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Abstract

Purpose of review—To review the recent developments in understanding the pathophysiology 

of heparin-induced thrombocytopenia (HIT) and in applying this knowledge to the treatment of 

patients with suspected and proven HIT.

Recent findings—HIT pathophysiology is dynamic and complex. HIT pathophysiology is 

initiated by four essential components – heparin (Hep), platelet factor 4 (PF4), IgG antibodies 

against the Hep–PF4 complex, and platelet FcγRIIa. HIT is propagated by activated platelets, 

monocytes, endothelial cells, and coagulation proteins. Insights into the unique HIT antibody 

response continue to emerge, but without consensus as to the relative roles of B cells, T cells, and 

antigen-presenting cells. Platelet activation via FcγRIIa, the sine qua non of HIT, has become 

much better appreciated. Therapy remains challenging for several reasons. Suspected HIT is more 

frequent than proven HIT, because of the widespread use of Hep and the inadequacies of current 

diagnostic tests and scoring systems. In proven HIT, approved treatments reduce but do not 

eliminate thrombosis, and have substantial bleeding risk. Rational novel therapeutic strategies, 

directed at the initiating steps in HIT pathophysiology and with potential combinations staged over 

time, are in various phases of development.

Summary—Progress continues in understanding the breadth of molecular and cellular players in 

HIT. Translation to improved diagnosis and treatment is needed.
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INTRODUCTION

Heparin-induced thrombocytopenia (HIT) is an uncommon but devastating complication of 

heparin (Hep) therapy. Paradoxically, anticoagulant medication and thrombocytopenia 

manifest not as bleeding, but rather as limb and life-threatening thrombosis. The thrombotic 

events are multifocal, involving veins, arteries, and the microvasculature.

In Table 1, we provide a framework for understanding HIT in the context of the major 

human thrombotic disorders. We define immune-mediated thrombocytopenia and 

thrombosis (ITT) as intravascular activation of blood cells and endothelial cells by 

components of the innate and adaptive immune systems, resulting in platelet–fibrin thrombi 

in large and small vessels of arterial and venous beds, as well as in the microvasculature, 

often concurrently. Each class of thrombosis, including ITT, has an annual US incidence of 

disease in excess of 500 000 cases per year. HIT is a paradigm for the ITT disorders, in that 

we have an advanced appreciation of many of the molecular and cellular players. (Note: ITT 

is distinct from ITP, an auto-immune bleeding disorder in which antibodies to platelet 

surface glycoproteins cause accelerated platelet clearance.) We have found this framework 

to be useful in examining the mechanisms and models in pathophysiology, as well as in the 

rational design of novel therapeutics.

PATHOPHYSIOLOGY

HIT is a dynamic and complex disorder. The initial steps of the most commonly recognized 

clinical form of HIT involve patient exposure to a form of Hep, followed by the 

development of IgG antibodies over 4–14 days directed to a complex of platelet factor 4 

(PF4) and Hep. The IgG antibodies activate platelets via FcgRIIa. Thrombin is generated 

and platelet–fibrin thrombi are formed (Fig. 1).

Since the essential initiating steps in HIT path-ophysiology were elucidated in the 1990s and 

early 2000s, attention has turned to the dissection of the complex steps encapsulated by the 

statements ‘IgG antibodies are formed to PF4/hep’ and ‘platelets are activated and thrombin 

is generated’.

Antibodies to the platelet factor 4 and heparin complex

Progress in the recent past has come from consideration of the origins of HIT antibody 

generation. Within days of treatment with Hep, IgG antibodies to Hep and PF4 are detected. 

The titers disappear for most patients after 90–120 days [1]. Some, but not all, HIT patients 

re-exposed to Hep manifest a detectable IgG again. Thus, the HIT IgG response is rightly 

called an atypical response. The outstanding questions are: what is the immunogen? What 

are the roles of antigen-presenting cells and T cells in the response, and which B cells 

produce the antibody?

It is generally accepted that the clinical manifestations of HIT are caused by antibodies that 

recognize an ultralarge complex (ULC) composed of Hep and PF4 tetramers. PF4 tetramers 

bind avidly to Hep and to cellular glycosaminoglycans (GAGs), an interaction that is central 

to the pathogenesis of HIT. Arepally and colleagues have used a murine immunization 
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model to investigate the immunogen [2,3]. Their data are compatible with the immunogen 

PF4 and Hep having a different molar ratio than the activating ULC. It remains to be 

determined how these data reflect specific B-cells and antigen-presenting cells. Greinacher 

and colleagues have identified PF4 bound to certain bacteria as initiating the generation of 

HIT-like antibodies [4–7]. Others have concordant data [8■]. PF4 bound to nucleic acids 

may also be immunizing [9■,10], as may interaction with several polyanions [11■]; further 

studies are needed. Wang and colleagues recently reported that HIT antibody generation had 

features of lost tolerance [12■■]. They also identified marginal zone B-cells as a potential 

source of the pathologic IgG [13■].

HIT antibodies bind preferentially to PF4 when Hep is present over a narrow molar ratio of 

reactants and activate platelets through FcγRIIA. Several epitopes of PF4 are important for 

pathogenic antibody binding [14,15], including two distinct antigenic sites: site 1 – residues 

after the third cysteine residue (beginning with proline-37); and site 2 – residues in the 

amino terminus and proline-34 [14]. Formation of ULC involves charge neutralization of 

PF4 with GAG [2,16] and clustering of PF4 molecules [16,17]. These data support a model 

in which Hep clustered PF4 residues to form neoepitopes where pathologic antibodies bind. 

