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ABSTRACT
The impetus for this work was the need to analyse nucleotide diversity in a viral mix
taken from honeybees. The paper has two findings. First, a method for correction
of next generation sequencing error in the distribution of nucleotides at a site is
developed. Second, a package of methods for assessment of nucleotide diversity is
assembled. The error correction method is statistically based and works at the level
of the nucleotide distribution rather than the level of individual nucleotides. The
method relies on an error model and a sample of known viral genotypes that is used
for model calibration. A compendium of existing and new diversity analysis tools is
also presented, allowing hypotheses about diversity and mean diversity to be tested
and associated confidence intervals to be calculated. The methods are illustrated
using honeybee viral samples. Software in both Excel and Matlab and a guide are
available at http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/,
the Warwick University Systems Biology Centre software download site.

Subjects Biodiversity, Bioinformatics, Computational Biology, Genetics, Mathematical Biology
Keywords Calibration, Error correction, Honeybee, Metagenome, Nucleotide diversity, Standard
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INTRODUCTION
Next generation sequencing (NGS) is an extremely powerful tool for the analysis of mixed

populations in ecology and biology, providing a means to assess community composition

(metagenomics) whilst also aiding the discovery of new species (Radford et al., 2012). The

relatively high error rate of NGS, however, limits the ability to analyze population diversity

directly. Population diversity is a crucial ecological measure, relating particularly to

selection pressure and (relative) evolutionary fitness. Diversity is critical within biological

arenas as well, for instance T cell and viral diversity are key complementary measures of

the immune system and infection status respectively. There is thus a pressing need to create

tools to appropriately correct NGS error, to estimate diversity introduced by NGS and to

estimate inherent virus diversity.

This study was motivated by the prevalence and pathogenicity of honeybee deformed

wing virus (DWV) and related viruses. It is known that these may cause both asymp-

tomatic low-level and symptomatic high-level infection in honeybees; the Varroa mite

is the likely causal factor that produces a shift from the benign to the pathogenic state,

correlating with a shift in the level of viral population diversity (Martin et al., 2012; Ryabov
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et al., 2014). It was the particular need to test for a change in honeybee viral population

diversity that stimulated the current work; for this reason, datasets used here relate to

honeybee deformed wing virus populations.

The Varroa mite is now endemic in honeybee colonies throughout Europe, North

America and New Zealand, causing significant colony losses (Neumann & Carreck,

2010). Varroa acts as a vector for a range of honeybee viral pathogens, most important

of which is the picorna-like deformed wing virus, a close relative of Varroa destructor

virus-1 (VDV-1). At high Varroa levels a virus most closely resembling a recombinant

between published DWV and VDV-1 sequences is amplified in the colony, leading to overt

deformed wing disease and colony loss (Ryabov et al., 2014). Thus, to determine the degree

of selection for that strain there is a need to compare viral diversity between Varroa-free

and Varroa-infested honeybee viral RNA samples. Viral RNA samples, extracted from

individual newly-emerged adult bees from Varroa-free or Varroa-infested colonies, were

subjected to next-generation sequencing (NGS) and the resulting reads used to compare

the diversity in the distribution of nucleotides at each nucleotide position, from one

sample to the other. Next generation sequencing, however, is subject to error which in turn

inflates diversity measures. An accurate measure of nucleotide diversity at each position is

needed in this context, and thus the statistical structure of the nucleotide distribution can

be used to achieve a means for correction.

An extensive literature on the correction of next generation sequencing error is

available, entirely devoted to methods for correction of individual nucleotides rather

than the distribution of nucleotides at each position. A useful recent review of the existing

literature can be found in Yang, Chockalingam & Aluru (2013), where it is pointed out

that all methods depend on “alignment and consensus”, with more powerful approaches

being developed over time. Methods are classified into three types: k-spectrum based

(all k-mers are identified, then clustered by Hamming distance and clusters assumed to

come from the same genomic location), suffix tree/array-based (a generalisation of the

k-mer approach which accommodates multiple values of k) and methods dependent on

a multiple sequence alignment. Early methods (Quince et al., 2009; Zagordi et al., 2011)

assumed that errors occur at random while Skums et al. (2012) builds in known platform

influences. In Macalalad et al. (2012) the authors utilised the fact that biological variants

and process errors exhibit different covariation. Here we develop a simple but effective

method for nucleotide distribution correction. This is a problem at a coarser level than

rectification of the assignation of each nucleotide, allowing us to use a different approach.

