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Abstract

This paper presents a novel approach for diffeomorphic image regression and atlas estimation that 

results in improved convergence and numerical stability. We use a vector momenta representation 

of a diffeomorphism's initial conditions instead of the standard scalar momentum that is typically 

used. The corresponding variational problem results in a closed-form update for template 

estimation in both the geodesic regression and atlas estimation problems. While we show that the 

theoretical optimal solution is equivalent to the scalar momenta case, the simplification of the 

optimization problem leads to more stable and efficient estimation in practice. We demonstrate the 

effectiveness of our method for atlas estimation and geodesic regression using synthetically 

generated shapes and 3D MRI brain scans.
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1. INTRODUCTION

Within the last 15 years, there has been extensive research in developing methods for 

representing shapes and their variability across a population [1] and along time [2] as 

diffeomorphic deformations of a template image. In particular, the optimization methods [2, 

3, 4] based on initial deformation momenta, which encode full geodesic paths in the space of 

diffeomorphisms, have improved the state-of-the-art methods for shape statistics [5].

Previous approaches [2, 3, 4] represent the momenta as a scalar field multiplied by the initial 

image gradient. In these approaches, the forward evolution of a geodesic and the associated 

backward adjoint system involve imprecise finite difference gradients of a noisy image. 

Furthermore, the template and momenta must both be jointly estimated by iterative 

optimization, leading to poor convergence.

Instead of scalar momenta, we use vector momenta. In our formulation, the evolution of the 

geodesic and adjoint system is decoupled from the template image. We also derive a closed-
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form update for the optimal template, which results in more efficient optimization. This 

novel framework for template estimation applies to both the atlas estimation and the 

geodesic regression.

2. METHODOLOGY

2.1. Preliminaries

We follow the well-established framework of large deformation diffeomorphic metric 

mapping (LDDMM) [6, 9], in which anatomical variability is represented by maps of diffeo-

morphisms, which are topology-preserving smooth invertible transformations of the 

underlying coordinate system. We briefly review the mathematical framework of LDDMM.

Let Ω be the coordinate space of the image, I. A diffeo-morphism, ϕ(t), is constructed by the 

integration of an ordinary differential equations (ODE) on Ω defined via a smooth, time-

indexed velocity field, v(t). The deformation of an image I by ϕ is defined as the action of 

the diffeomorphism, given by ϕ · I = I ○ ϕ−1.

A right-invariant Riemannian metric on the space of diffeomorphisms is obtained by 

choosing a positive-definite, self-adjoint differential operator L, which acts on velocity 

fields. This operator induces the structure of a Sobolev space on the collection of velocity 

fields and determines the norm of a velocity field, .

Deformation momenta—The tangent space at identity, V = TIdDiff(Ω)consists of all 

vector fields with finite norm. Its dual space,  consists of vector-valued 

distributions over Ω. The velocity, v ∈ V , maps to its dual deformation momenta, m ∈ V* , 

via the operator L such that m = Lv and v = Km. 2 The operator K : V* → V denotes the 

inverse of L.

In the diffeomorphic image pair registration problem, it has been shown that the optimal 

initial momentum is orthogonal to the level sets of the deforming image [7]. That is m(x) = 

α(x)∇I(x) for a scalar function α at all times. Note that constraining ϕ to be a geodesic with 

initial momentum m0 = m(0) implies that ϕ, m, I, and α all evolve in a way entirely 

determined by the metric L, and that the deformation is determined entirely by the initial 

scalar function α0 = α(0).

EPDiff for geodesic evolution—Given the initial velocity, v0 ∈ V , or equivalently, the 

initial momentum, m(0) = m0 ∈ V* , the geodesic path ϕ(t) is constructed as per the 

following EPDiff equation [8, 7]:

(1)

where D denotes the Jacobian matrix. Operator ad* is dual of the negative Jacobi-Lie 

bracket of vector fields [7, 8, 9]:

(2)
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The deformed image I(t) = I0 ○ ϕ−1(t) evolves via:

(3)

2.2. Geodesic Regression and Atlas Estimation

Geodesic regression in the space of diffeomorphisms is a natural generalization of Euclidean 

least squares regression. The parameter estimates consist of an “intercept”, i.e., a template 

image at the initial time point, and a “slope”, i.e., an initial momenta defining a 

diffeomorphic geodesic evolution of the template image that best describes the time-

dependent image data. The atlas estimation problem can be thought of as a special case of 

the geodesic regression problem, with the initial momenta removed. This is analogous to 

how linear regression reduces to mean estimation when the slope term is removed. In this 

section we present a novel formulation of the template estimation problem in geodesic 

regression and atlas construction using vector momenta, which unlike the scalar momenta 

formulation has the advantage of stable, closed-form updates to the template.