We used single molecule binding with optical tweezers to reveal the difference between 

binding of a nonpathogenic anti-PF4 antibody (RTO) vs. pathologic anti-PF4/Hep antibody 

(KKO) [18,19■]. Greinacher and colleagues recently used circular dichroism to identify a 

Hep-bound PF4 conformation that is recognized by HIT antisera, and to provide insights 

into the dependence on GAG length and charge [20]. Further work, including three-

dimensional structural data, is required to definitively determine the nature of the 

neoepitopes created upon ULC formation.

The HIT antibodies in humans are polyclonal. In HIT mouse model systems, only the 

murine monoclonal antibody KKO has been proven to mirror the human HIT antibody. 

Asada et al. [21] identified a mouse IgG1 monoclonal HIT antibody used in ex-vivo HIT 

assays. Details of its preferential reactivity for PF4 and Hep over PF4 alone are needed. 

Progress in additional monoclonal HIT antibodies is anticipated.

As charge neutralization of PF4 by Hep is important for the formation of PF4–Hep 

complexes, Chudasama et al. [22] observed that other positively charged proteins, such as 

protamine, may similarly complex with Hep. Several groups have recently examined 

patients who have undergone cardiopulmonary bypass for antiprotamine–Hep antibodies and 

found that approximately 25–30% of such patients have demonstrable antibodies peaking 

10–30 days after surgery, which can activate platelets [23–25]. These antibodies do not 

cross-react with PF4–Hep ULC, and demonstrate a preference for protamine–Hep over 

protamine alone [24,26]. The clinical significance of these antibodies is not clear, although 

Bakchoul et al. [24] found an increase in early arterial thromboembolic events compared 

with controls (odds ratio 21.6; 95% confidence interval, 2.9–161). Further studies are 

required to better define the clinical implications of these antibodies.

How exactly the antigenic ULC is decorated with IgG antibodies in the pathologic immune 

complex (IC), and the connection between the IgG density and orientation along the ULC 
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responsible for Fcg receptor clustering on platelets and monocytes (see below) remain under 

investigation.

Platelet activation and thrombin generation

Propagation of HIT pathophysiologically follows from platelet activation (Fig. 2). 

Activation results in several consequences: platelets secrete more PF4, feeding back to 

create more antigen; platelets aggregate via activated integrin αIIbβ3; and platelets become 

procoagulant with a phosphatidylserine-positive surface for coagulation reactions and 

shedding of highly procoagulant microparticles [27–29].

The HIT IC signals through FcγRIIa to activate platelets. We have used both rational 

biological candidate approaches and unbiased genomic methods to increase the 

understanding of FcgRIIa-mediated platelet activation. We have established that protein 

tyrosine kinase Syk is the major FcγRIIa signaling node [30]; CalDAG-GEF1, ADP 

signaling, and 12-LOX have emerged as major determinants of FcγRIIa/Syk-mediated 

activation [31,32]. Platelet FcgRIIa was recently shown to be a transmembrane signaling 

adapter for outside-in αIIbβ3 signaling, quite distinct from its role as an IC receptor [33■]. 

Translation of these findings to HIT could be of substantial value.

There is considerable interindividual variation in platelet activation in response to IC 

agonists. For example, the gold-standard assays for HIT, the serotonin release assay and the 

Hep-induced washed platelet activation test, rely on ‘good/highly reactive’ healthy donor 

platelets, the characteristics of which have been empirical [34]. Rollin et al. [35■] have used 

candidate-gene methods to explore variation in HIT platelet reactivity. Among their findings 

is identification of single-nucleotide polymorphisms (SNPs) in CD148, a membrane protein 

tyrosine phosphatase, that influences platelet reactivity. Scarparo et al. [36■] examined HIT 

candidate-gene polymorphisms in FcγRIIa, PECAM1, and FcγRIIIa. Of note, a combination 

of FcgRIIa and PECAM1 SNP genotypes was significantly associated with HIT thrombosis. 

We have examined mRNAs and miRNAs differentially expressed by 154 healthy donors in 

HIT-like platelet aggregation assays [37]. For the first time, we have unbiased data 

identifying putative determinants of IC-mediated platelet activation; functional validation 

studies are in progress.

Thrombin generation follows coagulation initiation, most likely by tissue factor. Any one or 

two of three pathways lead to tissue factor exposure (Fig. 2). With a preexisting wound, 

surgical or traumatic, subendothelial tissue factor may already be present. Inflammation or 

atherosclerosis may have ‘preactivated’ endothelium and monocytes presenting tissue factor. 

Also, IgG immune complexes activate monocytes and ECs [38–42]. As with platelets, 

antigenic complexes between PF4 and GAGs can form on the surface of monocytes [43]. In 

fact, the amount of antigenic complex formed on monocytes is greater than on platelets. 

Chemical depletion of monocytes from a mouse model of HIT demonstrated potentiation of 

thrombocytopenia, but significant blunting of thrombosis [43]. Further, HIT antigenic 

complexes, binding to FcgRI and FcγRIIa, transduce specific signals to activate monocytes. 

