
Using Frankencerts for Automated Adversarial Testing of
Certificate Validation in SSL/TLS Implementations

Chad Brubaker*,†, Suman Jana†, Baishakhi Ray‡, Sarfraz Khurshid†, and Vitaly Shmatikov†

*Google

†The University of Texas at Austin

‡University of California, Davis

Abstract

Modern network security rests on the Secure Sockets Layer (SSL) and Transport Layer Security

(TLS) protocols. Distributed systems, mobile and desktop applications, embedded devices, and all

of secure Web rely on SSL/TLS for protection against network attacks. This protection critically

depends on whether SSL/TLS clients correctly validate X.509 certificates presented by servers

during the SSL/TLS handshake protocol.

We design, implement, and apply the first methodology for large-scale testing of certificate

validation logic in SSL/TLS implementations. Our first ingredient is “frankencerts,” synthetic

certificates that are randomly mutated from parts of real certificates and thus include unusual

combinations of extensions and constraints. Our second ingredient is differential testing: if one

SSL/TLS implementation accepts a certificate while another rejects the same certificate, we use

the discrepancy as an oracle for finding flaws in individual implementations.

Differential testing with frankencerts uncovered 208 discrepancies between popular SSL/TLS

implementations such as OpenSSL, NSS, CyaSSL, GnuTLS, PolarSSL, MatrixSSL, etc. Many of

them are caused by serious security vulnerabilities. For example, any server with a valid X.509

version 1 certificate can act as a rogue certificate authority and issue fake certificates for any

domain, enabling man-in-the-middle attacks against MatrixSSL and GnuTLS. Several

implementations also accept certificate authorities created by unauthorized issuers, as well as

certificates not intended for server authentication.

We also found serious vulnerabilities in how users are warned about certificate validation errors.

When presented with an expired, self-signed certificate, NSS, Safari, and Chrome (on Linux)

report that the certificate has expired—a low-risk, often ignored error—but not that the connection

is insecure against a man-in-the-middle attack.

These results demonstrate that automated adversarial testing with frankencerts is a powerful

methodology for discovering security flaws in SSL/TLS implementations.

NIH Public Access
Author Manuscript
IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

Published in final edited form as:
IEEE Secur Priv. 2014 ; 2014: 114–129.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

I. Introduction

Secure Sockets Layer (SSL) and its descendant Transport Layer Security (TLS) protocols

are the cornerstone of Internet security. They are the basis of HTTPS and are pervasively

used by Web, mobile, enterprise, and embedded software to provide end-to-end

confidentiality, integrity, and authentication for communication over insecure networks.

SSL/TLS is a big, complex protocol, described semi-formally in dozens of RFCs.

Implementing it correctly is a daunting task for an application programmer. Fortunately,

many open-source implementations of SSL/TLS are available for developers who need to

incorporate SSL/TLS into their software: OpenSSL, NSS, GnuTLS, CyaSSL, PolarSSL,

MatrixSSL, cryptlib, and several others. Several Web browsers include their own,

proprietary implementations.

In this paper, we focus on server authentication, which is the only protection against man-

in-the-middle and other server impersonation attacks, and thus essential for HTTPS and

virtually any other application of SSL/TLS. Server authentication in SSL/TLS depends

entirely on a single step in the handshake protocol. As part of its “Server Hello” message,

the server presents an X.509 certificate with its public key. The client must validate this

certificate. Certificate validation involves verifying the chain of trust consisting of one or

more certificate authorities, checking whether the certificate is valid for establishing

SSL/TLS keys, certificate validity dates, various extensions, and many other checks.

Systematically testing correctness of the certificate validation logic in SSL/TLS

implementations is a formidable challenge. We explain the two main hurdles below.

First problem: generating test inputs

The test inputs, i.e., X.509 certificates, are structurally complex data with intricate semantic

and syntactic constraints. The underlying input space is huge with only a tiny fraction of the

space consisting of actual certificates. A simple automated technique, such as random

fuzzing, is unlikely to produce more than a handful of useful inputs since a random string is

overwhelmingly unlikely to even be parsable as a certificate.

Some test certificates can be created manually, but writing just a small suite of such

complex inputs requires considerable effort; manually creating a high-quality suite is simply

infeasible. Furthermore, the testing must include “corner cases”: certificates with unusual

combinations of features and extensions that do not occur in any currently existing

certificate but may be crafted by an attacker.

