protocol was repeated for wrist flexion/extension and hand 

open/close. The order that the one-DOF classifiers were presented to the subject was 

randomized. For each one-degree of freedom classifier, subjects performed four sets of the 

TAC Test; each set consisted of two repetitions of each target posture (two postures) with a 

trial timeout of 15 s. Condition 1 consisted of a total of 48 trials.

Condition 2—Subjects controlled a three–degree of freedom virtual prosthesis and 

performed the TAC Test with one required motion per trial. Data for all seven motions were 

used to build and test the LDA classifier. Similar to Condition 1, the target posture only 

required subjects to perform one motion across a movement distance of 75 degrees to 

achieve success. Unlike Condition 1, all three degrees of freedom were active during each 

trial. For example, if a subject was trying to pronate his/her wrist and the hand closed, he/she 

needed to re-open the hand before achieving the target posture. Subjects performed four sets 

of the test; each set consisted of two repetitions of each target posture (six postures) with a 

trial timeout of 15 s. Condition 2 consisted of a total of 48 trials.

Condition 3—Subjects controlled a three–degree of freedom virtual prosthesis and 

performed the TAC Test with three required motions per trial. Similar to Condition 2, data 

for all motions were used to build and test the LDA classifier. Unlike Condition 2, target 

postures required subjects to perform three motions, such as wrist flexion, wrist supination, 

and hand open, to achieve success. Each posture required moving the virtual prosthesis 

across a distance of 75 degrees for each required motion. Therefore subjects had to move the 

virtual prosthesis over a total distance of 225 degrees. Subjects performed four sets of the 

test; each set consisted of one repetition of each target posture (eight postures). Since the 

pattern recognition algorithm used in this study allowed only sequential motions, the trial 

timeout for Condition 3 was 45 s. Condition 3 consisted of a total of 32 trials.

Prior to testing, subjects were given at least 5 min. to familiarize themselves with each 

condition. Conditions were presented in a randomized order. The first test set of each 

condition was used as practice, and subsequent sets were used for data analysis. The effects 

of classifier complexity were analyzed by comparing Conditions 1 and 2, and the effects of 

task complexity were analyzed by comparing Conditions 2 and 3.

TAC Test performance metrics included completion time, completion rate, and path 

efficiency. Completion time was the time from trial start to the successful achievement of 
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the target posture, not including the 2 s dwell time. Completion rate was the percentage of 

successfully completed postures in a set of trials. Path efficiency was calculated as the 

shortest path to the target divided by the total distance traveled by the virtual hand (24). 

Therefore, a trial with path efficiency equal to 100% indicated that the subject was able to 

move the virtual prosthesis directly into the target posture and stop within the acceptable 

tolerance. Completion time and path efficiency were only reported for successful trials.

Statistical Analysis

We performed a paired t-test to assess the statistical difference between classification 

accuracy, completion rate, completion time, and path efficiency across the two levels of 

classifier and task complexities.

Results

Classifier Complexity (Comparison of Conditions 1 and 2)

Classification accuracy was not significantly different between the one- and three- DOF 

classifiers (p = 0.14). Average classification accuracy was 97.2% ± 2.0% (mean ± standard 

deviation) across all one–degree of freedom classifiers (Condition 1) and 94.1% ± 3.1% 

across all three–degree of freedom classifier (Condition 2).

When the TAC Test required only one motion per posture, subjects completed significantly 

more trials and completed them significantly faster while using the one–DOF classifier 

compared to using the three–DOF classifier (p = 0.002 for completion rate and p < 0.001 for 

completion time) (Figure 2, Table 3). Figure 3 displays the position and decision history of 

an example trial using the three–DOF classifier. Path efficiency measures demonstrated a 

similar trend of significantly decreased performance with the three- compared to the one–

DOF classifier (p = 0.03).

Task Complexity (Comparison of Conditions 2 and 3)

When the TAC Test required subjects to perform three motions to achieve each posture 

(Condition 3), subjects completed significantly more trials (p = 0.03) in a significantly 

longer time (p = 0.001) compared to performing only one motion (Condition 2) (Figure 2, 

Table 3). Note that the trial timeout length for Condition 3 was three times that of Condition 

2. Figure 4 displays the position and decision history of a subject using the three–DOF 

classifier to reach a posture that required three motions. The average completion time for 

achieving a three-motion posture was 3.6 ± 0.8 times longer than the average completion 

time for a one-motion posture. The average path efficiency for the three-motion posture was 

significantly lower than that for the one-motion posture (p = 0.01).