These data provide mechanisms by which HIT IC may be prothrombotic via interactions 

with monocytes.
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Thrombin action is complex. Among its patho-physiological effects thrombin will feed back 

to activate platelets via PAR receptors, as well as cleave fibrinogen to fibrin. Platelet–fibrin 

thrombi formation is the final pathologic step (Fig. 2).

THERAPEUTICS

Current clinical practice will be summarized briefly first. In some HIT cases, thrombi form 

in macro-vascular beds with overt clinical symptoms, such as deep vein thrombosis/

pulmonary embolism, myocardial infarction, stroke, or limb ischemia. In other cases, the 

thrombi are in the microvasculature, with effects that are overt clinically (e.g., adrenal 

thrombosis followed by hemorrhage and skin necrosis) or remain subclinical. When Hep is 

present and PF4–Hep complexes are formed, disease persists. Cell-surface GAGs also bind 

PF4, and as this complex is recognized by the anti-PF4/Hep IgG, platelets and leukocytes 

are still being activated. Thus, simple withdrawal of Hep does not end the ITT. A non-Hep 

parenteral anticoagulant has been the mainstay of treatment.

In April 2014, there was one drug approved by the Food and Drug Administration and 

European Medicines Agency (EMA) for the treatment of HIT, the direct thrombin inhibitor 

(DTI) argatroban, and one drug approved for percutaneous coronary interventions in HIT, 

bivalirudin (also a DTI). Lepirudin is no longer manufactured. In some nations, dana-paroid, 

a mix of highly and minimally sulfated GAGs, is approved. Argatroban has been noted to 

have multiple limitations in practice [23,44], so new treatments are of value. The 

Clinicaltrials.gov site listed 29 entries under ‘heparin-induced thrombocytopenia’ in April 

2014. Only one new HIT therapy trial was recruiting, a study of oral FXa inhibitor 

rivaroxaban in HIT, NCT01598168.

Off-label use of fondaparinux has been the subject of expert opinion, clinical observation, 

and registries. Fondaparinux is a sulfated pentasaccharide that binds antithrombin, like 

unfractionated Hep and low molecular weight Heps. European Medicines Agency guidelines 

state, for ‘Patients with Heparin Induced Thrombocytopenia – Fondaparinux should be used 

with caution in patients with a history of HIT. The efficacy and safety of fondaparinux have 

not been formally studied in patients with HIT type II’ (www.ema.europa.eu/docs/en_GB/

document_library/EPAR_-_Product_Information/human/000403/WC500027746.pdf). The 

American College of Chest Physicians guidelines [45], and a recent review [46], call for 

more studies on the risks and benefits of fondaparinux in HIT. Clinicaltrials. gov has two 

registries of fondaparinux use with observations of HIT (NCT01304238 and NCT01004939) 

[47]. The primary issues are the rare reports of HIT initiated by fondaparinux or failing to 

improve with fondaparinux [48,49]. In our opinion, use of fondaparinux or non-Hep 

anticoagulants outside of a clinical trial in HIT is a local decision, much like the selection of 

antimicrobials for fever and neutropenia has been local. Therapy for suspected HIT should 

be individualized. Treatment decisions require clinical judgment. Adverse consequences 

include persistent thrombocytopenia, new or extended thrombosis, or major hemorrhage. 

Considerations for the use of approved DTIs, off-label fondaparinux, or non-Hep 

anticoagulants in HIT are listed below. Considerations in the individualized treatment of 

suspected HIT are as follows:
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(1) specific patients receiving Hep, for example, cardiovascular, orthopedic, 

medically ill, etc.;

(2) initial anticoagulation – use of unfractionated Hep, low molecular weight Hep, 

or fondaparinux;

(3) indication – for treatment, primary prophylaxis, or secondary prophylaxis;

(4) bleeding risk, including age, anatomical defects, or recent procedure;

(5) likelihood of new or additional interventional procedure;

(6) organ function (especially liver and kidney);

(7) concurrent medications;

(8) reversibility and half-life of the new anticoagulant;

(9) likelihood of proven HIT among those suspected of HIT;

(10) practice of proceeding to definitive HIT platelet activation assay;

(11) costs and insurance reimbursement;

(12) medicolegal environment for adverse consequences.

Recent clinical reports focus on estimating the proportion of suspected HIT patients that 

have true HIT, by use of an antibody detection method combined with one of the clinical 

scoring systems [50–60]. Currently, these approaches have inadequate positive predictive 

values to be generalizable [23]. More work is needed to make practical platelet activation 

assays more widely available in the general hospital clinical laboratory in a robust and 

timely way. Some progress in novel systems has been recently reported – multielectrode 

aggregometry [61], a lymphocyte cell line for HIT antibody activation [62■], determination 

of HIT-related platelet FcgRIIa proteolysis [63,64■], and a micro-patterned platelet 

activation assay [65■■].

Novel preclinical heparin-induced thrombocytopenia therapy

Every one of the approved, off-label, or clinical trial treatments is an anticoagulant geared to 

reduction of thrombin generation or action. Once HIT is established, thrombin is pathologic, 

or otherwise the approved DTIs would not work. However, continued thrombosis or major 

hemorrhage with DTIs remains problematic. It is unknown whether mono-therapy directed 

at thrombin, a late pathophysio-logical step, will be the basis for future approaches. Novel 

treatments targeted to earlier steps in the pathophysiology are in development (Fig. 2).

With our increased understanding of the structural nature of PF4–Hep complexes, there has 

been an interest in targeting these ULCs for the prevention and treatment of HIT. 