Second problem: interpreting the results of testing

Given a test certificate and an SSL/TLS implementation, we can record whether the

certificate has been accepted or rejected, but that does not answer the main question: is the

implementation correct, i.e., is the accepted certificate valid? And, if the certificate is

rejected, is the reason given for rejection correct?

Brubaker et al. Page 2

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Manually characterizing test certificates as valid or invalid and writing the corresponding

assertions for analyzing the outputs observed during testing does not scale. A naive

approach to automate this characterization essentially requires re-implementing certificate

validation, which is impractical and has high potential for bugs of its own. Interpreting the

results of large-scale testing requires an oracle for certificate validity.

Our contributions

We design, implement, and evaluate the first approach for systematically testing certificate

validation logic in SSL/TLS implementations. It solves both challenges: (1) automatically

generating test certificates, and (2) automatically detecting when some of the

implementations do not validate these certificates correctly.

The first step of our approach is adversarial input generation. By design, our generator

synthesizes test certificates that are syntactically well-formed but may violate many of the

complex constraints and internal dependencies that a valid certificate must satisfy. This

enables us to test whether SSL/TLS implementations check these constraints and

dependencies.

To “seed” the generator, we built a corpus of 243,246 real SSL/TLS certificates by scanning

the Internet. Our generator broke them down into parts, then generated over 8 million

frankencerts by mutating random combinations of these parts and artificial parts

synthesized using the ASN.1 grammar for X.509. By construction, frankencerts are parsable

as certificates, yet may violate X.509 semantics. They include unusual combinations of

critical and non-critical extensions, rare extension values, strange key usage constraints, odd

certificate authorities, etc. Testing SSL/TLS implementations with frankencerts exercises

code paths that rarely get executed when validating normal certificates and helps elicit

behaviors that do not manifest during conventional testing.

Our second insight is that multiple, independent implementations of X.509 certificate

validation—the very same implementations that we are testing—can be used as an oracle to
detect flaws in validation logic. For each frankencert, we compare the answers produced by

OpenSSL, NSS, GnuTLS, CyaSSL, PolarSSL, MatrixSSL, OpenJDK, and Bouncy Castle.

These SSL/TLS libraries are supposed to implement the same certificate validation

algorithm and, therefore, should agree on every certificate. Differences in the

implementations of functionality left unspecified by the X.509 standard may cause a

“benign” discrepancy, but most discrepancies mean that some of the disagreeing SSL/TLS

implementations are incorrect.

Our differential mutation testing of SSL/TLS implementations on 8,127,600 frankencerts

uncovered 208 discrepancies between the implementations, many of which are caused by

serious flaws. For example, MatrixSSL silently accepts X.509 version 1 certificates, making

all MatrixSSL-based applications vulnerable to man-in-the-middle attacks: anyone with a

valid version 1 certificate can pretend to be an intermediate certificate authority (CA), issue

a fake certificate for any Internet domain, and that certificate will be accepted by

MatrixSSL.

Brubaker et al. Page 3

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

In GnuTLS, our testing discovered a subtle bug in the handling of X.509 version 1

certificates. Due to a mismatch between two flags, the code that intends to accept only

locally trusted version 1 root certificates is actually accepting any version 1 CA certificate,

including fake ones from malicious servers. This bug could not have been found without

frankencerts because it is not triggered by any real certificate from our corpus (but, of

course, a man-in-the-middle attacker could craft a malicious certificate to exploit this

vulnerability).

Many vulnerabilities are caused by incorrect or missing checks on the restrictions that root

CAs impose on lower-level CAs. MatrixSSL does not check path length constraints. If a

restricted CA (e.g., a corporate CA whose authority only extends to a particular enterprise)

creates a new intermediate CA, who then issues certificates for any Internet domain, these

certificates will be accepted by MatrixSSL. GnuTLS, CyaSSL, and PolarSSL do not check

key usage constraints. As a consequence, an attacker who compromises the code signing key

of some company can use it to spoof that company’s servers in TLS connections. Most of

these flaws could not have been discovered without frankencerts because incorrect

validation logic is only triggered by certificates of a certain form, not by “normal”

certificates.

Even if an SSL/TLS implementation correctly rejects a certificate, the reason given to the

user is very important because Web browsers and other interactive applications often allow

the user to override the warning. For example, if the warning is that the certificate expired

yesterday, this may indicate a lazy system administrator but does not imply that the

connection is insecure. Because the risk is low, the user may click through the warning. If,

on the other hand, the certificate is not issued by a legitimate certificate authority, this means

that the server could have been impersonated and the connection may be insecure.

