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Abstract

There are imminent needs for longitudinal analysis to make physiological inferences on NIH MRI 

study of normal brain development. But up to date, two critical aspects for longitudinal analysis, 

namely the selections of mean and covariance structures have not been addressed by the 

neuroimaging community. For the mean structure, we employed a linear free-knot B-spline 

regression in combination with quasi-least square estimating equations to approximate a nonlinear 

growth trajectory with piecewise linear segments for a friendly physiological interpretation. For 

covariance structure selection, we have proposed a novel time varying correlation structure 

considering not only the time separation between the repeated measures but also when these 

acquisitions occurred. We have demonstrated that the proposed covariance structure has a lower 

Akaike information criterion value than the commonly used Markov correlation structure.

Index Terms

free-knot B-spline; covariance structure selection; linear mixed effects model; longitudinal 
analysis; nonlinear regression

1. INTRODUCTION

Neuroimaging with a longitudinal design has gained increasing interests in neuroscience 

community especially with the release of multicenter imaging data such as NIH MRI study 

of normal brain development. Compared to cross-sectional studies, longitudinal analysis is 

less subjected to sporadic across subject variation and enables an improved robustness in 

quantifying temporal changes of brain either due to disease progression or normal 

maturation [1–3]. The increased statistical power of longitudinal analysis in detecting 

temporal changes is due to the inclusion of repeated measurements from the same 

individual. Thus, longitudinal analysis is ideal for both population and individual level based 

growth studies.

Currently, there are two widely employed approaches to analyzing longitudinal 

neuroimaging data, which are based upon generalized estimating equations (GEE) or linear 

mixed effects models (LME) [4–8]. GEE is used to fit a marginal distribution to estimate 

NIH Public Access
Author Manuscript
Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 15.

Published in final edited form as:
Proc IEEE Int Symp Biomed Imaging. 2014 May ; 2014: 1206–1209. doi:10.1109/ISBI.2014.6868092.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



population level growth trajectories, while LME takes a conditional approach for the same 

estimation. LME is advantageous in predicting individual temporal changes due to its 

inherent fixed and random effects modeling design. Further-more, the information criteria 

such as Akaike (AIC) or Bayesian information criterion (BIC) can be directly applied to 

LME for model selection but not with GEE, which is not based upon likelihood estimation 

[9].

Brain maturation is a highly nonlinear process by nature [10–11]. Most of the studies 

employed empirical global parametric models such as polynomials [10], logarithm of time 

[4], or exponential fitting [7]. Even though we have gained invaluable in-sights into brain 

growth with these models, a word of caution is that these models may not be optimal in 

approximating complex growth trajectories if their inherent assumptions do not agree with 

the underlying physiology. For instance, quadratic fitting imposes a velocity/acceleration 

prior constraint on the growth trajectory and it always renders a U (or reversed U) shaped 

growth trajectory. Logarithm or exponential fittings always assume a flat trajectory at the 

end with increased time. More importantly, these global nonlinear parametric models 

complicate the sequential physiological inferences, and they cannot provide a natural 

velocity-based inference on brain growth. This problem persists in the current LME based 

longitudinal analysis in neuroimaging. In this study, we proposed to model the growth 

trajectory with a linear free-knot B-spline (FKBS) based nonparametric regression analysis 

[12]. To overcome the over-fittings associated with FKBS, quasi-least squares (QLS) based 

statistical tests were performed to remove the knots making insignificant contributions to the 

population growth trajectory [13]. In this way, we introduced a data-driven mean structure 

for LME to be utilized with the NIH pediatric study.

Different from cross-sectional analysis, longitudinal study models correlation between the 

repeated measurements from the same individual at different time points with a suitable 

covariance structure to boost the statistical power. Similar to the mean structure selection 

discussed previously, the covariance structure also depends upon the given data. Up to now, 

this issue has not been addressed in neuroimaging studies even though statistical methods 

concerning covariance structure selection is well established with LME for longitudinal 

analysis. In previous GEE based early brain developmental studies, Markov correlation 

structure which assumes a weaker correlation between the repeated measurements from the 

same subject with a wider time separation has been used [4–5]. But this correlation structure 

did not consider when the acquisitions occurred. Given the fact that the more dynamic of 

brain growth happened in earlier than later stages, it is expected that for the same individual, 

the measurements acquired at birth and 1 year old correlate weakly compared to the 

measurements acquired at 15 and 16 years old, even though the measurements are all one 

year apart. To overcome this limitation, we have developed a novel time varying Markov 

(tvMarkov) correlation structure which is able to model not only the weaker correlation with 

a longer time separation (like Markov correlation structure), but also a weaker correlation if 

one acquisition happened closer to birth. With LME, we have demonstrated that tvMarkov 

has a significantly lower AIC compared to both working independence and Markov 

correlation structures.
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2. METHODS

2.1. Free-knot B-spline regression

B-spline regression is data-driven without a prior temporal constraint imposed by a 

parametric model. Conventional spline regression employs a fixed number of knots and 

fitting is performed through seeking the coefficients minimizing the sum of squared 

residuals. In contrast, FKBS allows the inside knots to move freely, thus a greater flexibility 

to approximate the data is expected [12]. Usually, the fitting is started with a large number 

of uniformly placed knots and the knots causing a small increase in residual error are 

removed gradually [14]. After removing one or a few knots, the remaining knots will be 

replaced to new locations through a constrained nonlinear optimization to keep knots from 

coalescing.