Therapeutics which prevent the formation of and promote ULC breakdown would represent 

a new approach [18,66,67].

A Hep-like molecule that has been investigated for disruption of PF4–GAG complexes is 

2,3,-O-desulfated heparin (ODSH). ODSH lacks most of the anticoagulation activity of Hep, 

but retains many anti-inflammatory properties [68]. Joglekar et al. [66] compared PF4– Hep 
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and PF4–ODSH complexes, and found that they both had similar light scattering and net 

charge properties, suggesting that both GAGs form somewhat similar complexes with PF4. 

However, PF4–Hep complexes formed in the presence of ODSH showed markedly reduced 

binding by antisera from HIT patients. It has also been demonstrated that, similar to 

danaparoid, ODSH decreases PF4 binding to platelets as well as activation of platelets by 

HIT antisera [67,68]. Taken together, these data suggest that some non-Hep GAGs may be 

of therapeutic value in HIT by disrupting the electrostatic interactions which drive ULC 

formation. Importantly, as the molar ratio of PF4 to GAG is important for the extent of 

complex formation and antibody recognition, empiric adjustment of dosing will be required 

to find the optimal dose at which the correct ratio will be achieved in vivo. A recent lucid 

summary of PF4 bioavailability in HIT was published, with implications for use of ODSH 

[34].

Another approach to disrupting ULCs is to antagonize PF4 tetramerization, which is a 

prerequisite for ULC formation. Our group screened over one million compounds in silico 

for their likelihood of binding to the dimer interface of PF4 [18]. Two of the candidate 

molecules inhibited tetramerization of PF4. Further, compounds PF4A01 and PF431-04 

completely inhibited ULC formation and promoted the breakdown of preformed ULC. 

Importantly, PF4As inhibited ULC formation at all PF4 : Hep ratios tested, and both 

antagonists prevented cellular activation by ULC and HIT antibodies. Although potency (as 

measured by IC50) of these initial antagonists are in the micromolar range and we seek 

compounds with submicromolar potency, they represent proof of concept of this approach 

for the prevention and treatment of HIT.

Prevention of platelet activation by the HIT IC is another promising approach. Antiplatelet 

agents in the current use have not been shown to be beneficial when used alone, such as 

cox1 inhibitors, P2Y12 blockers, or αIIbβ3 blockers. However, we have used our mouse 

model of HIT to demonstrate that inhibition of Syk can safely and effectively prevent HIT 

[30]. We used the Portola compound PRT060318. Subsequent studies identified the Rigel 

compound R406 to block platelet activation by the HIT IC via FcgRIIa [69]. In more recent 

work, we are investigating other intracellular platelet signaling molecules for blocking 

FcγRIIa-mediated platelet activation, while preserving hemostasis. We are also exploring 

combination therapies directed at several points in the early pathophysiology, for example, 

with PF4 antagonists and Syk inhibitors, in vivo in the HIT mouse model.

CONCLUSION

HIT remains a challenging clinical problem. Current pathophysiology studies are focused on 

the origin of the antibody response, the nature of the antigenic complex and pathologic 

epitopes, the mechanisms of interindividual differences in platelet activation, and the roles 

of monocytes and endothelial cells. Progress in therapy is hampered by the challenges of 

inadequate positive predictive value of antibody detection and clinical scores in suspected 

HIT, very limited availability of practical platelet activation assays, and the paucity of new 

agents in human clinical trials.

McKenzie and Sachais Page 7

Curr Opin Hematol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Acknowledgments

The authors wish to thank their laboratory and clinical teams at Thomas Jefferson University and Hospitals and at 
the University of Pennsylvania. Valuable insights have been provided by the co-investigators Mortimer Poncz, 
Lubica Rauova, Douglas Cines, Gowthami Arepally, and Adam Cuker (support from NIH P01HL110860 to 
S.McK., B.S.S.), Wolfgang Bergmeier (R01HL106009 to S.McK.), Michael Holinstat (R01HL114405 to S.McK.), 
and Paul Bray and Leonard Edelstein (Cardeza Foundation for Hematological Research). S.McK. received research 
support from Portola Pharmaceuticals.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been 
highlighted as:

■ of special interest

■■ of outstanding interest

1. Potschke C, Selleng S, Broker BM, Greinacher A. Heparin-induced thrombocytopenia: further 
evidence for a unique immune response. Blood. 2012; 120:4238–4245. [PubMed: 22932802] 

2. Suvarna S, Espinasse B, Qi R, et al. Determinants of PF4/heparin immunogenicity. Blood. 2007; 
110:4253–4260. [PubMed: 17848616] 

3. Suvarna S, Qi R, Arepally GM. Optimization of a murine immunization model for study of PF4/
heparin antibodies. J Thromb Haemost. 2009; 7:857–864. [PubMed: 19245419] 

4. Greinacher A, Holtfreter B, Krauel K, et al. Association of natural antiplatelet factor 4/heparin 
antibodies with periodontal disease. Blood. 2011; 118:1395–1401. [PubMed: 21659541] 

5. Krauel K, Potschke C, Weber C, et al. Platelet factor 4 binds to bacteria, [corrected] inducing 
antibodies cross-reacting with the major antigen in heparin-induced thrombocytopenia. Blood. 
2011; 117:1370–1378. [PubMed: 20959601] 

6. Krauel K, Weber C, Brandt S, et al. Platelet factor 4 binding to lipid A of Gram-negative bacteria 
exposes PF4/heparin-like epitopes. Blood. 2012; 120:3345–3352. [PubMed: 22942185] 

7. Arman M, Krauel K, Tilley DO, et al. Amplification of bacteria-induced platelet activation is 
triggered by FcgammaRIIA, integrin alphaIIbbeta3 and platelet factor 4. Blood. 2014; 123:3155–
3166.

