
Unraveling the contribution of pancreatic beta-cell suicide in 
autoimmune type 1 diabetes✩

Majid Jaberi-Dourakia, Santiago Schnellb,c,d, Massimo Pietropaoloe,d, and Anmar Khadraa,*

Majid Jaberi-Douraki: majid.jaberi-douraki@mail.mcgill.ca; Santiago Schnell: schnells@umich.edu; Massimo Pietropaolo: 
maxtp@med.umich.edu; Anmar Khadra: anmar.khadra@mcgill.ca
aDepartment of Physiology, McGill University, Montreal, QC, Canada H3G 1Y6

bDepartment of Molecular & Integrative Physiology, University of Michigan Medical School, Ann 
Arbor, MI 48109, USA

cDepartment of Computational Medicine and Bioinformatics, University of Michigan Medical 
School, Ann Arbor, MI 48109, USA

dBrehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI 
48105, USA

eDepartment of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, 
USA

Abstract

In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-

secreting pancreatic beta-cells, it has been suggested that disease progression may additionally 

require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. 

We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress 

by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell 

from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore 

protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of 

unfolded protein response by developing a multi-state model of type 1 diabetes that takes into 

account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by 

endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation 

and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible 

damage by endoplasmic reticulum stress. Our results reveal important insights about the balance 

between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis 

by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the 

unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes.
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1. Introduction

Patients with autoimmune type 1 diabetes (T1D) are insulin dependent for life. The 

autoimmune disease is characterized by the destruction of pancreatic beta-cells, which 

causes the absolute deficiency of insulin. It is estimated that 90% of insulin-secreting beta-

cells are lost due to autoimmune destructive mechanisms commanded by (CD8+ and CD4+) 

cytotoxic T lymphocytes and proinflammatory cytokines. The loss of insulin causes 

abnormal regulation of glucose homeostasis in T1D patients (Atkinson et al., 2011; Jacob 

and Baltimore, 1999; Morran et al., 2010, 2008; Valitutti et al., 1995; Veiga-Fernandes et 

al., 2000).

During the progress of T1D, the processing of proteins from apoptotic beta-cells 

phagocytized by antigen presenting cells (APCs), such as macrophages, then drives peptide-

major histo-compatibility complex (pMHC) formation and expression on APCs for further 

T-cell activation and amplification of the autoimmune response. Cytokine secretion (such as 

IL-1 and TNF) during these immunological processes by APCs and CD4+ T-cells is also 

implicated in the activation of these (and other) immune cells and in beta-cell destruction 

(Cardozo et al., 2005; Homann and Eisenbarth, 2006; Kopito and Ron, 2000; Nepom, 2008; 

Viola and Lanzavecchia, 1996; Wells et al., 1997). The latter is done by either the induction 

of free radicals in beta-cells, and/or the upregulation of Fas expression on beta-cell surface, 

leading to an increase in the interaction with Fas ligand on infiltrating lymphocytes 

(Atkinson and Eisenbarth, 2001; Moriwaki et al., 1999; Petrovsky et al., 2002).

However, clinical and experimental evidence indicates that massive beta-cell death also 

results from a combination of factors, such as beta-cell stress, inflammation and insulin 

resistance (O'Sullivan-Murphy and Urano, 2012). As a matter of fact, Bottazzo (1986) 

questioned whether beta-cell death was mainly driven by beta-cell death triggered by 

immune response (i.e., beta-cell homicide) or beta-cell apoptosis triggered by cellular stress 

and inflammation (i.e., beta-cell suicide).

The degree of beta-cell destruction by autoreactive CD8+ and CD4+ T-cells (homicide) 

depends on both the affinity/avidity of T-cell receptor (TCR) binding with pMHC class I 

and class II molecules, and the population sizes of the different clones of islet-specific 

autoreactive T-cells, possessing various levels of avidities and autoantigenic specificities, 

that is governed by the level of (inter- and intra-clonal) competition between them 

(Bluestone et al., 2010; Jaberi-Douraki et al., 2014; Khadra et al., 2011; Morran et al., 

2010). As T1D progresses, the avidity of autoreactive T-cells increases during the course of 

the immune response in a process that is called avidity maturation, which is regulated by 

tolerance and competition (Standifer et al., 2009). Persistent changes in beta-cell physiology, 

e.g., hyperexpression of MHC class I molecules once autoimmunity has been initiated, 

likely enhance their sensitivity to such autoimmune destruction. Understanding the 
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mechanisms defining the interactions between these clones may provide important insights 

about the dynamics of this disease and how to systematically block autoreactivity without 

compromising the immune system as a whole.

On the other hand, the degree of beta-cell destruction by inflammation and cellular stress 

(suicide) is triggered by endo-plasmic reticulum (ER) stress during the progression of T1D. 

Beta-cells are professional secretory cells, which make extensive use of the ER machinery to 

synthesize insulin and other proteins (Alberts et al., 2002; Ghaemmaghami et al., 2003; 

Rutkowski and Kaufman, 2004; Schnell, 2009). Insulin is synthesized in the ER at a rate of 

1 million molecules per minute (Anelli and Sitia, 2008; Liu et al., 2007; Schuit et al., 1988). 