Our differential testing uncovered serious vulnerabilities in how SSL/TLS implementations

report errors. When presented with an expired, self-signed certificate, NSS reports that the

certificate has expired but not that the issuer is invalid. This vulnerability found its way into

Web browsers such as Chrome on Linux and Safari. Since users tend to click through

expired-certificate warnings—and are advised to do so [1]—this flaw gives attackers an

easily exploitable vector for man-in-the-middle attacks against all users of these Web

browsers.

In summary, adversarial test input generation and differential mutation testing on millions of

“frankencerts” synthesized from parts of real certificates is a powerful new technique for

uncovering deep semantic errors in the implementations of SSL/TLS, the most important

network security protocol.

II. Related work

A. Security of SSL/TLS implementations

We are not aware of any prior work on systematic, automated discovery of certificate

validation vulnerabilities in the implementations of SSL/TLS clients.

Brubaker et al. Page 4

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Moxie Marlinspike demonstrated several flaws in the implementations of SSL/TLS

certificate validation [55, 56, 57], including the lack of CA bit checking in Microsoft’s

CryptoAPI as of 2002 [54]. More recently, the same vulnerability was discovered in the SSL

implementation on Apple iOS [40].

Georgiev et al. carried out a study of certificate validation vulnerabilities caused by the

incorrect use of SSL/TLS APIs, as opposed to flaws in the implementations of these APIs

[31]. Georgiev et al. focus primarily on the incorrect validation of hostnames in server

certificates at a different level in the software stack—in applications, transport libraries, and

Web-services middleware. Fahl et al. analyzed incorrect usage of SSL in Android apps [29].

The class of certificate validation vulnerabilities analyzed in this paper is complementary to

and has little overlap with the vulnerabilities discovered in [29, 31]. Unlike [29, 31], we

developed an automated technique for discovering certificate validation vulnerabilities.

A survey of security issues in SSL/TLS can be found in [16]. Cryptographic flaws in

SSL/TLS implementations and the protocol itself—including compression, initialization,

padding of cipher modes and message authentication codes, etc.—can be exploited to attack

confidentiality, especially when the protocol is used for HTTPS (HTTP over SSL) [3, 24,

72]. By contrast, this paper is about authentication flaws.

Flaws in SSL server implementations can be exploited for chosen-ciphertext attacks,

resulting in private key compromise [8, 9]. Flaws in pseudo-random number generation can

produce SSL/TLS keys that are easy to compromise [38, 50].

Hash collisions [77] and certificate parsing discrepancies between certificate authorities

(CAs) and Web browsers [44] can trick a CA into issuing a valid leaf certificate with the

wrong subject name, or even a rogue intermediate CA certificate. By contrast, we focus on

verifying whether SSL/TLS implementations correctly handle invalid certificates.

Large-scale surveys of SSL certificates “in the wild” can be found in [19, 25, 27, 78].

Because their objective is to collect and analyze certificates, not to find certificate validation

errors in SSL/TLS implementations, they are complementary to this paper: for example,

their certificate corpi can be used to “seed” frankencert generation (Section VII). Delignat-

Lavaud et al. note that GnuTLS ignores unsupported critical extensions [19], matching what

we found with automated testing.

Akhawe et al. surveyed SSL warnings in Web browsers [1]. One of their recommendations

is to accept recently expired certificates. As we show in Section IX, several Web browsers

show just the “Expired certificate” warning even if the expired certificate is not issued by a

trusted CA and the connection is thus insecure. Akhawe and Felt performed a large-scale

user study of the effectiveness of browser security warnings [2]. One of their findings is that

users are less likely to click through an “Expired certificate” warning than through an

“Untrusted issuer” warning, possibly because the former tend to occur at websites that

previously did not produce any warnings. Amann et al. demonstrated that certain signs of

man-in-the-middle attacks, such as certificates never seen before for a given domain or

issued by an unusual CA, can be caused by benign changes in the CA infrastructure [4]. SSL

security indicators in mobile Web browsers were studied in [5, 6].

Brubaker et al. Page 5

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

The focus of this paper is on server certificate authentication, which is the most common

usage pattern for SSL certificates. The other direction, i.e., client certificate authentication,

was analyzed in [21, 60]. Our adversarial testing techniques for finding bugs in the client-

side validation of server certificates can also be applied to the implementations of server-

side validation of client certificates.