Additionally, the method appears to be unique in that it uses a standard sequence for the

purposes of error calibration.

A careful examination of the distribution of Shannon diversity first appeared in the

ecology literature (Hutcheson, 1970). Beerenwinkel et al. (2012) provides an excellent

overview of the state-of-the-art in estimating viral diversity from next-generation

sequencing data; diversity can be measured at single sites (for single nucleotide variant

detection), locally in windows of a multiple sequence alignment and globally over the

entire genomic region. In Gregori et al. (2014) the authors look at three measures of
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diversity and compare their values (the variance of diversity is incorrectly stated in Gregori

et al. (2014), but corrected here in the Diversity analysis section). To conclude the review

of literature on a broader note, in Schreiber & Brown (2002) a method for correcting

systematic bias in the nucleotide distribution (the “distortion”) in a genome is presented.

The novel stochastic method for NGS error correction of diversity measures introduced

here is based on use of an evolutionary model (in the first instance, the Jukes–Cantor

model (Jukes & Cantor, 1969)) and requires the availability of an accurately known

sequenced sample. The corrected nucleotide distribution is used to calculate both the

expected diversity and the diversity variance. These in turn can be used to test hypotheses

about single diversities, or to test the hypothesis of equality of diversity across two samples.

Hypotheses about mean diversities and comparisons of mean diversities of two samples are

also discussed, taking into account correlation of diversities across the averaged sites. Fi-

nally, the ideas are used to produce a diversity threshold for a sample to be consistent with

a clonal (zero nucleotide diversity) population. The methodology is illustrated with NGS

datasets drawn from the honeybee study. The methods discussed extend our understand-

ing of NGS error correction and provide a core set of tools useful in the study of diversity.

MATERIALS AND METHODS
Error and diversity correction
We first correct the NGS error in the nucleotide distribution and then use this distribution

to calculate the (corrected) diversity. Our starting point is the true (to be estimated)

nucleotide distribution, p. Assuming independence of errors, the error introduced through

NGS can be modelled by a 4 × 4 matrix M whose entries give the probability of a particular

nucleotide change during sequencing, conditional on the initial value of the nucleotide,

whence the theoretical distribution of nucleotides following sequencing is q = Mp. In

practice we sequence finitely many nucleotides n so the empirical distribution is q̂ with

E(q̂) = q. The simplest error model is the Jukes–Cantor model, where a nucleotide mutates

to any other with equal (low) probability α, summarised as

M = M(α) =


P(A|A) P(A|C) P(A|G) P(A|T)

P(C|A) P(C|C) P(C|G) P(C|T)

P(G|A) P(G|C) P(G|G) P(G|T)

P(T|A) P(T|C) P(T|G) P(T|T)



=


1 − 3α α α α

α 1 − 3α α α

α α 1 − 3α α

α α α 1 − 3α

.

Since Mp = p + α(1 − 4p), this transformation has the effect of moving all probabilities

closer to 0.25, thereby increasing diversity. Richer mutation models can be incorporated,

for example allowing different mutation rates between purines and pyrimidines; for this

study the Jukes–Cantor model is sufficient for our purposes.
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Figure 1 The stages of NGS nucleotide distribution error correction. (A) Error is introduced to the true
nucleotide distribution p, giving distribution q̂, the result of multinomial sampling with n (the coverage,
the number of nucleotides sequenced) trials in which the true sequenced nucleotide distribution is given
by q = Mp. The error is corrected by forming r̂, the normalisation of (M−1q̂)+. In practice M must
be estimated (the calibration step), using a known initial distribution p. (B) The initial diversity H(p)

increases to H(q̂) under NGS, but falls back to H(r̂) when corrected.