8■. Pongas G, Dasgupta SK, Thiagarajan P. Antiplatelet factor 4/heparin anti-bodies in patients with 
Gram negative bacteremia. Thromb Res. 2013; 132:217–220. [PubMed: 23830968] [This study 
confirms and extends the original observations of Greinacher and colleagues. PF4 bound to LPS 
is demonstrated to generate HIT-like antibodies.]

9■. Jaax ME, Krauel K, Marschall T, et al. Complex formation with nucleic acids and aptamers alters 
the antigenic properties of platelet factor 4. Blood. 2013; 122:272–281. [PubMed: 23673861] 
[The discovery, pathologic role, and therapeutic implications of PF4 binding to nucleic acids are 
presented.]

10. Chong BH, Chong JJ. HIT: nucleic acid masquerading as heparin. Blood. 2013; 122:156–158. 
[PubMed: 23847186] 

11■. Brandt S, Krauel K, Gottschalk KE, et al. Characterisation of the conformational changes in 
platelet factor 4 induced by polyanions: towards in vitro prediction of antigenicity. Thromb 
Haemost. 2014; 112 http://dx.doi.org/10.1160/TH13-08-0634. [This study examines the 
polyanion charge and length as contributing factors in the HIT antigen.]

12■■. Zheng Y, Wang AW, Yu M, et al. B-cell tolerance regulates production of antibodies causing 
heparin-induced thrombocytopenia. Blood. 2014; 123:931–934. [PubMed: 24357731] [The 
investigators bring a new perspective to the immunizing events in HIT, with a view of B-cell 
tolerance breakdown.]

13■. Zheng Y, Yu M, Podd A, et al. Critical role for mouse marginal zone B cells in PF4/heparin 
antibody production. Blood. 2013; 121:3484–3492. [PubMed: 23460609] [This study explores 
the unique HIT antibody response and presents evidence that marginal zone B-cells, rather than 
germinal center B-cells, may underlie the atypical response.]

McKenzie and Sachais Page 8

Curr Opin Hematol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://dx.doi.org/10.1160/TH13-08-0634


14. Li ZQ, Liu W, Park KS, et al. Defining a second epitope for heparin-induced thrombocytopenia/
thrombosis antibodies using KKO, a murine HIT-like monoclonal antibody. Blood. 2002; 
99:1230–1236. [PubMed: 11830470] 

15. Ziporen L, Li ZQ, Park KS, et al. Defining an antigenic epitope on platelet factor 4 associated with 
heparin-induced thrombocytopenia. Blood. 1998; 92:3250–3259. [PubMed: 9787161] 

16. Greinacher A, Gopinadhan M, Gunther JU, et al. Close approximation of two platelet factor 4 
tetramers by charge neutralization forms the antigens recognized by HIT antibodies. Arterioscler 
Thromb Vasc Biol. 2006; 26:2386–2393. [PubMed: 16873726] 

17. Rauova L, Poncz M, McKenzie SE, et al. Ultralarge complexes of PF4 and heparin are central to 
the pathogenesis of heparin-induced thrombocytopenia. Blood. 2005; 105:131–138. [PubMed: 
15304392] 

18. Sachais BS, Litvinov RI, Yarovoi SV, et al. Dynamic antibody-binding properties in the 
pathogenesis of HIT. Blood. 2012; 120:1137–1142. [PubMed: 22577175] 

19■. Litvinov RI, Yarovoi SV, Rauova L, et al. Distinct specificity and single-molecule kinetics 
characterize the interaction of pathogenic and nonpathogenic antibodies against platelet factor 4-
heparin complexes with platelet factor 4. J Biol Chem. 2013; 288:33060–33070. [PubMed: 
24097975] [Optical tweezer techniques are used to provide insights into the dynamics of PF4 
clustering and the nature of epitopes of pathogenic HIT antibodies.]

20. Block S, Greinacher A, Helm CA, Delcea M. Characterization of bonds formed between platelet 
factor 4 and negatively charged drugs using single molecule force spectroscopy. Soft Matter. 
2014; 10:2775–2784. [PubMed: 24667820] 

21. Asada R, Wanaka K, Walenga J, et al. Murine monoclonal antibody to platelet factor 4/heparin 
complexes as a potential reference standard for platelet activation assays in heparin-induced 
thrombocytopenia. Clin Appl Thromb Hemost. 2013; 19:37–41. [PubMed: 22826445] 

22. Chudasama SL, Espinasse B, Hwang F, et al. Heparin modifies the immunogenicity of positively 
charged proteins. Blood. 2010; 116:6046–6053. [PubMed: 20852126] 

23. Lee GM, Arepally GM. Heparin-induced thrombocytopenia. Hematology Am Soc Hematol Educ 
Program. 2013; 2013:668–674. [PubMed: 24319250] 

24. Bakchoul T, Zollner H, Amiral J, et al. Antiprotamine-heparin antibodies: incidence, clinical 
relevance, and pathogenesis. Blood. 2013; 121:2821–2827. [PubMed: 23325832] 