Several recent high-profile vulnerabilities highlighted the need for thorough security

analysis of SSL/TLS implementations. The implementation of the SSL/TLS handshake in

Mac OS and iOS accidentally did not check whether the key used to sign the server’s key

exchange messages matches the public key in the certificate presented by the server, leaving

this implementation vulnerable to server impersonation [49] (this vulnerability is not caused

by incorrect certificate validation). In GnuTLS, certain errors during certificate parsing were

accidentally interpreted as successful validation, thus enabling server impersonation [33].

We discuss the latter vulnerability in more detail in Section VIII.

B. Software testing

Our work introduces a novel black-box testing approach to address two foundational

software testing problems—generation of test inputs and validation of program outputs (aka

the “oracle” problem)—in the context of finding security bugs, specifically in SSL/TLS

implementations. Researchers have extensively studied these two problems over the last few

decades in a number of contexts and developed various automated techniques to address

them. For example, techniques using grammars [48, 52, 58, 75, 79], constraints [13, 53],

dedicated generators [18], fuzzing [36], symbolic execution [12, 35, 45, 47, 74], and genetic

algorithms [7] provide automated generation of inputs for black-box and white-box testing,

while techniques using correctness specifications [15], differential testing [59], and

metamorphic testing [14] provide automated validation of program outputs. Differential

black-box testing has been successfully used to find parsing discrepancies between antivirus

tools that can help malware evade detection [42].

The use of grammars in testing dates back to the 1970s [62] and has provided the basis for

randomized [52, 58, 75, 79] and systematic [48] techniques for finding application bugs. The

most closely related work to ours is Yang et al.’s Csmith framework, which used random

grammar-based generation of C programs to discover many bugs in production C compilers

[79]. The key difference between Csmith and our work is input generation. Csmith uses

purely grammar-based generation without actual C programs and hence only produces input

programs with language features that are explicitly supported by its generation algorithm.

Moreover, the design goal of Csmith is to generate safe programs that have a unique

meaning and no undefined behaviors. This allows Csmith to use a straightforward test oracle

that performs identity comparison on outputs for differential testing. By contrast, our goal is

to explore behaviors of SSL/TLS implementations that are not exercised by valid certificates

and thus more likely to contain security bugs. Hence, our test generator does not need to

ensure that test outputs conform to a restricted form. To detect validation errors, we cluster

certificates into “buckets” based on the outputs produced by each SSL/TLS implementation

when presented with a given certificate, with each bucket representing a discrepancy

between the implementations. As explained in Section IX, multiple discrepancies may be

Brubaker et al. Page 6

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

caused by the same underlying implementation error (in our testing, 15 root causes led to

208 discrepancies).

Clustering test executions is a well-explored area, e.g., to diagnose the causes of failed

executions by reducing the number of failures to inspect [32, 41, 43, 61] or to distinguish

failing and passing executions in the context of a single implementation [20]. We use

clustering and differential testing in tandem to identify incorrect behavior in the context of

multiple implementations tested together.

Our test input generator combines parts of existing real certificates and also injects synthetic

artificial parts using operations that resemble combination and mutation in genetic
algorithms [39]. In principle, it may be possible to define a genetic algorithm for certificate

generation by customizing genetic combination and mutation with respect to the SSL

certificate grammar, fields, their values, extensions, etc. The main challenge for effective

genetic search is how to define an appropriate fitness function, which must measure the

potential usefulness of a candidate input. Genetic search, as well as other heuristics for test

input generation, can complement systematic exploration using guided sampling [7].

The classic idea of symbolic execution [47] as well as its more recent variants, e.g., where

concrete inputs guide symbolic execution [12, 35, 74], enable a form of white-box test input

generation that has received much recent attention for finding security bugs [36, 37, 46, 73].

Godefroid et al.’s SAGE [36] introduced white-box fuzzing that executes a given suite of

inputs, monitors their execution paths, and builds symbolic path condition constraints, which

are systematically negated to explore their neighboring paths. SAGE found several new bugs

in Windows applications, including media players and image processors. Grammar-based

whitebox fuzzing [34] uses a grammar to enumerate valid string inputs by solving

constraints over symbolic grammar tokens. A security-focused application using a context-

free fragment of the JavaScript grammar to test the code generation module of the Internet

Explorer 7 JavaScript interpreter showed that the use of the grammar provides enhanced

code coverage. Similar but independent work on CESE [51] uses symbolic grammars with

symbolic execution to create higher-coverage suites for select UNIX tools, albeit in a non-

security setting.