The NGS error can be partly corrected by reversing the mutation process, first

multiplying q̂ by M−1. In practice, thanks to the sampling variation introduced during

NGS, the reversal can yield negative components. For this reason we must bring these

back to zero and then normalize so that the nucleotide proportions sum to one. Thus,

the corrected nucleotide distribution r̂ is the component-wise maximum of M−1(q̂) and

(0,0,0,0), denoted (M−1q̂)+, normalised, so r̂ = (M−1q̂)+/
4

i=1


(M−1q̂)+


i. Since

M−1(q̂) = (q − α)/(1 − 4α), this transformation has the effect of moving all probabilities

away from 0.25, so decreasing diversity. Only when q̂ = Mp does this reversal process

work exactly, returning p. Figure 1A lays out these stages, from p, the true nucleotide

distribution in the organism, to q̂ the distribution following NGS, to r̂, the corrected

distribution. To illustrate this numerically, with p = (1,0,0,0), α = 0.001 and n = 10,000

then (n1,n2,n3,n4) could be (9989,4,3,4) (using a multinomial distribution) whence

q̂ = (0.9989,0.0004,0.0003,0.0004), M−1q̂ = (1.0019,−0.0006,−0.0007,−0.0006),

(M−1q̂)+ = (1.0019,0,0,0), and r̂ = (1,0,0,0) = p. In this example the correction is

exact, but this is not always the case, whence the estimate r̂ will still be subject to error.

To utilize this correction method, we need the matrix M; in the case of the Jukes–Cantor

model this requires an estimate of the mutation rate α. This can be achieved by estimating
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it on a sample of known composition and genotype, denoted here the “standard” sample.

This provides a two-step method to correct an empirical nucleotide distribution q̂ for NGS

error. The first (calibration) step uses pstandard and q̂standard to estimate α (as α̂, so giving an

estimate M̂ of M) while the second (correction) step uses M̂ and q̂ to estimate p with r̂, as

follows:

1. Calibration Step. This is the estimation of α, the error rate in NGS sequencing. We

begin with a sample in which the nucleotide mix pstandard = (p1,p2,p3,p4)
T is known at

each nucleotide position along a genome. We then sequence the mix using NGS, giving

nucleotide mix q̂standard = (q̂1,q̂2,q̂3,q̂4)
T . For each site we can solve for α̂ using q̂ = M̂p.

Equating ith components provides estimates α̂i = (q̂i − pi)/(1 − 4pi) for i = 1,...,4;

these can be averaged across nucleotides to give a lower variance estimate of α,

α̂ =
α̂1 + α̂2 + α̂3 + α̂4

4
=

1

4

4
i=1

q̂i − pi

1 − 4pi
. (1)

These estimates can be averaged across nucleotide positions to improve the estimate

further.

2. Correction Step. Given nucleotide distributions q̂ produced from NGS of a sample, form

the corrected counts r̂ = (M̂−1q̂)+/
4

i=1


(M̂−1q̂)+


i
, where M̂ = M(α̂).

Example 1 in the Results section illustrates these calibration and correction steps with a

numerical example.

It is possible to estimate an upper bound for the residual error rate remaining after

correction, given an NGS error rate α and coverage n. This is done by using the calibration

step with pstandard = (1,0,0,0) and q̂standard = r̂, denoting the estimated residual error

rate by β̂. Here r̂ is found by first generating n values using q = M(α)p, then correcting

using rate α. A graph of β̂ against α is given in Fig. 2, for the case pstandard = (1,0,0,0) and

n = 1,000, 2,000, 5,000, 10,000 and 20,000. This demonstrates, for these parameters, that

correction reduces the error by a factor of over 10 for a coverage of n = 1,000. That this is

an upper bound is made clear in the later Discussion section.

Given a nucleotide probability mass distribution p = (p1,p2,p3,p4) the nucleotide

diversity is H = −
4

i=1pilog4pi. This can be thought of as the geometric mean


ip
pi
i of

the distribution probability masses, transformed by taking the natural logarithm of the

reciprocal; then no diversity, for example (1,0,0,0), has H = 0 while complete diversity, a

uniform distribution of (0.25, 0.25, 0.25, 0.25), has H = 1. Figure 3 shows the graph of

a component −xlog4x of diversity. The steep slope at the extremes, particularly at zero,

shows that correction to a component at these extremes has most effect on diversity

measurement. Of interest here is detection of clonality, where H = 0, so correction of

very small probabilities is critical.
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Figure 2 The estimated residual error rate β̂ after correction plotted against the initial error rate α,
when the true initial distribution is the degenerate p = (1,0,0,0). The larger the coverage n, the more
accurately q̂ estimates q and so the more dependable the correction, hence the smaller is β. Curves are
shown for coverage n of 1,000 (blue), 2,000 (green), 5,000 (red), 10,000 (cyan) and 20,000 (magenta).
Each point on the graph is the mean of N = 5,000 replicate trials.