It has been suggested that mild persistent hyperglycemia and inflammatory signaling, e.g., 

through IL-1, can trigger ER-stress (as well as oxidative stress and mitochondrial stress, 

respectively) and beta-cell apoptosis (Atkinson et al., 2011; Marchetti et al., 2007). When 

the ER protein-folding need exceeds beta-cell functional capacity and ER-stress is ensued, 

another intracellular process, called the adaptive unfolded protein response (UPR), is 

triggered to meet the challenge of processing larger insulin loads. By augmenting the ER's 

complement of molecular chaperones and other folding activities, the UPR elevates protein 

folding capacity to match need. In T1D, the attrition of beta-cell population can cause severe 

elevations in ER-stress in the remaining beta-cells, which are forced to synthesize and 

secrete larger amounts of insulin. To restore protein homeostasis in the beta-cells under 

autoimmune attack, the UPR is activated, reversing ER-stress in beta-cells (i.e., acting as an 

important secondary modifier of the overall disease process). If the UPR is unable to restore 

protein homeostasis, beta-cells eventually succumb to damage and apoptosis (Atkinson et 

al., 2011; Bottazzo, 1986).

Interestingly, it was shown that the decline in beta-cell number/function, due to autoimmune 

responses, can be reduced in early T1D patients that received intensive insulin treatment 

(The Diabetes Control and Complications Trial Research Group, 1998). Hyperglycemia 

alone is not sufficient to induce beta-cell death, but can lead to dysfunction (Fontés et al., 

2010). Modest hyperglycemia, together with cytokine-mediated (oxidative) and ER-stress, 

on the other hand, may exacerbate beta-cell death and dysfunction (Atkinson et al., 2011). 

The contribution from hyperglycemia in accelerating this destructive process could be 

important when considering the recovery of beta-cell function that occurs in the honeymoon 

period for many new-onset T1D patients, once the hyperglycemia is treated (Atkinson et al., 

2011; Fontés et al., 2010).

Because of the experimental difficulty in accessing the pancreatic tissue and lymph nodes 

from subjects at risk of developing T1D, it is imperative to develop predictive mathematical 

models of pancreatic beta-cell destruction to understand the role of the autoimmune 

response (leading to beta-cell homicide) and ER-stress (leading to beta-cell suicide). There 

has been several modeling studies of ER-stress and UPR (Aldridge et al., 2006; 

Kholodenko, 2006; Kitano, 2002; Schnell, 2009; Schnell et al., 2007; Erguler et al., 2013) 

that have focused on understanding the molecular mechanisms regulating both of these 

processes. We aim in this study to model ER-stress and UPR macroscopically as two 

independent processes affecting beta-cell population dynamics, and combine them with 

other autoimmune processes involving T-cell mediated destruction. Our goal is to address 
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the following three fundamental questions: What levels of pancreatic beta-cells during the 

progression of T1D trigger ER-stress? How does ER-stress contribute to the beta-cell 

extinction rate during the progression of T1D? And, what level of ER-stress triggers UPR 

signaling?

2. Formulation of the mathematical model

2.1. Non-scaled model

Applying similar approaches to those used in modeling T-cell dynamics in autoimmune T1D 

(Jaberi-Douraki et al., 2014; Khadra et al., 2011, 2009, 2010b; Marée et al., 2006), we 

develop a model that consists of three subclones of T-cells with an ascending order of 

avidities. For simplicity, the three subclones are assumed to have the same autoantigenic 

specificity, representing the whole pool of beta-cell specific autoantigens. As illustrated in 

Fig. 1, the positive selection of islet-specific autoreactive T-cells in the thymus (Pietropaolo 

et al., 2012) leads to T-cell escape and autoimmune destruction of beta-cells (homicide) in 

the pancreas. The diminishing number of beta-cells in turn triggers ER-stress in surviving 

beta-cells because they are forced to overwork to compensate for the insulin deficit. In these 

individual pancreatic beta-cells that are unable to balance the insulin protein load display a 

rough ER distended with protein aggregates, and undergo accelerated cell apoptosis 

(suicide), hastening the decline of functional beta-cell mass. We assume that during this 

process, UPR is activated to reverse both ER-stress and, to a certain degree, beta-cell 

extinction. The uptake of dead beta-cells by APCs and the expression of pMHCs on their 

surface lead to further priming of autoreactive T-cells and the intensification of the 

autoimmune response. Cytokines secreted by T-cells are assumed to be at quasi-steady state 

(QSS), making their total concentration proportional to the population sizes of the three 

subclones of T-cells.

By labeling the population sizes of the three subclones of T-cells by Ti, i = 1, 2, 3, beta-cells 

by β and pMHC expression level on APCs by P, the scheme of Fig. 1 implies that their 

dynamics are given by

(1)

(2)

(3)

where σiP/(P+ki) and αiTiP/(P+ki) are the Michaelis-Menten terms describing the pMHC-

dependent thymus input and replication of T-cells within each subclone with maximum rates 

σi and αi, respectively, and half-maximum activation ki that is inversely correlated with the 

avidity of the three T-cell subclones (Skowera et al., 2008; Standifer et al., 2009) (i.e., k1 ≥ 
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k2 ≥ k3), δTiTi is the T-cell turnover,  is the T-cell homeostasis due to 

nonuniform but symmetric inter-clonal competition arising from limited space and limited 

number of pMHC binding sites (symmetry here means that the unitless parameters εij satisfy 

εij = εji),

is the beta-cell renewal (or growth) due to neogenesis and replication (Khadra et al., 2009), 

κℋ(T1, T2, T3)β is the autoimmune destruction (homicide) of beta-cells by T-cells occurring 

at a constant rate κ (also called killing efficacy) Er(β, Upr)β is the ER-stress-induced beta-

cell loss (suicide) that depends on both beta-cell number and the strength of UPR signal, 

R(κℋ(T1, T2, T3)+ρEr(β, Upr))β is the mass-action term describing the production of pMHCs 

from dead beta-cells (Atkinson et al., 2011), and δPP is the pMHC turnover. The parameter 

ρ here represents the relative efficiency of APCs in processing beta-cell specific peptides 

from the two destructive processes.