Kiezun et al.’s Ardilla [46] uses concolic execution to generate test inputs that drive its

dynamic taint analysis and mutates the inputs using a library of attack patterns to create SQL

injection and cross-site scripting attacks. Halfond et al. [37] show how symbolic execution

can more precisely identify parameter values that define the interfaces of Web applications,

and facilitate finding vulnerabilities. Saxena et al.’s Kudzu [73] uses a symbolic execution

framework based on a customized string constraint language and solver to find code

injection vulnerabilities in JavaScript clients.

Brumley et al. [10] proposed a white-box symbolic analysis technique to guide differential

testing [59]. Their analysis is driven by concrete executions in the spirit of dynamic

symbolic (aka concolic) execution [12, 35, 74]. They use weakest preconditions [23] over

select execution paths together with constraint solving to compute inputs that likely cause

Brubaker et al. Page 7

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

parsing discrepancies between different implementations of protocols such as HTTP and

NTP.

There are two basic differences between our methodology and that of [10]. First, our black-

box approach does not require analyzing either the source, or the binary code. Second, the

need to solve path constraints limits the scalability of the approach described in [10].

Generating even a single test certificate using their technique requires symbolic analysis of

both the parsing code and the certificate validation code hidden deep inside the program.

SSL certificates are structurally more complex than HTTP and NTP inputs, and, crucially,

the certificate validation logic lies deeper in SSL/TLS implementations than the X.509

parsing code. For example, a MiniWeb server responding to a GET /index.html request (one

of the case studies in [10]) executes 246,910 instructions. By contrast, the simplest of our

test cases—an OpenSSL client processing a certificate chain of length 1 with zero

extensions—executes 27,901,961 instructions.

An interesting avenue for future research is to explore whether the two approaches could be

used in conjunction and, in particular, whether generation of test SSL certificates can benefit

from the fact that the technique of [10] performs a directed search for likely behavioral

differences.

More recent work by Ramos and Engler on UC-KLEE [63], which integrates KLEE [11]

and lazy initialization [45], applies more comprehensive symbolic execution over a bounded

exhaustive execution space to check code equivalence; UC-KLEE has been effective in

finding bugs in different tools, including itself. In principle, such goal-directed approaches

are very powerful: they integrate the spirit of differential testing with symbolic analysis to

create formulas that explicitly capture behavioral differences of interest. However, the

resulting formulas in the context of structurally complex data can be exceedingly complex

since they represent destructive updates in imperative code using a stateless logic. Scaling

such approaches to SSL/TLS implementations is an open problem.

In summary, while approaches based on symbolic execution have been successful in finding

bugs in many applications, their central requirement—the need to solve constraints for each

execution path explored in symbolic execution—is the basic bottleneck that limits their

scalability and applicability for programs that operate on complex data types, such as the

structurally complex SSL certificates, and have complex path conditions that can be

impractical to solve. By contrast, our test generation algorithm is not sensitive to the
implementation-level complexity of the programs being tested. Instead, it focuses on the

systematic exploration of the space of likely useful inputs and thus reduces the overall

problem complexity by de-coupling the complexity of the input space from that of the

SSL/TLS implementations.

Srivastava et al. [76] use static differential analysis, which does not perform test generation

or execution, to analyze consistency between different implementations of the Java Class

Library API and use the discrepancies as an oracle to find flaws in the implementations of

access-control logic. While static analysis and dynamic analysis, such as testing, are well-

known to have complementary strengths, they can also be applied in synergy [28]. For

Brubaker et al. Page 8

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

example, for testing SSL/TLS implementations, static dataflow analysis could potentially

reduce the space of candidate inputs for the test generator by focusing it to exercise fewer

values or fewer combinations of values for certain certificate extensions.

III. Overview of SSL/TLS

A. SSL/TLS protocol

The Secure Sockets Layers (SSL) Protocol Version 3.0 [70] and its descendants, Transport

Layer Security (TLS) Protocol Version 1.0 [64], Version 1.1 [67], and Version 1.2 [68], are

the “de facto” standard for secure Internet communications. The primary goal of the

SSL/TLS protocol is to provide privacy and data integrity between two communicating

applications.

In this paper, we focus on a particular security guarantee promised by SSL/TLS: server

authentication. Server authentication is essential for security against network attackers. For

example, when SSL/TLS is used to protect HTTP communications (HTTPS), server

authentication ensures that the client (e.g., Web browser) is not mistaken about the identity

of the Web server it is connecting to. Without server authentication, SSL/TLS connections

are insecure against man-in-the-middle attacks, which can be launched by malicious Wi-Fi

access points, compromised routers, etc.