Figure 3 The graph of a component of diversity, −xlog4x. The gradient converges to infinity as x goes
to zero. A consequence is that corrections in this region have a large influence on diversity measurement.
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With the corrected nucleotide distribution available, the Shannon diversity can be

estimated as

Ĥ = H(r̂) = −

4
i=1

r̂ilog4r̂i. (2)

Figure 1B schematically shows the relative levels of H(p) (true diversity), H(q̂) (uncor-

rected diversity) and H(r̂) (corrected diversity). We conclude this section by remarking

that the data used for calibration should ideally be sequenced under similar conditions to

the data which is to be corrected.

Diversity analysis
Two questions are key in an analysis of population diversity. Firstly, whether the diversity H

is equal to a given value H and secondly, whether two populations have the same diversity,

or alternatively whether one is more diverse than the other. Specifically, we want to test null

hypotheses, firstly of the form H0: H = H and secondly of the form H0: H1 = H2, for two

samples labeled ‘1’ and ‘2’. We will examine both of these tests for diversity measured at a

single nucleotide position and for the mean diversity across segments comprising multiple

(N) possibly correlated sites.

In all cases we will have one or more true nucleotide distributions p, true post NGS

nucleotide distributions q = Mp, estimates q̂ determined using a sample of n nucleotides

drawn from q, so q̂i = ni/n for each i = 1,...,4, where ni is the number of draws resulting

in the ith nucleotide and finally, corrected distributions r̂. Given r̂, Ĥ = H(r̂), as in (2),

estimates the true diversity H = −


ipilog4pi with H evaluated at corrected values r̂ of

estimates q̂ of true values after error introduction, q. When n is large, this approximation

will be close to the true value. In general, since the diversity function is concave, diversity

is increased when we replace p with q and decreased when we replace q with q̂ (since Ĥ

is known to underestimate H (Hutcheson, 1970)) and then r̂ (since r̂ corrects q̂). This

compensation is fortuitous.

The variance of Shannon diversity Var(Ĥ) at a nucleotide position with coverage n and

empirical distribution r̂ = (r̂1, r̂2, r̂3, r̂4) is approximated to first order (Hutcheson, 1970)

with the following expression,

Var(Ĥ) ≈
1

n

 4
i=1

r̂i(log4r̂i)
2
−


4

i=1

r̂ilog4r̂i

2
. (3)

This can be shown using the Δ-method and that Var(r̂i) = ri(1 − ri)/n and Cov(r̂ir̂j) =

−rirj/n, where E(r̂i) = ri for i = 1,...,4.

For testing and estimation we also need the variance of the mean of diversities averaged

across a segment of sites. For ease of presentation (though it is readily generalised),

we now assume that (3) provides the variance of estimated diversity at each nucleotide

position, denoted s2. Empirical evidence shows that diversity is correlated across positions.

We assume an exponential decay of the diversity correlation, with correlation between
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Table 1 Test statistics and two-sided 95% confidence intervals, in brackets, for diversity testing and
estimation with a single position and one or two samples (columns). A population mean is denoted by
µ. For the corresponding formulae involving means across multiple positions, H̄ replaces Ĥ.

Number of samples

1 2

Hypothesis Test statistic z Hypothesis Test statistic z

µH = H Ĥ−H
Var(Ĥ)

µH1 − µH2 = 0 Ĥ1−Ĥ2
Var(Ĥ1)+Var(Ĥ2)

Ĥ ± z0.975


Var(Ĥ) Ĥ1 − Ĥ2 ± z0.975


Var(Ĥ1) + Var(Ĥ2)



nucleotide positions i and j given by ρ j−i+1. Then the average diversity across N

consecutive nucleotide positions, denoted H̄, has variance Var(H̄) given by

Var(H̄) ≈
s2

N


1 + 2

N − 1

N

ρ

1 − ρ
−

2

N2


ρ

1 − ρ

2

(1 − ρN−1)


(4)

=
s2

N


1 +

2ρ

1 − ρ


for N large. (5)

We estimate ρ using the correlation between adjacent diversities (the one-step lagged

correlation) along the segment of interest. With these variance estimates we can conduct

hypothesis tests and construct confidence intervals in all cases considered. These are

summarised in Table 1 and illustrated numerically in Example 2 in “Results”.