The two important features of this model are (i) the inclusion of beta-cell homicide 

described by the function

(4)

where 0 < r1 ≤ r2 ≤ r3 = 3 represent the relative killing efficacies of the three subclones, 

which are compatible with their increasing level of avidities, and (ii) the inclusion of beta-

cell suicide occurring at a rate Er(β, Upr) due to ER-stress. To make the model more accurate 

physiologically, we impose the following three conditions on the rate Er: limβ→0Er(β, Upr) 

is finite, which means that ER-stress plateaus by reaching its maximum level; limβ→0Er(β, 

Upr)β = 0 (i.e., ER-stress-induced beta-cell death is biphasic); and limβ→∞Er(β, Upr) = 0, 

which means that ER-stress is negligible when the beta-cell loss is insignificant. To meet 

these criteria, we choose the Er(β, Upr) to be

(5)

where ae is the maximum ER-stress, n = 2 is the Hill coefficient, ke is the half-maximum 

ER-stress, and Upr is the negative feedback from UPR signaling cascade. To model the 

inhibitory effect of UPR and to meet the second criteria of ER-stress, we assume that Upr is 

of Holling type IV formalism (Jost et al., 1973), given by

(6)
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where āu is the maximum UPR and k̄
u is the half-maximum activation of UPR. Due to the 

recursive nature of Eqs. (5) and (6), we simplify Eq. (6) by assuming that Upr depends on 

Er(β, 0). In other words,

(7)

where  and . Notice that the expression of Upr in Eq. (7) is 

biphasic with Upr(0) = limβ→∞ Upr = 0, which is considered physiological in view of the 

fact that UPR is negligible at both high and low beta-cell numbers.

2.2. Model rescaling

We simplify the model (1)–(3) by making the following substitutions:

(8)

where  and β0 is the maximal number of beta-cells. The model then 

becomes

(9)

(10)

(11)

where the new non-italicized parametric quantities introduced into Eqs. (9)-(11) are given by

(12)

and
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(13)

with

is the scaled form of Upr (see Eq. (7)) and

To maintain the ascending order of avidity, we maintain our previous assumption that k3 ≤ 

k2 ≤ k1. For the rest of the paper, we will use the scaled model Eqs. (9)–(11) to perform our 

analysis and simulations.

2.3. Parameter estimation

Some of the parameters of the model have been previously estimated in Khadra et al. (2009) 

and Sugarman et al. (2013). Data from non-obese diabetic (NOD) mice, prone to developing 

insulin-dependent diabetes similar to human T1D, was used to determine the ballpark values 

of these parameters. This was done by applying steady state and stability analysis on similar 

T-cells models. However, the parameters associated with the role of ER-stress in beta-cell 

suicide, including those that appear in Eq. (13), remain unknown. To find estimates and 

ranges for these parameters, we apply similar nonlinear stability analysis approaches to the 

scaled model described by Eqs. (9)–(11).

We begin first by noting that in the absence of an autoimmune assault, it is expected that 

only one stable steady state for β is attained; namely, the healthy state βss = 1. In view of Eq. 

(10), this steady state must also satisfy the equation

(14)

where ℋ( 1, 2, 3) = 0 (see Eq. (4)). It then follows from Eq. (14) that

which means that
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(15)

Since

then by Eq. (15), we have

(16)

Furthermore, because the steady state βss = 0 is unstable in the absence of an autoimmune 

attack, we may conclude from Eq. (10) that in the neighborhood of βss, we have

(17)

The two latter inequalities (16) and (17) imply that ae must be bounded by the following 

range:

(18)

whereas ke, according to inequalities (16) and (18), is bounded below by

Using the ranges for s and kβ obtained in Khadra et al. (2009) and listed in Table 1, we can 

conclude from (17) that ae ∈ [9.1 × 10−4, 0.16] day−1. Moreover, it is estimated that the rate 

of beta-cell loss during T1D progression in NOD mice is about 4300 cells/ day (Kurrer et 

al., 1997), a rate that includes the cumulative T-cell-dependent and ER-stress-dependent 

destruction described by the negative terms in Eq. (10). In other words, we can estimate the 

range of ER-stress rate at the start of the autoimmune attack (when beta-cell number is still 

intact) by setting

(19)

Jaberi-Douraki et al. Page 8

J Theor Biol. Author manuscript; available in PMC 2016 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where β0 is the total number of beta-cells in the healthy state, estimated to be between [5,6] 

× 105 cells (Jo et al., 2007; Khadra et al., 2009). By substituting the known parameter values 

listed in Table 1 into Eq. (19) and setting β = 1, we find that Er ∈ [0, 0.0914] day−1 

(negative values are ignored). Taking inequality (17) into consideration and recognizing that 

UPR is negligible at the start of the autoimmune attack (i.e., Upr ≈ 0), we can solve for ke in 

Eq. (13), and obtain the range [0.11, 0.35] for ke.

Finally, according to Eq. (15),

(20)

where

which has to be positive to guarantee the positivity of au (as is the case for the default values 

of the parameters listed in Table 1). The dependence of au on ku in Eq. (20) leaves only one 

free parameter, ku, to be determined. Knowing that only 10–20% of beta-cells survive 

destruction during T1D, the range of ku that corresponds to a steady state level for β within 

the range [0.1, 0.2] can be estimated by plotting the bifurcation diagram of β with respect to 

ku while keeping other parameters fixed at their default values listed in Table 1. Using this 

methodology, we observe (not shown here) a steady decline in β while decreasing ku. Thus 

for β ∈ [0.1, 0.2], we must have ku ∈ [0.3, 2.5] and au ∈ [2.8,19.8] (in view of Eq. (20)).