The SSL/TLS protocol comprises the handshake protocol and the record protocol. Server

authentication is performed entirely in the handshake protocol. As part of the handshake, the

server presents an X.509 certificate with its public key [69]. The client must validate this

certificate as described in Section IV. If the certificate is not validated correctly,

authentication guarantees of SSL/TLS do not hold.

Certificate validation in SSL/TLS critically depends on certificate authorities (CAs).

Consequently, we analyze the correctness of SSL/TLS implementations under the

assumption that the CAs trusted by the client correctly verify the identities of the servers to

whom they issue certificates. If this assumption does not hold—e.g., a trusted CA has been

compromised or tricked into issuing false certificates [17, 22]—SSL/TLS is not secure

regardless of whether the client is correct or not.

In summary, we aim to test if the implementations of SSL/TLS clients correctly authenticate

SSL/TLS servers in the presence of a standard “network attacker,” who can control any part

of the network and run his own servers, possibly with their own certificates, but does not

control legitimate servers and cannot forge their certificates.

B. SSL/TLS implementations

In this paper, we focus primarily on testing open-source implementations of SSL/TLS. Our

testing methodology can be successfully applied to closed-source implementations, too (as

illustrated by our testing of Web browsers), but having access to the source code makes it

easier to identify the root causes of the flaws and vulnerabilities uncovered by our testing.

Brubaker et al. Page 9

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

We tested the following SSL/TLS implementations: OpenSSL, NSS, CyaSSL, GnuTLS,

PolarSSL, MatrixSSL, cryptlib, OpenJDK, and Bouncy Castle. These implementations are

distributed as open-source software libraries so that they can be incorporated into

applications that need SSL/TLS for secure network communications.

Many vulnerabilities stem from the fact that applications use these libraries incorrectly [31],

especially when some critical part of SSL/TLS functionality such as verifying the server’s

hostname is delegated by the SSL/TLS library to the application. In this paper, however, we

focus on flaws within the libraries, not in the applications that use them, with one exception

—Web browsers.

HTTPS, the protocol for protecting Web sessions from network attackers, is perhaps the

most important application of SSL/TLS. Therefore, we extend our testing to Web browsers,

all of which must support HTTPS: Firefox, Chrome, Internet Explorer, Safari, Opera, and

WebKit (the latter is a browser “engine” rather than a standalone browser). Web browsers

typically contain proprietary implementations of SSL/TLS, some of which are derived from

the libraries listed above. For example, Firefox and Chrome use a version of NSS, while

WebKit has a GnuTLS-based HTTPS back end, among others.

IV. Certificate Validation in SSL/TLS

The only mechanism for server authentication in SSL/TLS is the client’s validation of the

server’s X.509 public-key certificate presented during the handshake protocol. Client

authentication is less common (in a typical HTTPS browsing session, only the server is

authenticated). It involves symmetric steps on the server side to validate the client’s

certificate.

X.509 certificate validation is an extremely complex procedure, described in several semi-

formal RFCs [64, 65, 66, 67, 68, 69, 70, 71]. Below, we give a very brief, partial overview

of some of the key steps.

Chain of trust verification

Each SSL/TLS client trusts a number of certificate authorities (CAs), whose X.509

certificates are stored in the client’s local “root of trust.” We will refer to these trusted

certificate authorities as root CAs, and to their certificates as root certificates. The list of

root CAs varies from application to application and from OS to OS. For example, the

Firefox Web browser ships with 144 root certificates pre-installed, while the Chrome Web

browser on Linux and MacOS relies on the OS’s list of root certificates.

Each X.509 certificate has an “issuer” field that contains the name of the certificate authority

(CA) that issued the certificate. The certificate presented by the server (we’ll call it the leaf

certificate) should be accompanied by the certificate of the issuing CA and, if the issuing

CA is not a root CA, the certificates of higher-level CAs all the way to a root CA.

As part of certificate validation, the client must construct a valid chain of certificates starting

from the leaf certificate and ending in a root certificate (see an example in Fig. 1). Below,

Brubaker et al. Page 10

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

we list some of the checks involved in validating the chain. These brief synopses are very

informal and incomplete, please refer to RFC 5280 [69] for the full explanation.