Clonal threshold estimation
Suppose that a clonal sample (one with zero diversity) is sequenced by next generation

methods with error rate α. This is corrected to level β̂, as shown in Fig. 2. This level of error

remains in the sample, whence an upper 95% threshold for H̄, the average diversity across

N sequential positions, with lagged correlation ρ, is

H̄ + z0.95


Var(H̄)

where z0.95 = 1.64 is the 95th percentile of the standard normal distribution. Note that

this threshold depends on both the coverage n and the segment length N. A larger n

typically decreases H̄ and so the threshold level, while a larger N decreases the width of

the confidence interval around H̄, so also decreases the threshold level.

Sequence data
Three viral samples were sequenced by next generation sequencing (Illumina HiSeq1000).

These comprised a sample that could be used for estimation of the error (standard

sample), and two experimental samples, from low viral load and high viral load bees.

After trimming adapters and barcodes, the first reads (the reads are paired), 101nts long,

were used to calculate the NGS error rate and illustrate the methods.
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Standard sample: an accurately known mix of two viral recombinants,
X59
This was composed of two of the DWV-like viral recombinant RNA genomes described

in Moore et al. (2011), VDV-1DVD and VDV-1VVD (NCBI Accession Nos. HM067437

and HM067438 respectively). The mixture was produced by in vitro RNA transcription

using linearized plasmid clones with full-length cDNA inserts of VDV-1DVD and

VDV-1VVD (Moore et al., 2011) with the T7 mMESSAGEmMACHINE kit (Ambion). The

RNA transcripts were purified using RNAeasy columns (Quiagen), quantified, mixed 25%

VDV-1DVD, 75% VDV-1VVD and sequenced using the Illumina platform protocol. The

NGS reads are available in the EBI Sequence Read Archive, study accession PRJEB5249,

ERS395188. The reads were aligned using Bowtie 2 (Langmead & Salzberg, 2012) to a

single reference sequence (VDV-1DVD). SAMtools mpileup (Li et al., 2009) was used to

produce the number of nucleotides covering each position in the reference. We excluded

positions of mismatches between the VDV-1DVD and VDV-1VVD sequences, about 4% of

the genome length. This produced nucleotide pileups where all diversity was a result of

the methods used during NGS sequence acquisition. This dataset is used for calibration of

NGS error.

A viral population mix from low DWV level (F3) and from high DWV level
(E7) honeybees
Samples from honeybee nurse bees for which qRT-PCR showed either low DWV levels

(EBI SRA study accession PRJEB5249, ERS395182) or high DWV levels (EBI SRA study

accession PRJEB5249, ERS395180) were used. In each case, in order to assemble the

required nucleotide distribution data, the following computational steps were carried

out. “First reads” of length 101nt were aligned using Bowtie 2 to DWV (NC 004830) and

VDV-1 (NC 006494) reference sequences. SAMtools mpileup was then used to produce

the number of nucleotides covering each position in the references.

Deformed wing virus
A map of the deformed wing virus adapted from Lanzi et al. (2006) is shown in Fig. 4. In

the Results section we select a single site in the helicase region of the genome (Examples 2.1

and 2.2), and average across the capsid region (Examples 2.3 and 2.4).

RESULTS
Example 1. Calibration and error correction

(i) Calibration—estimation of the NGS error rate α. Nucleotide pileups resulting from

the X59 mix of two viral recombinants were used for calibration of the NGS error rate.

Nucleotide positions where DWV and VDV-1 are identical were selected; for these the

true distribution is one of p = (1,0,0,0), (0,1,0,0), (0,0,1,0) or (0,0,0,1). For example,

the upper half of Table 2 shows the pileup counts for the first three capsid (see Fig. 4)

nucleotide sites. Since the p here place all weight on one nucleotide, Eq. (1) reduces, when

p = (1,0,0,0), for example, to (q̂2 + q̂3 + q̂4)/3 or the average error proportion. Thus,

for the first position in Table 2 we would estimate α as (0.0010 + 0.0016 + 0.0008)/3

or 0.0011; for the second and third positions the corresponding averages are 0.0014 and
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Figure 4 Map of the genome of the deformed wing virus, a positive-stranded RNA virus. The capsid
region codes for the four structural proteins, multiple copies of which are used to build the icosahedral
virus shell, while the helicase region is involved in the unfolding of the RNA strand. Untranslated regions
(UTRs) flank the coding sequence.