2.4. Numerical simulations

Model simulations and bifurcation diagrams were produced using either MATLAB 

(Mathworks), or the public domain software package AUTO.

3. Results

3.1. LHS and PRCC

One important aspect of modeling studies of physiological systems, such as T1D, is the 

ability to determine how sensitive (or uncertain) different components of the model are to 

perturbations and thus identify potential targets for therapeutic purposes. Various 

methodologies for assessing both the sensitivity of any model to small variations in 

parameter values and its inherent uncertainty are available in the literature. Here, we apply 

the Latin Hypercube Sampling (LHS) method in combination with Partial Rank Correlation 

Coefficient (PRCC) to study the global sensitivity of the scaled model, Eqs. (9)–(11), in a 

multi-dimensional parameter space (Marino et al., 2008).

In the LHS method, random sampling of the parameters is done independent of each other. It 

is performed by dividing the ranges of K parameters into N bins, where N is the total number 

of samples or iterates (simulations), and randomly selecting values within these ranges 
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according to probability density functions (pdf). Once a value is selected for a given 

parameter in a K-tupled parameter combination, the bin containing this value is then 

discarded in all subsequent K-tuples (i.e., each bin is sampled exactly once without 

replacement). In our simulations, we apply N=20,000 iterations and use the normal 

distribution for randomly selecting values. The modes (= means) of these distributions are 

the default values of the parameters in Table 1 and standard deviations are assumed to be 0.2 

of the mean. A matrix is then generated (also called the LHS-matrix), consisting of N rows, 

representing the sample size, and K columns corresponding to the number of parameters 

being varied. The resulting N parameter combinations appearing as rows in the LHS-matrix 

are then used to produce N simulations, yn = ( 1n, 2n, 3n, βn, n)T, n = 1.2, …, N, from 

the model described by Eqs. (9)–(11).

By assigning rank 1 to the smallest value obtained for each parameter, rank 2 for the next 

largest value, an average rank for equal values (which occurs when N is large enough to 

make two parameter values numerically indistinguishable from each other), and rank N (the 

sample size) for the largest value, we can generate the input rank-transformation matrix XR 

by substituting each entry of the LHS-matrix by its rank. Similarly, we can also apply the 

same ranking process on Y = (y1, y2, …, yN) at every time point and generate the output-

rank transformation matrix YR. In other words, a new output-rank transformation matrix is 

generated at every discrete time point of the numerical method (which is the Nonstandard 

Finite Difference Schemes in our case, Mickens, 1994, 2005). The correlations between 

inputs (parameters) and outputs (simulations) of the model are then measured based on the 

rank transforms XR, YR using partial rank correlation coefficient (PRCC). This is done by 

evaluating the correlation coefficient

where Cov(U, V) is the covariance between U and V, (Var(U), Var(V)) and (Ū, V̄) are the 

variances and means of (U, V), respectively, (U, V) are the residuals (XRj − X̂
Rj, YR − ŶRj), j 

= 1, 2, …, K, and (X̂
Rj, ŶRj) are the linear regression models (see Marino et al., 2008 for 

more details).

In Fig. 2, we use LHS-based PRCC to study the sensitivity of the scaled model described by 

Eqs. (9)–(11), to two sets of parameters: {ae, ke, au, ku}, representing the effect of ER-stress, 

and {ε11, ε12, ε13, ε22, ε23, ε33}, corresponding to non-uniform inter-clonal competition, 

while keeping all other parameters fixed at their default values listed in Table 1. The results 

obtained at every given parameter are considered statistically significant when the mean p-

value, averaged over 4 years, is below 0.05 (results not shown). According to this latter 

criterion, we find that 1 (A2) and 3 (A3) are not significantly affected by ER-stress-

related parameters (with p > 0.05), but the UPR associated parameters, au and ku, have 

significant impact on the dynamics of β (A1). In fact, we observe a general trend in which 

PRCCs in panel (A1) to be more pronounced than in panels (A2) and (A3) (with p-values 

that are also significantly lower). These results suggest that ER-stress-induced beta-cell 
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suicide plays negligible role in intensifying the autoimmune response, but UPR is a more 

sensitive pathway and could have some impact on beta-cell survival.

In the presence of nonuniform competition, however, the model becomes very sensitive to 

variations in {ε11, ε12, ε13, ε22, ε23, ε33}, with mean p-values that are below 0.03 for every 

single parameter. Such behavior is maintained during both the transient and steady state 

responses of the scaled model. As expected, the positive effects exerted on 1, the low 

avidity subclone, by certain parameters in (B2) become negative when considering 3 in 

(C2), the high avidity subclone, and vice versa. These results suggest that (nonuniform) 

competition plays a major role in shaping up the autoimmune response and could be used as 

a target for manipulating this response by perhaps expanding certain T-cell subclones at the 

expense of others.