Each certificate in the chain must be signed by the CA immediately above it and the root

(“anchor”) of the chain must be one of the client’s trusted root CAs.

The current time must be later than the value of each certificate’s “not valid before” field

and earlier than the value of each certificate’s “not valid after” field, in the time zone

specified in these fields. If no time zone is specified, then Greenwich Mean Time (GMT)

should be used.

If a CA certificate in an X.509 version 1 or version 2 certificate, then the client must either

verify that it is indeed a CA certificate through out-of-band means or reject the certificate

[69, 6.1.4(k)]. The following checks apply only to X.509 version 3 certificates.

For each CA certificate in the chain, the client must verify the basic constraints extension:

• The “CA bit” must be set. If the CA bit is not set, then the current certificate cannot

act as a root or intermediate certificate in a certificate chain. The chain is not valid.

• If the CA certificate contains a “path length” constraint, the number of intermediate

CAs between the leaf certificate and the current certificate must be less than the

path length. For example, if the CA certificate has path length of 0, it can be used

only to issue leaf certificates.

Every extension in a certificate is designated as critical or non-critical. A certificate with a

critical extension that the client does not recognize or understand must be rejected.

If a CA certificate in the chain contains a name constraints extension, then the subject name

in the immediately following certificate in the chain must satisfy the listed name constraints.

Name constraints are used to limit the subjects that a CA can issue certificates for, by listing

permitted or excluded subjects. This extension is critical.

If a certificate in the chain contains a key usage extension, the value of this extension must

include the purpose that the certificate is being used for. For example, the key usage of an

intermediate certificate must include keyCertSign (it must also have the CA bit set in the

basic constraints, as described above). If a leaf certificate contains the server’s RSA public

key that will be used to encrypt a session key, its key usage extension must include

keyEncipherment. CAs should mark this extension as critical.

Similar to key usage, if a certificate contains an extended key usage extension, the value of

this extension must include the purpose that the certificate is being used for, e.g., server

authentication in the case of a leaf certificate.

If a certificate contains an Authority Key Identifier (AKI) extension, then its value—

containing the key identifier and/or issuer and serial number—should be used to locate the

public key for validating the certificate. This extension is used when the certificate issuer

has multiple public keys.

Brubaker et al. Page 11

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

If a certificate contains a Certificate Revocation List (CRL) distribution points extension, the

client should obtain CRL information as specified by this extension.

The above list omits many important checks and subtleties of certificate validation. For

example, CA certificates may contain policy constraints that limit their authority in various

ways [69, 4.2.1.11]. Policy constraints extension should be marked as critical, although in

practice few SSL/TLS implementations understand policy constraints.

Hostname verification

After the chain of trust has been validated, the client must verify the server’s identity by

checking if the fully qualified DNS name of the server it wants to talk to matches one of the

names in the “SubjectAltNames” extension or the “Common Name” field of the leaf

certificate. Some SS-L/TLS implementations perform hostname verification, while others

delegate it to higher-level applications (see Table IX).

V. Current testing practices for SSL/TLS implementations

Most SSL/TLS implementations analyzed in this paper ship with several pre-generated X.

509 certificates intended for testing (Table I). These certificates differ only in a few fields,

such as hashing algorithms (SHA-1, MD5, etc.), algorithms for public-key cryptography

(DSA, RSA, Diffie-Hellman, etc.), and the sizes of public keys (512 bits, 1024 bits, etc.).

OpenSSL uses a total of 2 certificates to test client and server authentication, respectively;

the rest are intended to test other functionalities such as certificate parsing.

Testing with a handful of valid certificates is unlikely to uncover vulnerabilities, omissions,

and implementation flaws in the certificate validation logic. For example, we found that

GnuTLS mistakenly accepts all versions 1 certificates even though the default flag is set to

accept only locally trusted version 1 root certificates (see Section IX). This vulnerability

would have never been discovered with their existing test suite because it only contains

version 3 certificates.

Automated adversarial testing is rarely, if ever, performed for SSL/TLS implementations.

As we demonstrate in this paper, systematic testing with inputs that do not satisfy the

protocol specification significantly improves the chances of uncovering subtle

implementation flaws.

Several of the SSL/TLS implementations in our study, including OpenSSL, NSS, and

MatrixSSL, have been tested and certified according to FIPS 140-2 [30], the U.S.

government computer security standard for cryptographic modules. As the results of our

testing demonstrate, FIPS certification does not mean that an implementation performs

authentication correctly or is secure against man-in-the-middle attacks.