25. Pouplard C, Leroux D, Rollin J, et al. Incidence of antibodies to protamine sulfate/heparin 
complexes in cardiac surgery patients and impact on platelet activation and clinical outcome. 
Thromb Haemost. 2013; 109:1141–1147. [PubMed: 23636177] 

26. Lee GM, Welsby IJ, Phillips-Bute B, et al. High incidence of antibodies to protamine and 
protamine/heparin complexes in patients undergoing cardio-pulmonary bypass. Blood. 2013; 
121:2828–2835. [PubMed: 23422751] 

27. Warkentin TE, Hayward CP, Boshkov LK, et al. Sera from patients with heparin-induced 
thrombocytopenia generate platelet-derived microparticles with procoagulant activity: an 
explanation for the thrombotic complications of heparin-induced thrombocytopenia. Blood. 1994; 
84:3691–3699. [PubMed: 7949124] 

28. Hughes M, Hayward CP, Warkentin TE, et al. Morphological analysis of microparticle generation 
in heparin-induced thrombocytopenia. Blood. 2000; 96:188–194. [PubMed: 10891450] 

29. Andre P, McKenzie SE, Bergmeier W. The parallel signaling pathways of phosphatidylserine (PS) 
exposure downstream of platelet FcgRIIa. Blood. 2013; 122:3514.

30. Reilly MP, Sinha U, Andre P, et al. PRT-060318, a novel Syk inhibitor, prevents heparin-induced 
thrombocytopenia and thrombosis in a transgenic mouse model. Blood. 2011; 117:2241–2246. 
[PubMed: 21088136] 

31. Stolla M, Stefanini L, Andre P, et al. CalDAG-GEFI deficiency protects mice in a novel model of 
Fcgamma RIIA-mediated thrombosis and thrombocytopenia. Blood. 2011; 118:1113–1120. 
[PubMed: 21652673] 

32. Yeung J, Apopa PL, Vesci J, et al. 12-Lipoxygenase activity plays an important role in PAR4 and 
GPVI-mediated platelet reactivity. Thromb Haemost. 2013; 110:569–581. [PubMed: 23784669] 

33■. Zhi H, Rauova L, Hayes V, et al. Cooperative integrin/ITAM signaling in platelets enhances 
thrombus formation in vitro and in vivo. Blood. 2013; 121:1858–1867. [PubMed: 23264598] 

McKenzie and Sachais Page 9

Curr Opin Hematol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



[The role of platelet FcgRIIa as a transmembrane adapter for outside-in integrin signaling is 
documented. The implications for HIT thrombus formation are under active investigation.]

34. Prechel MM, Walenga JM. Emphasis on the role of PF4 in the incidence, pathophysiology and 
treatment of heparin induced thrombocytopenia. Thromb J. 2013; 11:7. [PubMed: 23561460] 

35■. Rollin J, Pouplard C, Gratacap MP, et al. Polymorphisms of protein tyrosine phosphatase CD148 
influence FcgammaRIIA-dependent platelet activation and the risk of heparin-induced 
thrombocytopenia. Blood. 2012; 120:1309–1316. [PubMed: 22677127] [This study is one of 
several by this group which has productively employed candidate-gene approaches with sizable 
well phenotyped patient cohorts to the biology of HIT. In this study, the role of polymorphisms 
in platelet protein tyrosine phosphatase CD148 is shown.]

36■. Scarparo P, Lombardi AM, Duner E, et al. Heparin-induced thrombocytopenia: & the role of 
platelets genetic polymorphisms. Platelets. 2013; 24:362–368. [PubMed: 22793995] [The value 
of a combination of candidate SNPs, namely in FcgRIIa and PECAM1, to HIT thrombosis is 
shown.]

37. Abraham S, Andre P, Zhou Y, et al. Differential expression of microRNAs accompanies 
differential reactivity via platelet FcgammaRIIa in humans and transgenic mice. Blood. 2012; 
120:2165a.

38. Pouplard C, Iochmann S, Renard B, et al. Induction of monocyte tissue factor expression by 
antibodies to heparin–platelet factor 4 complexes developed in heparin-induced thrombocytopenia. 
Blood. 2001; 97:3300–3302. [PubMed: 11342462] 

39. Arepally GM, Mayer IM. Antibodies from patients with heparin-induced thrombocytopenia 
stimulate monocytic cells to express tissue factor and secrete interleukin-8. Blood. 2001; 98:1252–
1254. [PubMed: 11493478] 

40. Kasthuri RS, Glover SL, Jonas W, et al. PF4/heparin-antibody complex induces monocyte tissue 
factor expression and release of tissue factor positive micro-particles by activation of FcgammaRI. 
Blood. 2012; 119:5285–5293. [PubMed: 22394597] 

41. Tutwiler V, Ahn HS, Cines DB, et al. Microfluidic and flow cytometric studies support a central 
role of monocytes and coat platelets in the prothrombotic state in heparin-induced 
thrombocytopenia (HIT). Blood. 2011; 118:531a.

42. Tutwiler V, Ahn HS, Fuentes R, et al. Fibrin generation in heparin-induced thrombocytopenia 
(HIT): pathomechanistic background for novel therapy and prophylaxis. Blood. 2012; 120:635a.