Discussion

We investigated subject performance with various classifier and task complexities as a 

means of highlighting the TAC Test. The existing offline measure of classification accuracy 

is a limited metric of control due to a ceiling effect. Classification accuracy is bounded by a 

maximum value of 100%, with pattern recognition algorithms commonly reporting 
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accuracies above 95%. The result of decades of research into classifier types and feature sets 

are very minimal increases, if any, in classification accuracy, and it is unclear how these 

changes relate to controllability. Existing virtual performance measures, such as the Motion 

Test, are oversimplified. The Motion Test prompted subjects to perform one motion until the 

virtual prosthesis moved through its full range of motion (18). In a previous study, 

individuals with a transradial amputation controlled 11 motions of a virtual prosthesis with 

an average classification accuracy of 79% ± 11% (22). Subjects successfully completed 72% 

of the Motion Test trials (22). In the current study, subjects who performed the TAC Test 

controlled only 7 motions of a virtual prosthesis (Condition 2) with an average classification 

accuracy of 94% ± 3.1%. Even with fewer classes and much higher classification accuracy, 

subjects successfully completed only 69% of the TAC Test trials, highlighting the need for 

closed-loop performance measures. The TAC Test is challenging because subjects are 

required to “undo” unintended movements and command DOF stopping, as all degrees of 

freedom needed to match the target posture. Also unlike the Motion test, the TAC Test 

allowed subjects to move the virtual prosthesis at a slow or fast rate, depending on the 

intensity of their muscle contraction.

The TAC Test does not exhibit similar ceiling effects because a wide range of testing 

difficulties can be achieved by modifying test parameters (Table 2). For example, if a 

subject was able to achieve a 100% completion rate with, a ±10 degree tolerance on the 

target posture, the experimenter/clinician can reduce the tolerance to ±5 degrees to make the 

test more difficult. In the current study, subjects were asked to position the virtual arm into 

postures that required either one or three movement(s). An interesting observation was that 

subjects did not seem to be as affected by misclassifications at the beginning of movement 

while attempting to achieve a three-motion posture compared to a one-motion posture. 

While performing the TAC Test with one required motion per posture, subjects would often 

correct unintended movements as they happened (Figure 3). During trials that required three 

motions per posture, many subjects did not correct movement misclassifications right away, 

but rather waited until they were closer to the target posture to correct the movements as 

needed (Figure 4). In this case, misclassifications may actually have helped complete the 

motion. It is also possible that subjects were unable to tell if the virtual hand was at the 

target in one degree of freedom before the other degrees of freedom were also close to their 

target positions. These observations are not possible with other existing virtual performance 

measures. Similar observations are harder to track while subjects are using a physical 

prosthesis since current physical prostheses do not include position tracking.

In addition to testing subject performance, the TAC Test provided a good environment for 

subjects to practice pattern recognition control. To succeed in the test, subjects needed to be 

able to plan their movements and produce repeatable muscle patterns. Movement timing and 

sequential control were other key pattern recognition concepts. Users needed to control their 

muscle contraction length and intensity to properly position the virtual prosthesis and relax 

their muscles without eliciting another motion in order to keep the virtual arm at the target. 

Because the pattern recognition algorithm used in the current study only allowed for 

sequential control, users needed to perform only one motion at a time. Since the TAC Test is 

not dependent on the type of control, algorithms that provide simultaneous and proportional 

control (25) can be tested within this virtual environment test if they prove beneficial. The 
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variable configuration (movement distance, time limit, acceptable tolerance, etc) (Table 2) 

allows the testing of users with different performance levels while still engaging users and 

maintaining motivation.

The TAC Test must not be confused for a validated upper limb prosthesis usability outcome 

measure. The ability to control a prosthesis is only one important component in a patients 

overall ability to use a prosthesis which may include many other variables such as terminal 

device type, functional level, motivation, and level of therapy (7). The TAC Test was 

developed to specifically test control algorithms so that differences in control strategies may 

be measured and compared. This aligns with the findings from UPLOM’s critical 

recommendation that the information to be captured is specific to the area within which it is 

being tested. We believe that the test captures important information about the control 

algorithms being tested and assume that more that systems which score higher in the TAC 

test will be more controllable and ultimately be more usable. Future work needs to be 

completed to test that assumption.

One limitation of the TAC Test is that subjects interact with a virtual, not a physical, 

environment. Although the goal of developing this virtual test was not to completely 

replicate the physical environment, it is important to acknowledge their differences. User 

control and performance may differ between these two environments because the virtual 

environment does not model the prosthesis inertia. Wearing a physical prosthesis may alter 

the way individuals contract their muscles. Supporting the prosthetic weight also may affect 

how quickly their muscles fatigue. During physical prosthesis control, it is not only position, 

but force and acceleration that matter. While performing the TAC Test, subjects can 

successfully complete trials even with large terminal decelerations (e.g. they can stop 

abruptly in the target posture). Large terminal decelerations with a physical prosthesis may 

cause unwanted interactions (e.g. placing a cup down too fast may cause the liquid to spill). 

Finally, to make the prosthesis usable for the patient, significant therapy would still be 

required for pattern recognition systems that prove to be controllable in a virtual 

environment.