Geodesic Regression—Given N observed images Ji at time points ti, for i = 1 ... N such 

that t1 = 0 and tN = 1, the geodesic that passes closest, in the least squares sense, to the data 

minimizes the energy functional

(4)

where I0 and m0 are the initial “intercept” and “slope” to be estimated that completely 

parameterize the geodesic. Here, I(ti) = ϕm0(ti) · I0. As per optimal control theory, we add 

the Lagrange multipliers to constrain, ϕm0(ti) to be along the geodesic path. This is done by 

introducing time-dependent adjoint variables, m̂, Î and v̂, as per the EPDiff evolution 

equations (1) to give

The optimality conditions for m, I, v are given by the following time-dependent system of 

ODEs, termed the adjoint equations:

(5)

subject to boundary conditions

(6)
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with added jump conditions at observed measurements, ti, such that, 

 where Î(ti+) and Î(ti−) denote the limits from above and 

below, respectively, of the integrated Î.

Finally, the variation of  with respect to the initial momenta is

(7)

and the variation of  with respect to the initial image,  can be directly computed from 

the energy functional . Notice only the second term has a dependence on I0 i.e., 

, where  denotes the inverse of ϕm0(ti). A change of variable 

for ϕ implies the derivative with respect to I0 is

(8)

This results in a closed-form solution for I0 at optimum:

(9)

Notice, at optimum, the resulting vector momentum are horizontal, i.e., along gradient of the 

image. This follows from taking the gradient in Eq.(4) with respect to velocity, v0 instead of 

momenta, m0 and a change of variables for ϕ such that:

Comparison to optimization with scalar momenta—The above analytical update on 

image, Eq.(9) results in a robust algorithm that does not require joint parameter tuning 

during optimization unlike previous methods based on scalar momenta. The numerical 

schemes only optimize on momenta.

However, previously proposed scalar momentum based optimization involve joint 

optimization over both the template image and the momenta. Moreover, computation of the 

gradient for image update involves integration of higher order spatial derivatives along time 

as per the following equations mentioned in [2]:

The numerical instability of the optimization for template update for scalar momentum is 

also evident from this gradient of the energy functional with respect to the template.
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Atlas Construction—The Riemannian metric on the space of diffeomorphisms also 

establishes the Energy minimization problem for atlas construction based on initial 

momentum, m0. The minimum mean squared energy, Fréchet atlas construction problem is 

that of jointly estimating an imageÎ and N individual geodesics emanating from the atlas 

towards each individual image. The joint energy functional over atlas image, I and initial 

momenta,  for i = 1 ... N is:

(10)

where , is the image along the geodesic parameterized by initial momenta 

for the ith individual. Similar to the geodesic regression case, solving the constrained 

variations with respect to atlas image, I and N initial vector momentum result in the similar 

time-dependent adjoint equations corresponding to mî andÎi for each geodesic:

The variation of  with respect to initial momenta for individual geodesics,  is:

(11)

Similar to the geodesic regression case, this results in a closed-form solution for atlas 

estimate, I at optimum:

(12)

3. RESULTS

Our implementation of geodesic regression and atlas building is developed based on MPI 

and the GPU image processing framework by [10]. We evaluate our proposed shooting 

method using synthetic and real 3D-structural MRI data both for the geodesic regression and 

the atlas construction problem. In our experiments, the kernel, K corresponds to the 

invertible and self-adjoint fluid operator, L = –a ∇2 – b∇(∇·) + c, with a = 0.01, b = 0.01 

and c = 0.001.

Experiments with synthetic data

For geodesic regression—We generated ground truth geodesic on diffeomorphisms by 

solving the image matching problem and generated sampled shapes along the geodesic. Fig. 

1(top) shows our example of shapes along this geodesic: plus to flower. To validate the 

robustness of estimation of initial conditions at t = 0, geodesic regression was performed 

given the sampled shapes only for t > 0.5 as input to the algorithm. We used closed-form 

image update and a simple constant step-size gradient descent for momentum update. The 

resulting estimated baseline template for this experiment (Fig. 1, bottom right) closely 

matches the ground truth image at t = 0 (Fig. 1, bottom left). The estimated initial 
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deformation momenta vectors also closely match the ground truth. Fig. 2 reports our 

experiment with results for assessing the stability of optimization when compared to scalar 

momenta geodesic regression. The comparison was done based on constant stepsize gradient 

descent on exactly the same input to both the algorithms. Identical numerical integration 

methods (fourth order Runge-Kutta) were used in both the algorithms for integrating the 

evolution equations. We observe that the scalar momentum has difficulty converging even 

with very small steps for image update while vector momentum converges early to a stable 

energy.

