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This article introduces a generalization of dimensional analysis and
its corollary, the �-theorem, to the class of problems in which some
of the quantities that define the problem have fixed values in all
the cases that are of interest. The procedure can reduce the number
of dimensionless similarity variables beyond the prediction of
Buckingham’s theorem. The generalized �-theorem tells when and
how large a reduction is attainable.

D imensional analysis is a method for reducing complex
physical problems to their simplest (most economical)

forms prior to quantitative analysis or experimental investigation
(1). Its use in science and engineering is ubiquitous. Applications
are many, including astrophysics, electromagnetic theory, radi-
ation, aerodynamics, ship design, heat and mass transfer, me-
chanics of elastic and plastic structures, explosions, chemical
reactions and processing (2–7), simulation of nuclear reactor
accidents (8–10), biology (11, 12), and even economics (13).
Dimensional analysis reduces a problem’s degrees of freedom to
the minimum and thus suggests the most economical scaling
laws. It can be particularly useful in exploratory investigations of
novel phenomena for which the equations and boundary con-
ditions have not yet been fully articulated.

Buckingham’s �-theorem (14) states that if a quantity Q0 (a
dependent variable) is completely determined by the values of a set
of n independent quantities, of which a number k form a complete,
dimensionally independent subset, then a suitable dimensionless Q0
will be completely determined by n � k dimensionless similarity
parameters. In other words, the number of independent variables
(the problem’s inherent ‘‘degrees of freedom’’) may be reduced by
the number k. The value of k and the forms of the similarity
parameters emerge from dimensional analysis.

There exist, however, numerous instances in which some of the
independent variables that define Q0 have essentially invariant
values in all of the cases that are under consideration. The
question then arises: does this lead to a further simplification,
that is, to an additional reduction in the problem’s inherent
degrees of freedom? If so, how is the process of dimensional
analysis, and with it the �-theorem, altered?

Simply omitting the quantities that have fixed values and per-
forming dimensional analysis on the rest will not answer this
question. Dimensional analysis must be based on a complete set of
independent quantities that define the quantity of interest (1), that
is, all quantities with values that may affect the quantity of interest
must be included regardless of whether some have invariant values
in the cases that are under consideration. Omitting even one
relevant independent variable can fatally damage the analysis.

In what follows, we show that the �-theorem takes the
following form.

Generalized �-Theorem. If a quantity Q0 is completely determined
by a set of n independent quantities, of which k are dimensionally
independent, and if nF of the independent quantities have fixed
values in all the cases being considered, a number kF of which are
dimensionally independent, then a suitable dimensionless Q0 will be
completely determined by (n � k) � (nF � kF) dimensionless
similarity parameters, where kF � nF.

In other words, the fact that a number nF of the independent
quantities have fixed values further reduces the number of
independent similarity parameters by (nF � kF) � 0. This
theorem is a generalization of Buckingham’s �-theorem and
reduces to it when nF � 0.

The generalized �-theorem emerges from the following pro-
cedure. Suppose we are interested in a quantity Q0 (a dependent
variable) that is completely determined by the values of n
independent quantities Qi, of which nF are held at fixed values
in all the cases that concern us. Let the independent quantities
that define the problem be the first (n � nF) of Qi, and designate
by Fi the nF quantities that have fixed values. Thus

Q0 � f�Q1, Q2, . . . , Qn�nF
; F1, F2, . . . , FnF

�. [1]

Step 1: Choose a complete, dimensionally independent subset
of the set Fi with invariant values. Let these be the first kF of the
fixed set kF � nF. Using the variables in this subset, nondimen-
sionalize the remaining (nF � kF) fixed quantities and write the
relationship (Eq. 1) in the alternative form

Q0 � f�Q1, Q2, . . . , Qn�nF
;

F1, F2, . . . , FkF
; F*kF�1, F*kF�2, . . . , F*nF

�, [2]

where the asterisks indicate dimensionless quantities that are
invariant in the cases that concern us. For cases in which the
asterisked quantities have invariant values, we may write Eq. 2 as

Q0 � f�Q1, Q2, . . . , Qn�nF
; F1, F2, . . . , FkF

�. [3]

The value of Q0 is thus completely determined by a reduced set
of (n � nF � kF) independent quantities, comprising those that
are not fixed plus the dimensionally independent subset of the
invariant quantities.

Step 2: Now perform dimensional analysis on the relationship
3. Select from the set of (n � nF � kF) independent quantities
in Eq. 3 a complete, dimensionally independent subset of k
quantities. Let this subset be the first k of the quantities. Because
Eq. 3 contains all the variable independent quantities, plus the
dimensionally independent subset of the invariant independent
variables, the subset we thus obtain is also a complete, dimen-
sionally independent subset for the whole original set of n
quantities.

According to Eq. 3, Q0 depends on (n � nF � kF) independent
variables, of which k are dimensionally independent. Dimen-
sional analysis thus yields the result

Q*0 � f��1, �2, . . . , �N�, [4]

where Q*0 is a dimensionless Q0,

N � �n � k� � �nF � kF�, [5]
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and nF � kF � 0. This proves the generalized �-theorem. The
proof follows not so much from mathematics as from constraints
that result from the fundamental properties of physical quanti-
ties and physical equations (1).