3.2. Effects of ER-stress and UPR on the scaled model

To further analyze the effects of ER-stress and UPR on the dynamics of the scaled model, 

described by Eqs. (9)–(11), we simulate the response of the model over a heterogeneous 

population of individuals, generated by randomly selecting values for the parameter set {ae, 

ke, au, ku}, using the LHS method. The goal is to determine, using the heterogeneous 

population, how the average beta-cell loss affects the different components of the model. As 

shown in Fig. 3, the average response of the scaled model over time shows what we would 

expect in the presence of autoimmunity; namely, a gradual decline in β (A) and a steady but 

small rise in both beta-cell renewal f(β), described by Eq. (12), and ER-stress Er(β), 

described by Eq. (13). Both of these outcomes arise from the fact that the decline in β leads 

to an increase in the pressure exerted on both of these two components. Although the rise in 

f(β) is still observed, it is not effective in blocking the increase in ER-stress, due to an 

overall decline in β.

Another way of examining these outcomes can be done by plotting the average response of 

this heterogeneous population with respect to the time-dependent β(t), described by Eq. (10). 

The goal here is to determine how the decline in β is correlated with four major components 

of the model: ER-stress, UPR, beta-cell renewal and the total population-size of T-cells. As 

demonstrated in Fig. 4, the decline in β, observed in Fig. 3(A), induces a linear increase in 

Er (panel (A)), but hyperbolic increase in f(β) (panel (C)). It also induces a biphasic response 

in both UPR (panel (D)) and  = 1 + 2 + 3 (panel (D)). Although the UPR-biphasic 

response produces a maximum, its effect in blocking the steady increase in ER-stress is 

minimal, implying that the intracellular processes triggered in the beta-cells to meet 

metabolic demand are insufficient to protect surviving beta-cells from being overwhelmed 

from synthesizing insulin. In view of the results shown in Fig. 2(A), the sensitivity of the 

model to au and ku suggests that it is possible to perturb this maximum to increase the 

impact of UPR on ER-stress, but such an impact will not be substantial enough to block the 

autoimmune depletion of beta-cells, as suggested by Fig. 2(A1–C1).

3.3. T-cell and beta-cell time evolution

In previous modeling studies of T1D, the role of T-cell avidity and the killing efficacy in 

beta-cell destruction or homicide were investigated without the inclusion of ER-stress and 
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UPR in the dynamics of beta-cells (Khadra et al., 2009, 2011; Jaberi-Douraki et al., 2014). 

In these studies, it was shown how increasing T-cell avidity and killing efficacy affected 

beta-cell survival and the timing of disease onset. Here we extend these studies in order to 

understand the synergy between T-cell-induced beta-cell homicide and ER-stress-induced 

beta-cell suicide. This is done by applying similar approaches in which the LHS method is 

utilized to randomly select parameter values from their perspective ranges.

In Fig. 5, we plot the 10-year time evolution of the scaled model, Eqs. (9)–(11), as heat-

maps color-coded according to the color-bars on top of each column, by setting κ = 5 × 

10−9(day cell)−1, while varying the parameters k1 (A1–D1), k2 (A2–D2) and k3 (A3–D3), 

one at a time within the ranges listed in Table 1. In all these simulations, the inequality k1 ≥ 

k2 ≥ k3 is maintained. For each value of ki used to produce one simulation within each heat-

map, the LHS method is repetitively applied to select random values for the remaining 

parameters, taking into consideration the fact that (ki, αi) are positively correlated, (ki, δTi) 

are negatively correlated and (ki, ri) are negatively correlated. In other words, the values of 

the parameters used to generate each simulation within a heat-map in Fig. 5 for a given 

value of ki, i=1, 2, 3, are not the same, causing the heat maps to exhibit a certain degree of 

noise that is reflective of the stochastic nature of the autoimmune response in T1D.

Fig. 5 shows that the scaled level of T-cells 1 (A1–A3), 2 (B1–B3) and 3 (C1–C3) can 

coexist as well as exhibit a pattern of cyclic waves for certain values of ki, i=1, 2, 3. These 

waves are reminiscent to those observed in Jaberi-Douraki et al. (2014), and hypothesized to 

be responsible for making T1D a relapsing-remitting disease. The underlying reason for 

observing such waves is the presence of quasi-stable (transiently stable) steady states that 

lose stability when β crosses thresholds determined by the stable manifolds of the saddle 

points of the model (see next section for more details). The intriguing outcome of these 

noisy heat-map simulations is the sensitivity of β, shown in panels (D1–D3) to very small 

perturbations in ki, i=1, 2, 3, during the autoimmune response. In other words, small changes 

in ki, i=1, 2, 3, can cause a shift in the level of β from diabetic outcomes, in which β < 0.3, to 

nondiabetic outcomes in which β ≥ 0.3, where the 0.3-threshold represents the 30% of 

surviving beta-cells required for keeping affected individuals asymptomatic (typically lying 

between 0.1 and 0.5). These results provide a rationale as to why related high risk subjects 

(first degree relatives of T1D patients) can exhibit two very different outcomes in terms of 

disease manifestation; namely, their intrinsic variations in disease parameters. Such 

outcomes are regularly observed in clinical settings of T1D subjects.

3.4. Model analysis

The two important aspects of T1D progression are the slow decline of beta-cells (in the time 

scale of months), due to homeostatic mechanisms, and the fast peptide accumulation and 

processing in APCs (with a time scale of days). Using these two features, one can reduce the 

size of the scaled model, Eqs. (9)–(11), into a three-variable model by setting β equal to a 

constant (β = 1) and applying quasi-steady state approximation (QSS) on (11) to obtain
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(21)

The resulting model, given by Eqs. (9) and (21), becomes a purely T-cell population model 

that resembles the three dimensional Lotka-Volterra system, given by

(22)

which was thoroughly studied by Zeeman (1993) and others (Hofbauer and Sigmund, 1988; 

Hofbauer and SO, 1994; Zeeman and van den Driessche, 1998). Notice here that one can 

obtain Eqs. (22) from Eqs. (9) and (21) by setting

(23)

where h is a constant. Therefore, many of the well-known results associated with the Lotka–

Volterra system can be extended to the T-cell model provided that conditions (23) are 

satisfied, as illustrated below.