Table 2 Correction of NGS errors. The raw nucleotide counts, the relative frequency distribution q̂ of
nucleotides after next generation sequencing and the relative frequency distribution after correction r̂
are shown for the first three X59 dataset capsid positions (upper half of table); here calibration and
correction are both based on X59. For each position the correct distribution of bases was recovered. The
corresponding data and corrections for dataset E7 (a dataset independent of the calibration dataset X59)
are shown in the lower half of the table, the method again yielding complete correction.

Position no. A C G T Diversity

1 Counts {ni} 87,573 86 142 73

Proportion q̂ 0.9966 0.0010 0.0016 0.0008 0.0222

Proportion r̂ 1 0 0 0 0

2 Counts {ni} 90 130 156 86,961

Proportion q̂ 0.0010 0.0015 0.0018 0.9957 0.0270

Proportion r̂ 0 0 0 1 0

3 Counts {ni} 68 29 87,998 93

Proportion q̂ 0.0008 0.0003 0.9978 0.0010 0.0149

Proportion r̂ 0 0 1 0 0

1 Counts {ni} 13,267 11 16 11

Proportion q̂ 0.9971 0.0008 0.0012 0.0008 0.0161

Proportion r̂ 1 0 0 0 0

2 Counts {ni} 11 25 15 13,215

Proportion q̂ 0.0008 0.0019 0.0011 0.9962 0.0208

Proportion r̂ 0 0 0 1 0

3 Counts {ni} 8 9 13,440 10

Proportion q̂ 0.0006 0.0007 0.9980 0.0007 0.0120

Proportion r̂ 0 0 1 0 0

0.0007, giving a local average of 0.0011. This was done for the entire capsid region of

the genome (2,843nts in length), yielding α̂ = 0.001949, so the overall NGS error rate is

estimated at a little under 2 in 1,000.

(ii) Correction of the distributions q̂. This was carried out in three ways.

(1) Within the capsid region of X59, using α̂ = 0.001949 calculated using the entire

capsid region. Correction of the distribution q̂ in the first three capsid positions,

shown in the upper half of Table 2, yielded the r̂ distributions shown; each is

corrected to the exact distribution. (The Excel software available was used to also
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test the calibration-correction routine across a central region in the helicase and

a non-structural region downstream of the helicase; in both cases the degenerate

distributions were found with excellent accuracy.)

(2) Within the capsid region of E7, again using α̂ = 0.001949 calculated using the entire

capsid region of the independent standard sample X59. The accurate results are shown

in the lower half of Table 2.

(3) Within the capsid region of X59, using cross-validation. The capsid region was

divided into sites with odd index (for calibration) and sites with even index

(for correction). The calibration calculation here gives α̂ = 0.001582. Two ar-

bitrarily chosen even indices in the correction region (where the true distribu-

tion is known to be degenerate) had associated raw nucleotide counts {ni} of

(71,91461,39,36) (so q̂ = (0.0008,0.9984,0.0004,0.0004)) and (134,60,90,65615)

(so q̂ = (0.0020,0.0009,0.0014,0.9957)). The corrected distributions r̂ are (0,1,0,0)

and (0.0005,0,0,0.9995) respectively, showing considerable improvement.

Example 2: Diversity testing and confidence intervals

2.1 Single site, single population

The nucleotide distribution, in A, C, G, T order, at arbitrarily chosen position

5201 (within the helicase region of the viral genome, Fig. 4) in F3 is (1,0,58,1)

giving q̂ = (0.0167,0,0.9667,0.0167). Correction using estimate α̂ = 0.001949 yields

corrected proportions r̂ = (0.0148, 0, 0.9704, 0.0148). True diversity is then estimated as

H(r̂) = 0.1110 using (2) and Var ˆ(H) = 0.0044 using (3), whence the test statistic z is 1.6814

with p-value of 0.0463, leading to rejection of the null hypothesis that the true diversity

H = 0 at the 5% level. A 95% confidence interval for true diversity is [0,0.2404].

Sample E7 at nucleotide position 5201 has counts of (38,35,26497,48) giving

q̂ = (0.0014,0.0013,0.9954,0.0018) and r̂ = (0,0,1,0). True diversity is estimated as

Ĥ = 0 and Var ˆ(H) = 0 (since (3) converges to zero in this case), whence the hypothesis of

zero diversity is not rejected. A 95% confidence interval for true diversity is {0}.