43. Rauova L, Hirsch JD, Greene TK, et al. Monocyte-bound PF4 in the pathogenesis of heparin-
induced thrombocytopenia. Blood. 2010; 116:5021–5031. [PubMed: 20724543] 

44. Coventry DA, Webster NR. Heparin-induced thrombocytopenia and the health economic analysis 
of argatroban. Br J Anaesth. 2014; 112:964–967. [PubMed: 24569065] 

45. Linkins LA, Dans AL, Moores LK, et al. American College of Chest Physicians. Treatment and 
prevention of heparin-induced thrombocytopenia: antithrombotic therapy and prevention of 
thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice 
Guidelines. Chest. 2012; 141:e495S–e530S. [PubMed: 22315270] 

46. Kelton JG, Arnold DM, Bates SM. Nonheparin anticoagulants for heparin-induced 
thrombocytopenia. N Engl J Med. 2013; 368:737–744. [PubMed: 23425166] 

47. Schindewolf, M.; Steindl, J.; Beyer-Westendorf, J., et al. Frequent off-label use of fondaparinux in 
patients with suspected acute heparin-induced thrombocytopenia (HIT) – findings from the 
GerHIT Multicentre Registry Study.. Thromb Res. 2014. http://dx.doi.org/10.1016/j.thromres.
2014.03.029

48. Ratuapli SK, Bobba B, Zafar H. Heparin-induced thrombocytopenia in a patient treated with 
fondaparinux. Clin Adv Hematol Oncol. 2010; 8:61–65. [PubMed: 20351685] 

49. Bhatt VR, Aryal MR, Shrestha R, Armitage JO. Fondaparinux-associated heparin-induced 
thrombocytopenia. Eur J Haematol. 2013; 91:437–441. [PubMed: 23905719] 

50. Tanhehco YC, Rux AH, Sachais BS. Low-density lipoprotein apheresis reduces platelet factor 4 on 
the surface of platelets: a possible protective mechanism against heparin-induced 
thrombocytopenia and thrombosis. Transfusion. 2011; 51:1022–1029. [PubMed: 20977482] 

McKenzie and Sachais Page 10

Curr Opin Hematol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://dx.doi.org/10.1016/j.thromres.2014.03.029
http://dx.doi.org/10.1016/j.thromres.2014.03.029


51. Tanhehco YC, Cuker A, Rudnick M, Sachais BS. Investigation of a potential protective 
mechanism against heparin-induced thrombocytopenia in patients on chronic intermittent 
hemodialysis. Thromb Res. 2013; 131:244–248. [PubMed: 23305841] 

52. Pierce W, Mazur J, Greenberg C, et al. Evaluation of heparin-induced thrombocytopenia (HIT) 
laboratory testing and the 4Ts scoring system in the intensive care unit. Ann Clin Lab Sci. 2013; 
43:429–435. [PubMed: 24247801] 

53. Cegarra-Sanmartin, V.; Gonzalez-Rodriguez, R.; Paniagua-Iglesias, P., et al. Fondaparinux as a 
safe alternative for managing heparin-induced thrombocytopenia in postoperative cardiac surgery 
patients.. J Cardiothorac Vasc Anesth. 2014. http://dx.doi.org/10.1053/j.jvca.2013.09.008

54. Beiras-Fernandez A, Kanzler I, Michel S, et al. Platelet factor 4-positive thrombi adhering to the 
ventricles of a ventricular assist device in patients with heparin-induced thrombocytopenia type II. 
Transplant Proc. 2013; 45:2013–2016. [PubMed: 23769097] 

55. Matsuo T, Wanaka K, Walenga JM. Evaluation of circuit and AV fistula clotting and detection of 
anti-PF4/heparin complex antibodies in hemodialysis patients suspected of having heparin-induced 
thrombocytopenia. Clin Appl Thromb Hemost. 2013; 19:73–78. [PubMed: 22345486] 

56. Zhao D, Sun X, Yao L, et al. The clinical significance and risk factors of antiplatelet factor 4/
heparin antibody on maintenance hemo-dialysis patients: a two-year prospective follow-up. PLoS 
One. 2013; 8:e62239. [PubMed: 23646121] 

57. Althaus K, Hron G, Strobel U, et al. Evaluation of automated immunoassays in the diagnosis of 
heparin induced thrombocytopenia. Thromb Res. 2013; 131:e85–e90. [PubMed: 23351665] 

58. Raschke RA, Curry SC, Warkentin TE, Gerkin RD. Improving clinical interpretation of the 
antiplatelet factor 4/heparin enzyme-linked immunosorbent assay for the diagnosis of heparin-
induced thrombocytopenia through the use of receiver operating characteristic analysis, stratum-
specific likelihood ratios, and Bayes theorem. Chest. 2013; 144:1269–1275. [PubMed: 23703622] 

59. Garritsen HS, Probst-Kepper M, Legath N, et al. High sensitivity and specificity of a new 
functional flow cytometry assay for clinically significant heparin-induced thrombocytopenia 
antibodies. Int J Lab Hematol. 2014; 36:135–143. [PubMed: 23981347] 

60. Solano C, Mutsando H, Self M, et al. Using HitAlert flow cytometry to detect heparin-induced 
thrombocytopenia antibodies in a tertiary care hospital. Blood Coagul Fibrinolysis. 2013; 24:365–
370. [PubMed: 23429257] 

61. Galea V, Khaterchi A, Robert F, et al. Heparin-induced multiple electrode aggregometry is a 
promising and useful functional tool for heparin-induced thrombocytopenia diagnosis: 
confirmation in a prospective study. Platelets. 2013; 24:441–447. [PubMed: 22994796] 

62■. Cuker A, Rux AH, Hinds JL, et al. Novel diagnostic assays for heparin-induced 
thrombocytopenia. Blood. 2013; 121:3727–3732. [PubMed: 23446735] [This study uses a 
lymphocyte cell line transfected with FcgRIIa to explore a generalizable activation assay for 
HIT.]