By letting

it was found by Zeeman (1993) that whenever, det(A) = 0, then the Lotka–Volterra system 

will not have steady states lying entirely in the interior (which excludes the boundaries) of 

the first quadrant of the N1, N2, N3-space (i.e., every steady state of the system has at least 

one zero-component). However, when det(A) ≠ 0, then the system can have one interior 

steady state. [The stability of these steady states and the existence of Hopf bifurcations were 

also investigated under various conditions.] For the reduced T-cell model satisfying 

conditions (23), similar results can be deduced, based on the determinant of the competition 

matrix A.

However, when the function h, defined in Eq. (21), is not a constant, other possibilities may 

occur, including the existence of an interior equilibrium point (in the first octant) despite 

having det(A) = 0. In fact, by taking σi = 0, i ∈ {1, 2, 3}, we find, according to Eq. (9), that

(24)

for i ≠ 0, which shows that
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(25)

Since these three functions are strictly increasing, it is plausible for their graphs to intersect 

at exactly one point for a given set of values attained by the parameters αi, ki and δTi, i=1, 2, 

3. Such an intersection may occur at most once. Although this seems to be very unlikely and 

that the set of parameter values generating such an outcome may not be even physiological, 

the resulting equilibrium would have nonzero T-cell levels in all three subclones 

simultaneously.

When the determinant of the matrix A of the T-cell model, given by Eqs. (9)–(11), is 

nonzero, more interesting dynamics are observed. This is expected in view of the fact that 

the T-cell model generalizes the notion of competition introduced in the three dimensional 

Lotka–Volterra system. In this case, not only interior equilibria may exist, but oscillatory 

solutions that underlie relapse-remission in T1D may also exist, as discussed in von Herrath 

et al. (2007) and analyzed in Jaberi-Douraki et al. (2014). By making β, the slowly changing 

variable, a bifurcation parameter, we can plot the effect of declining beta-cell level on the 

steady states of 3, the level of the highest avidity T-cell subclone. As shown in Fig. 6(A), 

when β is below 0.4, we observe a rise in the steady state level of 3 along two stable 

branches, one of which (labeled 1) terminates to the left at an unstable steady state, while the 

other (labeled 2) terminates at a transcritical bifurcation point. The presence of these two 

stable branches indicates that bistability and cyclic waves are two important features of the 

T-cell model. The latter is generated during β decline when the rise in 3 along branch 1 

eventually drops to branch 2 upon reaching the left-end point of the bistable regime, 

followed by another rise along branch 2, causing these waves in 3 to occur as observed in 

Fig. 5. Initial conditions and parameter values of the model will determine if such outcomes 

can be produced. ER-stress-induced suicide, for example, could act as a perturbing factor 

that determines which stable branch of the bifurcation diagram is followed.

Another important aspect of the model that should be analyzed is the effect of nonuniform 

competition on its dynamics. According to previous studies (De Boer and Perelson, 1994), it 

was found that having such nonuniformity leads to the dominance of one subclone with the 

highest competition over all others. In view of Fig. 6(B), we find that by setting ε12= 3, ε13 = 

1.1 and ε33 = 0.782, coexistence between the three T-cell subclones can transiently occur 

within certain ranges of β (between 0.2 and 0.3). This coexistence occurs as transient 

oscillatory solutions that are determined by the stable periodic branches emanating from the 

supercritical Hopfs. These oscillations are similar to those observed in Jaberi-Douraki et al. 

(2014) and thought to be another mechanism underlying relapse-remission in T1D.

4. Discussion

During the progression of the clinical onset of T1D, high risk subjects exhibit multiple islet 

autoantibodies and wide blood glucose excursions associated with beta-cell destruction. The 

difficulty in collecting in vivo data from pancreatic tissue and pancreatic lymph nodes from 

these subjects makes developing predictive mathematical models of pancreatic beta-cell 

destruction a promising and an alternative tool to understand the role of pathogenic T-cell 
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responses and ER-stress in the natural history of the disease. In this study, an ordinary 

differential equation model, consisting of three competing subclones of T-cells with the 

same autoantigen specificity but with varying avidities, beta-cells and the expression level of 

pMHCs on APCs, was developed. The unique aspect of this model is the inclusion of beta-

cell ER-stress and UPR signaling that were described as functions of the number of 

surviving beta-cells. According to this formalism, intracellular pathways responsible for 

triggering both of these signals were ignored and a more macroscopic formalism is 

considered instead.

The model provided a quantitative framework to investigate the effects of ER-stress on beta-

cell extinction during the progression of T1D, as well as the role of nonuniform competition 

exerted by the three subclones of T-cells on their dynamics. Using a combination of steady 

state analysis and statistical approaches, the study provided important insights about the 

presumed synergy between T-cell induced homicide and ER-stress-induced suicide in the 

demise of beta-cells in T1D. To determine the sensitivity of the model to these two factors, 

the Latin hypercube sampling (LHS) method in combination with partial rank correlation 

coefficient was applied. Our results revealed that the dynamics of T-cells (but not beta-cells) 

were not significantly affected by the processes involved in ER-stress (which is counter 

intuitive), while beta-cells and T-cells were both very sensitive to perturbations in the 

competition scaling factors that were used to generate nonuniform competition. In the 

former, beta-cell loss exhibited marked dependence on the maximum level and half-

maximum activation of UPR. These results indicate that although UPR signaling in beta-

cells is an available therapeutic target for improving disease outcomes, it is not sufficient to 

block the disease because beta-cell autoimmune destruction is too powerful and will 

continue unabated until disease onset. In other words, our results suggest that it is more 

effective to target the autoimmune mechanisms (such as the competition between the T-cell 

(sub)clones) responsible for beta-cell destruction rather than targeting beta-cell activities.