2.2 Single site, two populations

We test whether the diversities are equal at nucleotide position 5201 for F3 (first sample)

and E7 (second sample), using the data in Example 2.1. The test statistic z described in

Table 1 is 1.6814 with p-value = 0.0463. Hence we reject the null hypothesis of equal true

diversities for the two populations at this site, concluding that F3 has higher diversity. A

95% confidence interval for the true diversity difference is [−0.0184,0.2404].

2.3 Multiple sites, single population

We test whether the mean diversity across the capsid region (see Fig. 4) of the

viral genome is zero, for both E7 and F3 (N = 2,843). For E7, H̄ = 0.0037, the serial

correlation of diversities is estimated as ρ̂ = 0.1728 and mean site diversity variance is

s2
= 7.714 × 10−7 whence Var(H̄) = 3.847 × 10−10 using (5), giving z = 187.5 so that

the p-value is negligible. Here the sample size is so large and hence the power so great that

we conclude that the true diversity is non-zero. Of greater interest is a 95% confidence
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interval for the true diversity, namely [0.0036,0.0037]. Corresponding calculations

for the more varied F3 sample give values of H̄ = 0.0410, ρ̂ = 0.1195, s2
= 0.0019,

Var(H̄) = 8.702 × 10−7, z = 43.98 and again a negligible p-value. A 95% confidence

interval for the true mean diversity value is [0.0392,0.0429].

2.4 Multiple sites, two populations

We test the null hypothesis that the true mean diversities, over the capsid region, of F3

(first sample) and E7 (second sample) are equal. Using values already given in Example

2.3, we find that z = 40.03, again giving a negligible p-value. Hence we conclude that the

mean diversity of F3 is greater than that of E7. A 95% confidence interval for the true mean

diversity difference is [0.0355,0.0392].

Example 3: Clonal threshold

Using α̂ = 0.001949 and with coverage of n = 20,000 we find that β̂ = 0.0001233. This

gives H(β̂) = 0.002748, by direct calculation using r̂ = − log4(1 − 3β̂)1−3β̂
− 3log4β̂

β̂ .

Then s =


Var(H(β̂)) = 0.0008940 using (3). The 95% clonal diversity threshold for a

single site is therefore 0.002748 + 1.64 × 0.0008940 or approximately 0.0042. For mean

diversity, with N = 2,843 and ρ̂ = 0.1728 (appropriate for E7 on the capsid) the 95%

clonal mean diversity threshold is H(β̂) + 1.64(s/
√

N)


1 − 2ρ̂/(1 − ρ̂) = 0.0028.

Figure 5 illustrates the confidence intervals found in Example 2.3, labelled “After

correction”, together with corresponding confidence intervals for the uncorrected data,

labelled “Before correction”. The corrected clonal mean diversity threshold of Example 3 is

also shown. The highly significant difference between the Varroa-free and Varroa-infested

nucleotide diversities are evident. Correction of the low diversity sample has a far greater

effect on diversity than correction of the high diversity sample, due to the steep slope of the

diversity component near zero (Fig. 3). The corrected low diversity sample lies just above

the clonal threshold.

DISCUSSION
Here we have proposed a simple method for correction of nucleotide distributions con-

taining errors arising from NGS. The correction method assumes an independent site error

model. Throughout we have used the simplest error matrix M, the Jukes–Cantor matrix,

with the error rate assumed to be constant across the genome and mutation parameter

fitted from a standard (known genotype) sample. The method could be extended to

use a richer evolutionary model, with parameters tailored to regions of the genome.

For instance, the two-parameter Kimura model assumes transversion and transition

errors differ, while the Generalized Kimura model adds a further parameter, allowing

transversion error probabilities to differ according to transversion direction (Ewens &

Grant, 2005). At an extreme, a full 12-parameter model could be used, fitted in sets of

three consecutive nucleotides, since four linear equations are available per position. In

principle, both the statistical nature of the error mechanism of the NGS platform and

errors introduced in sample generation (e.g., PCR) should be captured in the model used.

A geometric view of the correction process is shown in Fig. 6. The tetrahedron is the

locus of all probability mass functions on the four points {A,C,G,T}, with the vertices
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Figure 5 Confidence intervals for true mean diversity across the capsid region, for the high diversity
(F3) and low diversity (E7) samples, both before and after correction for the NGS error. Correction has
a larger effect when the (uncorrected) diversity is low, clearly revealing the reduction in diversity from F3
(low DWV level) to E7 (high DWV level). The clonal threshold for the mean shows that the corrected E7
data plausibly has non-zero diversity.