63. Gardiner EE, Karunakaran D, Arthur JF, et al. Dual ITAM-mediated proteolytic pathways for 
irreversible inactivation of platelet receptors: de-ITAM-izing FcgammaRIIa. Blood. 2008; 
111:165–174. [PubMed: 17848620] 

64■. Nazi I, Arnold DM, Smith JW, et al. FcgammaRIIa proteolysis as a diagnostic & biomarker for 
heparin-induced thrombocytopenia. J Thromb Haemost. 2013; 11:1146–1153. [PubMed: 
23551961] [This study translates the findings of Gardiner and colleagues on activation-induced 
platelet FcgRIIa proteolysis into a candidate diagnostic for HIT.]

65■■. Medvedev N, Palankar R, Krauel K, et al. Micropatterned array to assess the interaction of 
single platelets with platelet factor 4–heparin–IgG complexes. Thromb Haemost. 2014; 111:862–
872. [PubMed: 24452831] [This study uses nanotechnology to explore HIT-related platelet 
activation. It is the underpinning of a candidate diagnostic assay.]

66. Joglekar MV, Quintana Diez PM, Marcus S, et al. Disruption of PF4/H multimolecular complex 
formation with a minimally anticoagulant heparin (ODSH). Thromb Haemost. 2012; 107:717–725. 
[PubMed: 22318669] 

67. Krauel K, Hackbarth C, Furll B, Greinacher A. Heparin-induced thrombocytopenia: in vitro studies 
on the interaction of dabigatran, rivaroxaban, and low-sulfated heparin, with platelet factor 4 and 
anti-PF4/heparin antibodies. Blood. 2012; 119:1248–1255. [PubMed: 22049520] 

McKenzie and Sachais Page 11

Curr Opin Hematol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://dx.doi.org/10.1053/j.jvca.2013.09.008


68. Rao NV, Argyle B, Xu X, et al. Low anticoagulant heparin targets multiple sites of inflammation, 
suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. 
Am J Physiol Cell Physiol. 2010; 299:C97–C110. [PubMed: 20375277] 

69. Lhermusier T, van Rottem J, Garcia C, et al. The Syk-kinase inhibitor R406 impairs platelet 
activation and monocyte tissue factor expression triggered by heparin-PF4 complex directed 
antibodies. J Thromb Haemost. 2011; 9:2067–2076. [PubMed: 21848694] 

McKenzie and Sachais Page 12

Curr Opin Hematol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



KEY POINTS

• HIT is a complex and dynamic disorder, and a paradigm of the immune-

mediated thrombocytopenia and thrombosis disorders.

• HIT pathophysiology has an initiation phase, immunization to produce 

pathologic antibodies, then platelet activation by IgG–PF4–Hep immune 

complexes. The propagation phase feeds back to amplify the process and leads 

to thrombin generation culminating in platelet and fibrin thrombi.

• HIT therapy needs improvement that could come from better diagnostics in the 

form of practical platelet activation assays, and from combinations of rational 

therapeutics targeting early and late steps in pathophysiology.
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FIGURE 1. 
The multiple steps of HIT disorder. After immunization, there is initiation (upper left) 

culminating in IC-mediated platelet activation, then propagation (lower right) marked by the 

central roles of thrombin. Thrombin feeds back to enhance cellular activation and cleaves 

fibrinogen to fibrin. GAG, glycosaminoglycan; HIT, heparin-induced thrombocytopenia; IC, 

immune complex; PF4, platelet factor 4; ULC, ultralarge complex.

McKenzie and Sachais Page 14

Curr Opin Hematol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



FIGURE 2. 
A detailed view of HIT disorder and therapy. There are three potential routes to TF-

mediated thrombin generation, resulting in the final step of platelet–fibrin thrombi. On the 

left, the locus of current therapy directed at thrombin generation and action (T1) is compared 

with alternative and combination novel therapies geared to formation of the IC (T2) or 

inhibition of IC-mediated platelet activation (T3). Hep, heparin; HIT, heparin-induced 

thrombocytopenia; IC, immune complex; PF4, platelet factor 4; TF, tissue factor.
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Table 1

The four major classes of human thrombotic disorders

Classes of thrombotic disorders Selected examples

Atherothrombosis Coronary artery thrombosis/myocardial infarction; ischemic stroke; mesenteric artery 
thrombosis; limb artery thrombosis

Deep-vein thrombosis and pulmonary 
embolism

Lower extremity; upper extremity; cerebral venous; abdomen

Immune-mediated thrombocytopenia and 
thrombosis

HIT; antiphospholipid syndrome; sepsis syndrome; thrombosis from therapeutic monoclonal 
antibodies; thrombotic thrombocytopenic purpura

MCCATS Malformation, Cancer, Cardiac, Artificial surface, Trauma, Sickle cell disease

HIT is one of the immune-mediated thrombocytopenia and thrombosis disorders.

HIT, heparin-induced thrombocytopenia.
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