By considering a heterogeneous population of individuals whose parameters were randomly 

selected using LHS, we analyzed the average response of the model by quantifying ER-

stress, UPR and beta-cell renewal over time. Our simulations showed that the presence of 

compensatory mechanisms to support beta-cell function is insufficient to impede the steady 

decline in beta-cell number. Furthermore, this steady decline was accompanied by 

monophasic linear and hyperbolic rise in ER-stress and beta-cell renewal, respectively, but a 

biphasic response is observed in both UPR and total autoreactive T-cell accumulation. The 

model showed that the lack of sensitivity of T-cells to ER-stress-related processes makes 

any elevation in the maximum level of UPR potentially helpful in the short run to meet 

metabolic demand (as is the case for example in the honeymoon period observed in T1D-

patients, Chase et al., 2004; Muhammad et al., 1999; Bober et al., 2001; Robles et al., 2002; 

von Herrath et al., 2007), but in the long run, this elevation is doomed to fail in maintaining 

healthy number of beta-cells that can secrete enough insulin to keep normal level of glucose 

in circulation.

The heterogeneity observed in the time evolution of T1D between different high risk 

subjects, including first degree relatives, is well known experimentally. The impact of this 

heterogeneity on the dynamics of the model was analyzed to determine disease outcomes, 
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and to demonstrate its sensitivity to T-cell kinetics. Using the LHS method to randomly 

select parameters of the model, we showed that small perturbations in the values of the 

parameters may alter the outcomes completely by shifting the beta-cell survival level above 

or below the critical threshold for clinical T1D. Fluctuations in T-cells were also exhibited 

under various conditions of T-cell avidity. These fluctuations were due to the presence of 

transient bistability responsible for producing recurrent surges in the high avidity T-cell 

subclone throughout disease progression.

Using bifurcation analysis that assumes beta-cell loss to be a slowly occurring process, we 

showed in Fig. 6 how bistability (produced by the two branches 1 and 2) for certain values 

of T-cell avidities was manifested. Altering the values of avidity, however, is expected to 

modify the configuration of the bifurcation diagram and make the bistability-induced T-cell 

fluctuations disappear, as illustrated in Fig. 5. Furthermore, based on the bifurcation diagram 

in Fig. 6(B), we found that in the presence of nonuniform competition, the model could 

possess up to four Hopf bifurcation points (HB1–HB4) when beta-cell number is within 20–

30% of its original population size. By setting the peptide equation (21) to a constant, the 

model becomes a three dimensional model that is similar to the Lotka–Volterra system 

analyzed in Gyllenberg et al. (2006), Hofbauer and SO (1994), Lu and Luo (2002), Lu and 

Luo (2003), May and Leonard (1975), and Wang et al. (2011). It was shown in May and 

Leonard (1975) that it is plausible for this system to possess four Hopf bifurcation points. 

Based on our simulations of the full model presented here (i.e., with the peptide assumed to 

be a dynamic variable), a total of six Hopf bifurcation points may be generated.

As stated earlier, the effect of ER-stress and UPR on beta-cells was described 

macroscopically as a function of surviving beta-cells. To account for the intracellular 

biochemical pathways that regulate ER-stress and UPR, a more detailed model, that couples 

this subcellular world with the supracellular regime defining beta-cell interaction with 

immune cells, must be also developed. Such study will provide better understanding of how 

UPR signaling could act as a secondary modifier for T1D.
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Fig. 1. 
A scheme displaying the different factors involved in beta-cell suicide and homicide in 

autoimmune T1D. T-cell induced destruction of beta-cells triggers both ER-stress that 

causes beta-cell suicide, and the unfolded protein response (UPR) in surviving beta-cells. 

Autoantigens from dead beta-cells are expressed as peptide-major histocompatibility 

complexes (pMHCs) on antigen presenting cells (APCs) for further T-cell activation and 

recruitment in an autocatalytic way.
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Fig. 2. 
Progression of PRCCs of the scaled model, described by Eqs. (9)–(11), over time, 

illustrating how sensitive the model is towards both ER-stress-dependent processes and 

nonuniform competition. PRCCs of β (A1 and A2), 1 (B1 and B2) and 3 (C1 and C2) are 

performed for the following two sets of parameters {ae, ke, au, ku} (A1–C1) and {ε11, ε12, 

ε13, ε22, ε23, ε33} (A2–C2). Each color corresponds to one parameter as illustrated by the 

two legends. (For interpretation of the references to color in this figure caption, the reader is 

referred to the web version of this paper.)
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Fig. 3. 
Simulations of the scaled model, described by Eqs. (9)–(11), averaged over a heterogeneous 

population of individuals generated by sampling ER-stress-related parameters, {ae, ke, au, 

ku}, from the values and ranges listed in Table 1 using LHS method. The 10-year time 

evolution (black lines) of β (A), f(β) (B) and Er(β) (C) is displayed. Error bars (gray lines) in 

each panel represent the standard deviation at various time points. As expected, the decline 

in beta-cell number induces a gradual increase in both beta-cell renewal (neogenesis/

proliferation) and ER-stress.
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Fig. 4. 
The graphs (solid lines) of the functions Er (A), Upr (B), f(β) (C) and  = 1 + 2 + 3 (C) 

with respect to the time-varying β during disease progression, averaged over a 

heterogeneous population of individuals, as described in Fig. 3. The gray circles around the 

curves represent the two dimensional elliptical Gaussian distribution with a given mean and 

covariance matrix.
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Fig. 5. 
Heat-map simulations of the scaled model, described by Eqs. (9)–(11), at κ = 5 × 10−9(day 

cell)−1. The 10-year time evolution of 1 (A1–A3), 2 (B1–B3), 3 (C1–C3) and β (D1–