For atlas construction—The atlas was estimated from uniformly rotated ellipses across 

180* . Fig. 3 shows the input to the atlas algorithm and the estimated template. The average 

shape given equally rotated ellipses were expected to be a circle. A perfect circle shape was 

recovered as the estimated template by our algorithm.

Experiments with brain images from ADNI

The geodesic regression was performed on longitudinal scans of a subject with Alzheimer's 

disease (AD) from the ADNI database (adni.loni.ucla.edu). This individual had MRI scans 

taken at uneven time intervals, i.e., at ages = 70.75, 71.38, 71.78 and 72.79. Fig. 4 (top) 

shows the original MRI scan data: comparison of the MRI scans with the baseline scan at 

age=70.75. Expansion of lateral ventricles in this individual is more evident by the end of 

second year of scan. Our geodesic regression algorithm captures the estimates of the smooth 

trend of atrophy (Fig. 4 (bottom)). To illustrate reliability of our method, we use the 

estimated initial conditions to predict the future trend of atrophy for this Alzheimer's subject. 

The estimated 3D MRI template at t = 70.75 is evolved for 6 years in the future via EPDiff 

Equations (1). The resulting generated brains exhibit a clear trend in shrinking hippocampus, 

and expanding ventricles along with cerebro spinal fluid across the whole brain with time. 

These patterns of atrophy are well known to characterize the disease progression in AD. Fig. 

6 shows our atlas estimate of 50 cognitively normal subjects in ADNI database.

REFERENCES

1. Joshi S, Davis B, Jomier M, Gerig G. Unbiased diffeomorphic atlas construction for computational 
anatomy. NeuroImage. 2004; 23:151–160.

2. Niethammer, M.; Huang, Y.; Vialard, F-X. MICCAI 2011. Vol. 6892. Springer; 2011. Geodesic 
regression for image time-series; p. 655-662.

3. Vialard F-X, Risser L, Rueckert D, Cotter C. Diffeomorphic 3D image registration via geodesic 
shooting using an efficient adjoint calculation. IJCV. 2011:1–13.

4. Vialard F, Risser L, Holm D, Rueckert D. Diffeomorphic atlas estimator using Karcher mean and 
geodesic shooting on volumetric images. MIUA. 2011

5. Singh N, et al. Genetic, structural and functional imaging biomarkers for early detection of 
conversion from MCI to AD. MICCAI 2012. 2012; 7510:132–140.

6. Beg MF, Miller MI, Trouvé A, Younes L. Computing large deformation metric mappings via 
geodesic flows of diffeomorphisms. IJCV. 2005; 61:139–157.

7. Miller MI, Trouvé A, Younes L. Geodesic shooting for computational anatomy. Journal of 
Mathematical Imaging and Vision. 2006; 24:209–228. [PubMed: 20613972] 

8. Arnol'd VI. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses 
applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier. 1966; 16:319–361.

Singh et al. Page 6

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



9. Younes L, Arrate F, Miller MI. Evolution equations in computational anatomy. NeuroImage. 2009; 
45(1 Suppl):S40–S50. [PubMed: 19059343] 

10. Ha L, Kruger J, Fletcher PT, Joshi S, Silva CT. Fast parallel unbiased diffeomorphic atlas 
construction on multi-graphics processing units. Proceedings of EGPGV, 2009. 2009:41–48.

Singh et al. Page 7

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Top: Shapes sampled uniformly along the ground truth geodesic. Bottom: ground truth, I 

and m at t = 0.0 (left), and estimated I and m at t = 0.0 (right) using only the shape data for t 

> 0.5
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Fig. 2. 
Convergence comparison for same input.
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Fig. 3. 
Left: evenly rotated ellipses. Right: estimated atlas.
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Fig. 4. 
Top row: Original timepoint scans of an individual overlaid on its baseline scan. Bottom 

row: Estimated geodesic regression overlaid with original scans at each time-point. Red 

indicates mismatch.
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Fig. 5. 
6 years predicted future brain atrophy.
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Fig. 6. 
Shooting atlas generated from 50 3D-MRI scans.
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