The growth data are given as pairs of {xi, yi} with observation times 0≤x1≤x2,…≤xn. The 

measurements is modeled as yi = f(xi) + ei (ei is the noise associated with the ith 

measurement). The function f is inferred using a spline model with a knot sequence, 

t1=t2=…tk<tk+1<tk+2<..<tn=tn+1=..tn+k (order k). Fitting was performed through 

minimizing the residual sum as:

(1)

Where, B(t̃) is the B-spline basis function, α is the B-spline coefficient and Ct̃ ≥ h is the 

constraint keeping knots from coalescing, and it is imposed on the neighboring knots as in 

the format of tj ≥ tj−1 + ε( tj+1 − tj−1) and tj ≥ tj+1 − ε( tj+1 − tj−1) with ε = 0.0625 [15]. B(t̃)+ 

denotes the Moore-Penrose inverse of B(t̃). As in [12], Eq. (1) can be further written as:

(2)

which can be solved iteratively with Kaufman approximation of the derivative, K = G′(t̃) = 

−I[I − B(t̃)B(t̃)+]B′(t̃)B(t̃)+ y[16]. The derivatives of B-splines w.r.t. knots were computed 

with finite differences [12]. Line search is limited within the space satisfying the non-

coalescing constraint. Please also be noted that if the problem is ill conditioned, a 

regularization term may need to be included jointly with the least square fitting (Eq. (1) and 

(2)).

2.1. Quasi-least squares (QLS) testing for mean structure selection

QLS was developed based upon GEE under the generalized least square principle [13], 

while GEE estimates covariance structures using moment-based estimating equations [3]. 

Compared to GEE, QLS is able to produce a better estimation of correlation parameter 

between the repeated measurements from the same subject and more likely to guarantee the 

positive-definite nature of the covariance matrix [13].
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For a given series of measurement  taken on subject i at time points 

. With the assumption that the measurements from the same subject are 

correlated, the covariance matrix assumes the form:

where A is a diagonal covariance matrix, R is the correlation matrix and a function of ρ (the 

correlation coefficient between the repeated measurements) and s is the total number of 

subjects. γ is a diagonal matrix for dispersion coefficients. The quadratic form as in Eq. (3) 

is minimized through gradient descents to find the optimal values for β and ρ.

(3)

ui(β) is the linear model approximated (with coefficient β) expectation of yi.

Given a knot sequence identified with the linear FKBS, the initial regression equation 

assumes the form:

(4)

To overcome over-fitting, the identified knots were combined first as the average of 

neighboring knots if their incremental (or relative) difference is less than a certain threshold 

(e.g. ki+1 − ki ≤ 0.1 or (ki+1 − ki)/ki ≤ 5%)). Or more ideally, a spike removal technique may 

be employed here to enhance performance. For inside knots, we have also removed the ones 

if either its left or right hand side has less than 2 measurements. Sequentially, all the 

remaining knots will be tested with the Wald statistics from the robust covariance estimated 

from QLS, and insignificant knots are removed gradually one after another starting with the 

one having the highest non-significant p-value. In this way, we are able to decompose a 

complex nonlinear growth trajectory into linear segments and the physiological 

interpretation can be made through the transitions in growth velocity occurring around the 

time of the significant knots.

2.3. Covariance structure selection with linear mixed effects model

In order LME models the growth trajectory with a fixed population level trend in 

combination with a subject-specific random effect (Eq. (5)).

(5)

where Xi is the design matrix for the fixed effect for subject i depending on age and gender, 

clinical covariates, and also the identified knot sequence from FKBS/QLS. Zi is the design 

matrix for the random effects for subject i. β and b are the regression coefficients for the 
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fixed and random effects, respectively. It is assumed that b for the random effects follows a 

normal distribution, N(0, G), . εi is the Gaussian noise of N(0, R), 

 with ρ representing the correlation between the repeated measurements from 

the same subject. b and εi are commonly assumed independent from each other. It was 

noteworthy to point out that this correlation structure R has not been explored before in 

LME based neuroimaging studies [6–7]. The covariance of Y is given as: V = ZGZ′ + R. For 

growth modeling, it is quite often to assume Xi=Zi. If given the variance terms 

( ) and a correlation structure with ρ, the fixed and random effects are 

calculated respectively as in Eq. (6):

(6)

If G is singular, Henderson proposed an alternative set of model equations based upon 

Cholesky decomposition of G [17]. When the variance components are unknown, the log-

likelihood (Eq. (7)) has to be maximized for a specific given covariance structure of R [18].