D3) are displayed. The color-coding in each panel is quantified by the color-bars on the top 

of each column. The simulations are performed by applying LHS over the following ranges: 

k1 ∈ [1, 3] (A1–D1), k2 ∈ [0.5, 2] (A2–D2) and k3 ∈ [0.01, 0.5] (A3–D3), given that the 

inequality k1 ≥ k2 ≥ k3 is always maintained. Notice that the random sampling performed by 

LHS makes small perturbations in the values of ki, i = 1, 2, 3, have significant implications 

on the number of surviving beta-cells. (For interpretation of the references to color in this 

figure caption, the reader is referred to the web version of this paper.)
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Fig. 6. 
Bifurcation diagrams of 3, described by Eq. (11), with respect to β, the slowly varying 

variable in the presence of uniform (A) and nonuniform (B) inter-clonal competitions. To 

generate nonuniform competition in (B), the following values for the competition scaling 

factors are used: ε12 = 3, ε13 = 1.1 and ε33 = 0.782. Solid-(dashed-) black lines in panels (A) 

and (B) represent stable (unstable) steady states and gray-solid lines in panel (B) represent 

the branches of stable periodic orbits emerging from supercritical Hopf bifurcation points 

(HB1, HB2, HB3 and HB4). The two panels are truncated at β = 0.45 to magnify the 

bifurcation diagrams for small β, and because higher values of β do not alter the stable 

steady state 3 = 0. As indicated, nonuniform competition induces oscillations in 3.
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Table 1

Values of the parameters appearing in the scaled model described by Eqs. (9)–(11). Parameters without units 

are dimensionless. For symmetry, we assume that εij = εji, i, j= 1, 2, 3.

Parameter Description Value Range Ref.

σ1 ≈ σ2 ≈ σ3 Influx rate of naïve-cells from thymus ≈ 5.8787 × 10−5 

day−1
[3.8341, 19.596] × 
10−5

Khadra et al. (2009), Sugarman et 
al. (2013)

α1, α2, α3 Expansion rate of T-cells 10, 6, 2 day-1 [2, 20] Jaberi-Douraki et al. (2014), 
Khadra et al. (2011, 2009, 2010a, 
2010b), Kim et al. (2007)

δT1, δT2, δT3, T-cell turnover rate 0.1, 0.15, 0.2 
day−1

[0.01, 0.3] Jaberi-Douraki et al. (2014), 
Khadra et al. (2011, 2009, 2010a, 
2010b), Kim et al. (2007)

k1, k2, k3 Saturation threshold for T-cell activation 2, 1, 0.1 [1, 3], [0.5, 2], 
[10−5, 0.5]

Jaberi-Douraki et al. (2014), 
Khadra et al. (2011), Standifer et 
al. (2009), Skowera et al. (2008)

ε T-cell competition 5 × 10−6 (cell 
day)−1

– Jaberi-Douraki et al. (2014), 
Khadra et al. (2011, 2009, 2010a)

εij (i, j = 1, 2, 3) Scaling factor for the competition 
between the ith and jth T-cell subclones

1 [0.5, 1.5]

s Maximal rate of beta-cell renewal per 
day

0.0011 day−1 [9.3, 20] × 10−4 Dor et al. (2004), Khadra et al. 
(2009)

kβ Saturation threshold for beta-cell renewal 0.0159 [0.0125, 0.022] Dor et al. (2004), Khadra et al. 
(2009)

κ Killing rate of beta-cells 7 × 10−10(cell 
day)−1

[10−11, 10−7] Jaberi-Douraki et al. (2014), 
Khadra et al. (2011), Khadra et al. 
(2009), Skowera et al. (2008)

ρ Relative efficiency of peptide processing 
in APCs

2.5 – Fitted

ae Maximal rate of beta-cell loss induced by 
ER-stress

0.1 day−1 [9.1 × 10−4, 0.16] Estimated

ke Saturation threshold for ER-stress 0.2 [0.11, 0.35] Estimated

ku Saturation threshold for UPR 1.5 [0.3, 2.5] Estimated

au Maximal rate of UPR signal transduction 
cascade

5.3124 [2.8, 19.8] Estimated

R̂ Ratio of T-cell net growth rate to 
competition factor

8.51 × 105 cells – Jaberi-Douraki et al. (2014), 
Khadra et al. (2011, 2009), 
Skowera et al. (2008)

R Peptide accumulation rate 0.4 – Jaberi-Douraki et al. (2014), 
Khadra et al. (2011, 2009), 
Skowera et al. (2008)

δP Peptide degradation rate 0.1 day−1 – Jaberi-Douraki et al. (2014), 
Khadra et al. (2011, 2009, 2010a, 
2010b), Mahaffy and Edelstein-
Keshet (2007)

r1, r2, r3 Relative killing efficacies of the three 
subclones

0.7, 0.875, 3 – Jaberi-Douraki et al. (2014), 
Khadra et al. (2011)
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