Figure 6 A geometric view of the correction process, showing the tetrahedron of all nucleotide dis-
tributions. When the true nucleotide distribution p is (1, 0, 0, 0), the limiting distribution after next
generation sequencing q is along the line from p to the centroid c. Under sampling, we see nearby q̂ which
is corrected to r̂, lying on the extension of the line from c to q̂.
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Figure 7 The diversity profile, from vertex to centroid. The increase is greatest at the vertex and least at
the centroid.

corresponding to situations where the probability mass is on a single nucleotide and the

diversity is zero. The centroid c = (0.25,0.25,0.25,0.25) corresponds to the situation

where mass is spread equally across nucleotides, and the diversity takes its maximum value

of one. When the true nucleotide distribution is p (e.g., p = (1,0,0,0) in Fig. 6) and the

NGS error rate is α, the limiting distribution following NGS (based on sequencing a very

large number of nucleotides) is q = Mp = (1 − 4α)p + 4αc, along the line between p and

c. In practice we sequence finitely many nucleotides n, giving an empirical distribution q̂

close to q. The correction of q̂, r̂ = (q̂ − 4αc)/(1 − 4α), reverses the p to q contraction with

r̂ lying along the extension of the line from c to q̂. (If this r̂ lies outside the simplex, r̂ is

taken to be the nearest point in the simplex to its projection onto the plane determined by

its non-negative components.) In general, the further p is from c, the greater the distance

from p to q, so the greater the distance from q̂ to r̂; the greater the error, the greater the

correction. In turn, diversity increases from zero to one along the line from a tetrahedron

vertex to the centroid, and is convex down, as shown in Fig. 7, so changes more quickly

when the diversity is low and is relatively stable when diversity is high. In summary,

(i) The method corrects more when more correction is called for, and

(ii) The method corrects more where the benefit of correction is greater.

The upshot is that bias inherent in the uncorrected diversity values is rectified by the

correction process.

We caution that error remains, even after correction. In the light of the geometry,

worst-case remaining error occurs for p a vertex. In this case Fig. 2 provides information

about the worst-case error rate β̂ remaining after correction. This decreases as α decreases
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(since lower α introduces lower error) and decreases as the coverage n increases (since as n

increases, q̂ becomes closer to q).

The diversity testing and estimation stage uses a diversity correlation structure. We have

assumed serial correlation of diversities, since this was seen in the samples considered.

Other correlation structures could be employed, such as a structure that decays more

rapidly with separation.

The method is able to correct in multi-genome situations which appear to lie beyond the

reach of other methods. All correction methods in the literature known to the authors are

variants of alignment of reads to a reference genome and the taking of a consensus. If the

original sample is a mix of two genomes then such methods are unable to correct at sites of

variation (since the minor variant will generally be corrected to the major variant), whereas

the proposed method estimates the error rate (using a calibration sample) and so is able to

correct, even at sites of variation.

Finally, it may be possible to use the “clonal threshold” to detect SNPs or the more

general SNVs. This is a topic for future research.

CONCLUSION
Movement of a virus to a new host can trigger changes in the level of diversity of variants

of the virus. Such diversity changes can be detected using next generation sequencing of

the viral mix, but error introduced in the process may mask a diversity change. We have

presented a method for estimating measurement-error-corrected diversity from NGS data,

both at single nucleotide sites and along sections of a genome. A simple but effective

method is used to correct for NGS errors in the nucleotide distribution. With these

corrected estimates we are able to compare diversity between samples, assessing whether

they are consistent with equal diversity, and also assess whether a diversity estimate is

consistent with a clonal population. We demonstrated our method within the context of

viral diversity in bees that either have low viral load or high viral load, showing that their

viral diversity is significantly different and that under high viral load the viral population

is near-clonal. Correction for NGS error was particularly important when applied to

the sample with low diversity, since the diversity estimate decreased by a factor of more

than five. This analysis has demonstrated that the Varroa mite has a significant effect

on the DWV population in honeybees, due to the emergence of a virulent strain that is

preferentially replicated after transmission by Varroa. This results in the striking reduction

in viral diversity observed in Varroa-exposed pupae and symptomatic worker bees. Our

method is applicable to any population structure analysis using NGS data and thus adds a

valuable tool to the study of selection pressure and differential fitness within populations.
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