The theorem states the following: The fact that a number nF
of the independent quantities always have the same fixed values
in a particular phenomenon reduces the number of independent
similarity parameters in that problem by (nF � kF), where nF �
kF. This theorem is a generalization of Buckingham’s �-theorem
and reduces to it when nF � 0.

Example 1: As a very simple example, consider the similarity
law for the hydrodynamic drag force D on a fully submerged, very
long, neutrally buoyant cable being dragged behind a boat. Basic
fluid mechanics tells us that, barring surface roughness on the
cable, the drag force should be completely determined by
the cable’s length L and diameter d, the boat’s speed V, and the
water’s density � and viscosity �. Three of these five quantities
are dimensionally independent, and Buckingham’s �-theorem
tells us that an appropriately defined dimensionless drag is a
function of n � k � 2 dimensionless similarity parameters.
Dimensional analysis shows that this relation can be written

D
�V2L2 � f�Re,

L
d�, [6]

where Re � �VL�� is a Reynolds number and L�d defines the
cable’s aspect ratio. Eq. 6 is a general similarity relationship for
the cable-towing problem as stated.

If, however, � and � have essentially the same values in all the
applications that are of interest (as may be expected in this
problem), the number of independent quantities that actually
vary from case to case is really not five but three. Does this lead
to a further reduction of similarity parameters? Simply omitting
the invariant quantities and performing dimensional analysis on
the rest will not answer this question. Were we to omit the
density and viscosity, the relationship D � f(L, d, V, �, �) would
reduce to D � f(L, d, V), which is clearly incorrect because the
relationship is not dimensionally homogeneous: the dimension
of D on the left (a force) cannot be written in terms of just length
and velocity.

The generalized �-theorem gives the answer: the invariance of
� and � brings about an additional reduction of (nF � kF) � 2 �
2 � 0 dimensionless parameters; that is, no further reduction in
degrees of freedom (dimensionless parameters) is obtained in
this case. This result is by no means self-evident.

A further reduction in independent variables (beyond the
prediction of Buckingham’s �-theorem) can be achieved only
when nF � kF, that is, when not all independent quantities are
dimensionally independent.

Example 2: As an example for which invariant variables do lead
to a reduction of the problem’s degrees of freedom, consider the
steady-state heat transfer rate Q from a hot sphere in an infinite
ambient fluid at uniform pressure and temperature in a gravita-
tional field. The heat flux Q is completely determined by eight
quantities,

Q � f�R, �T; g, �, �, cp, �, 	�, [7]

where R is the sphere’s radius, �T is its surface temperature
relative to the ambient atmosphere, g is the acceleration of
gravity, and the remaining five quantities are fluid properties:
density �, kinematic viscosity �, specific heat cp, thermal diffu-
sivity �, and coefficient of thermal expansion 	. Buckingham’s
�-theorem tells us that a dimensionless Q is a function of n �
k � 8 � 4 � 4 dimensionless independent quantities. One way
of writing this relationship is

Q
�cp��TR

� f�	�TgR3

�2 ,
�

�
, 	�T,

cp�T
gR �, [8]

where the quantity on the left is a (modified) Nusselt number
and the first two on the right are the Grashof and Prandtl
numbers, respectively.

If, however, we are interested only in spheres in a particular
fluid, R and �T may take on arbitrary values whereas the values
of g and the five fluid properties in Eq. 7 remain invariant. For
this case, the generalized �-theorem yields the result that a
suitably chosen dimensionless Q will depend on (n � k) � (nF �
kF) � (8 � 4) � (6 � 4) � 2 dimensionless parameters. The
forms of the two parameters emerge from the procedure out-
lined in Eqs. 1–5 and the accompanying text. For the present
case, with �, �, 	, and g selected as the dimensionally indepen-
dent subset of the fixed quantities, Eq. 3 reads

Q � f�R, �T; �, �, 	, g�, [9]

and dimensional analysis of Eq. 9 gives

Q
�cp��TR

� f�gR3

�2 , 	�T,
�

�
,

cp

	��g�2/3�. [10]

The last two parameters in Eq. 10, composed now entirely of
invariant quantities, have fixed values. This leads to the simpli-
fication that, for all spheres in the same fluid,

Q
�cp��TR

� f�gR3

�2 , 	�T�, [11]

which is in accord with the generalized �-theorem. The number
of �-groups has been reduced from Buckingham’s four to the
generalized theorem’s two.

We note that in the Boussinesq limit (	�T3 0), where 	 and
g appear not separately but only as the product 	g, Eq. 11
simplifies further to

Q
�cp��TR

� f�	g�TR3

�2 �. [12]

In summary, we have introduced a �-theorem and a formal
dimensional analysis procedure for problems in which some of the
independent quantities that specify the problem have fixed values
in all the cases that are of interest. We show when and how some
such problems can be simplified further, that is, when their
�-groups can be reduced below the number predicted by Buck-
ingham’s theorem.
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