Conclusions

Although fundamental differences exist between the virtual and physical environment, the 

TAC Test provides a good platform for pattern recognition control practice and testing. The 

virtual test provides real-time performance measures in a variety of testing settings. Current 

results demonstrate that significant online differences can be seen even when no significant 

offline differences exist. Therefore it provides more control information in the continuum 

between the offline measure of classification accuracy and the full setup necessary for 

physical prosthesis testing.
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Abbreviations

DOF degree of freedom

EMG electromyographic

LDA linear discriminate analysis

TAC target achievement control

TMR targeted muscle reinnervation
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Figure 1. 
Target Achievement Control (TAC) Test. Subjects moved a multifunctional virtual 

prosthesis into a target posture. The virtual hand turned green when the target was reached 

within the acceptable tolerances (± 5 degrees for each degree of freedom). Pictures illustrate 

starting and ending positions for successful trials. (A) Example trial from Conditions 1 and 2 

requiring one motion to reach the target posture (e.g. wrist flexion). (B) Example trial from 

Condition 3 requiring three motions to reach the target posture (e.g. wrist flexion, wrist 

supination, and hand close).
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Figure 2. 
Average completion rate curves for all three conditions. Solid line indicates performance 

during trials that required only one motion per posture using a one–degree of freedom 

classifier (Condition 1). Dashed line indicates performance during trials that required only 

one motion per posture using a three–degree of freedom classifier (Condition 2). Dotted line 

indicates performance during trials that required three motions per posture using a three–

degree of freedom classifier (Condition 3). Shaded regions represent ± 1 standard error.
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Figure 3. 
Position and decision history during an example TAC Test trial requiring one motion to 

reach a Condition 2 target posture. A three–degree of freedom classifier is used. The virtual 

prosthesis began in 75 degrees of wrist extension, 0 degrees wrist rotation, and the hand 

50% closed. The user had to flex the wrist to reach the target posture (0 degrees flexion/

extension, 0 degrees wrist rotation, and the hand 50% closed). Gray bars indicate the target 

position for each degree of freedom. Since the TAC Test required all degrees of freedom to 

match the target position, the subject had to correct for any misclassifications (e.g. wrist 

pronation). The virtual arm reached the target position at 5.3 s (indicated by T*). The trial 

ended at 7.3 s after the subject was able to remain in the target posture for 2 s.
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Figure 4. 
Position and decision history during an example TAC Test trial requiring three motions to 

reach a Condition 3 target posture. The virtual prosthesis began in 75 degrees of wrist 

flexion, 75 degrees of wrist supination, and the hand 25% closed. The user had to extend and 

pronate the wrist and close the hand to reach the target posture (0 degrees flexion/extension, 

0 degrees wrist rotation, and 75 degrees hand open/close). Gray bars indicate the target 

position for each degree of freedom. The virtual arm reached the target position at 18.2 s 

(indicated by T*). The trial ended at 20.2 s after the subject was able to remain in the target 

posture for 2 s.

Simon et al. Page 14

J Rehabil Res Dev. Author manuscript; available in PMC 2014 November 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Simon et al. Page 15

T
ab

le
 1

T
ra

ns
ra

di
al

 s
ub

je
ct

 d
em

og
ra

ph
ic

s

Su
bj

ec
t

A
ge

A
m

pu
ta

ti
on

 A
rm

A
rm

 T
es

te
d

T
im

e 
si

nc
e 

A
m

pu
ta

ti
on

T
yp

e 
of

 P
ro

st
he

si
s 

U
se

d

T
R

1
53

R
ig

ht
R

ig
ht

20
 y

ea
rs

M
yo

el
ec

tr
ic

T
R

2
62

R
ig

ht
R

ig
ht

25
 y

ea
rs

M
yo

el
ec

tr
ic

T
R

3
55

B
ila

te
ra

l
R

ig
ht

32
 y

ea
rs

B
od

y-
Po

w
er

ed

T
R

4
24

L
ef

t
L

ef
t

9 
m

on
th

s
B

od
y-

Po
w

er
ed

T
R

5
32

B
ila

te
ra

l
R

ig
ht

3 
ye

ar
s

B
od

y-
Po

w
er

ed

J Rehabil Res Dev. Author manuscript; available in PMC 2014 November 14.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Simon et al. Page 16

Table 2

Target Achievement Control Test configurable parameters

Parameter Description Study Setting

Test Complexity Number of motions required to reach the target posture. 1 (C1 & C2) 3 (C3)

Movement Distance Distance between the initial position of the virtual hand and the target posture for each 
tested motion. Larger or smaller distances can be used to test gross or fine motor control.

75 degrees

Target Width Acceptable tolerance for reaching the target posture. Smaller target widths lead to more 
challenging trials.

± 5 degrees

Dwell Time Length of time the virtual prosthesis has to continuously remain in the target posture for the 
trial to be considered successful.

2 s

Trial Timeout Length of time in which trial must be completed. If the timeout is reached without success, 
the trial is considered failed.

15 s (C1 & C2) 45 s (C3)
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