(7)

Or alternatively, restricted/residual maximum likelihood needs to be maximized to account 

for the loss of degrees of freedom in estimating the fixed effect.

In previous neuroimaging study, R is either chosen as working independence (using cross 

sectional analysis for longitudinal data) or Markov [4–5] correlation structures for the 

unbalanced data. Markov structure assumes a weaker correlation between the measurements 

with a wider separation, cov(Yi,p, Yi,q) = ρ|ti,p − ti,q|, with measurement times at ti,p and ti,q for 

subject i. But due to the earlier rapid brain growth, the same time separation at early life may 

have a weaker correlation than at the later stage. To remedy this time varying effect, we 

proposed a novel modulated Markov correlation structure with an exponential function 

considering the time when the earlier scan was acquired (Eq. (8)).

(8)

where τ is a constant to be determined through maximizing the log-likelihood (Eq. (7)).

In order to compare the proposed covariance structure with the working independence and 

Markov correlation structures. AIC values were computed with the number of parameters 

and the respectively optimized log-likelihood functions for all these three covariance 

structures.

(9)

Where, k and r are the number of parameters within the mean and covariance structures, 

respectively.
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3. RESULTS

As We have generated a piece-wise linear trajectories consisting of three segments (y=3−2x

+1 (0=x<1);y=2−x+1(1=x<2);y=1 (2=x=3) with added Gaussian noise N(0, 0.3). The 

simulated trajectory consists of two knots located at x=1 and x=2. The over-fitting was 

apparent with regression directly from KFBS as the spikes or jumps (Fig. 1(a)) with a knot 

sequence of [0.189, 0.302, 0.352, 1.085, 1.866, 1.937]. After coalescing the closely located 

neighboring knots, we obtained a slightly over-fitted regression (Fig. 1(b)) with a knot 

sequence of [0 0.189, 0.327, 1.085, 1.901]. Finally, after QLS testing, the three piecewise 

linear segments were recovered (with a knot sequence of [1.085, 1.901]; Fig. 1(c)). (Fig. 2f).

NIH normal brain developmental study consists of 458 longitudinal DTI datasets (release 3). 

DTI registration was performed through aligning geometrical attributes derived from 

fractional anisotropy (FA) maps. We evaluated the growth trajectory of mean diffusivities in 

corpus callosum including genu (Fig. 2(a)) and splenium (Fig. 2(b)). With FKBS, the initial 

over-fitting was apparent with a knot sequence of [0.069, 0.309, 0.778, 0.809, 2.513, 9.229, 

9.403, 9.484, 14.734, 14.795, 15.042] years (Fig. 2(c)). After coalescing the closely located 

knots, over-fitting was reduced to a knot sequence of [0.309, 0.778, 0.809, 2.513, 9.372, 

14.857] (Fig. 2(d)). After QLS, the growth trajectory was decomposed into four linear 

segments with knots at [0.309, 0.809, 2.513] (Fig. 2(e)).

With the previously identified significant knots, we performed maximization of the log-

likelihood from three covariance structures (Independent, Markov and tvMarkov) 10 times 

each using genetic algorithm with the constraints to ensure the positivity of the variance 

terms. The averaged population growth trajectories for these three covariance structures 

were almost identical (Fig. 3(a)) and the AIC values were significantly lower in tvMarkov 

(tvMarkov vs. Markov: p<10−8; Markov vs. Independent: p<10−14; Fig. 3(b)). Thus, by 

considering the time of the repeated measurement, a better longitudinal analysis can be 

achieved for the large NIH pediatric dataset.

4. CONCLUSIONS

As In this study, we have introduced a non-parametric fitting scheme for growth trajectory 

analysis of NIH normal brain developmental study. Compared to the global parametric 

fitting, the proposed nonparametric approach is more advantageous to discover the transition 

in growth velocity. Thus, our work allows investigators to seek physiological interpretation 

on the identified transition time points, which may be related to certain physiological events 

shaping brain maturation.

Another major contribution of the work is that we have proposed a novel covariance 

structure tailored for the NIH longitudinal normal brain development study. Especially, we 

have demonstrated that comparing to other commonly used correlation structures, the 

proposed one will not bias the population level estimation of the growth trajectory even with 

a significantly lower AIC. We expect this covariance structure will enable a better statistical 

power for longitudinal analysis.
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Figure 1. 
Ground truth (green curves) and the fittings (red curves) from FKBS (a), after coalescing 

closely located knots (b) and the final results after QLS (c). The knots were marked along 

the fitted curves.
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Figure 2. 
ROIs located in genu (a) and splenium (b) of corpus callosum. The regression results from 

FKBS (c), after coalescing close knots (d) and the final QLS testing (e). The knots were 

marked along the curves.
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Figure 3. 
The averaged population growth trajectories from independent (red), Markov (green) and 

tvMarkov (blue) covariance structures (a). The AIC values from 10 optimizations for the 

three covariance structures (b).
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