VI. Collecting Certificates

We used ZMap [26] to scan the Internet and attempt an SSL connection to every host

listening on port 443. If the connection was successful, the certificate presented by the

server was saved along with the IP of the host.

Brubaker et al. Page 12

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

This scan yielded a corpus of 243,246 unique certificates. 23.5% of the collected certificates

were already expired at the time they were presented by their servers, and 0.02% were not

yet valid. The certificates in our corpus were issued by 33,837 unique issuers, identified by

the value of their CN (“Common Name”) field. Table II shows the 20 most common issuers.

23,698 of the certificates are X.509 version 1 (v1) certificates, 4,974 of which are expired.

This is important because—as our testing has uncovered—any v1 certificate issued by a

trusted CA can be used for man-in-the-middle attacks against several SSL/TLS

implementations (see Section IX).

20,391 v1 certificates are self-signed. Table III shows the 10 most common issuers of the

other 3,307 certificates. localhost, localdomain, and 192.168.1.1 are all self-issued certificate

chains, but many v1 certificates have been issued by trusted issuers, especially

manufacturers of embedded devices. For example, Remotewd.com is used for remote

control of Western Digital Smart TVs, while UBNT and ZTE make networking equipment.

As we show in Section IX, SSL/TLS implementations that specifically target embedded

devices handle v1 certificates incorrectly and are thus vulnerable to man-in-the-middle

attacks using these certificates.

437 certificates in our corpus have version 4, even though there is no X.509 version 4. 434

of them are self-signed, the other 3 are issued by Cyberoam, a manufacturer of hardware

“security appliances.” We conjecture that the cause is an off-by-one bug in the certificate

issuance software: the version field in the certificate is zero-indexed, and if set to 3 by the

issuer, it is interpreted as version 4 by SSL/TLS implementations.

Table IV shows the number of times various extensions show up in our corpus and how

many unique values we observed for each extension. Extensions are labeled by short names

if known, otherwise by their object identifiers (OID).

VII. Generating Frankencerts

The key challenge in generating test inputs for SSL/TLS implementations is how to create

strings that (1) are parsed as X.509 certificates by the implementations, but (2) exercise parts

of their functionality that are rarely or never executed when processing normal certificates.

We use our corpus of real certificates (see Section VI) as the source of syntactically valid

certificate parts. Our algorithm them assembles these parts into random combinations we

call frankencerts. One limitation of the certificates in our corpus is that they all conform to

the X.509 specification. To test how SSL/TLS implementations behave when faced with

syntactically valid certificates that do not conform to X.509, we also synthesize artificial

certificate parts and add them to the inputs of the frankencerts generator (see Section VII-B).

A. Generating frankencerts

Algorithm 1 describes the generation of a single frankencert. Our prototype implementation

of Frankencert is based on OpenSSL. It uses parts randomly selected from the corpus, with

two exceptions: it generates a new RSA key and changes the issuer so that it can create

chains where the generated frankencert acts as an intermediate certificate. The issuer field of

Brubaker et al. Page 13

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

each frankencert must be equal to the subject of the certificate one level higher in the chain,

or else all tested implementations fail to follow the chain and do not attempt to validate any

other part of the certificate. For every other field, the generator picks the value from a

randomly chosen certificate in the corpus (a different certificate for each field).

Extensions are set as follows. The generator chooses a random number of extensions from

among all extensions observed in the corpus (Table IV). For each extension, it randomly

chooses a value from the set of all observed values for that extension. Each value, no matter

how common or rare, has an equal probability of appearing in a frankencert.

We use two CAs as roots of trust, with an X.509 version 1 certificate and an X.509 version 3

certificate, respectively. For the purposes of testing, both root CAs are installed in the local

root of trust and thus trusted by all tested SSL/TLS clients.

Each frankencert is a well-formed X.509 certificate signed by a locally trusted CA, but it

may be invalid for a number of reasons. By design, the frankencert generator does not

respect the constraints on X.509 extensions. It also randomly designates extensions as

critical or non-critical in each generated frankencert, violating the requirement that certain

extensions must be critical (Section IV). This allows us to test whether SSL/TLS

implementations reject certificates with unknown critical extensions, as required by the X.

509 RFC [69].

For certificate chains, we use between 0 and 3 frankencerts. Each intermediate certificate

uses the previous certificate’s (randomly chosen) subject as its issuer and is signed by the

previous certificate, creating a chain that SSL/TLS implementations can follow. These

chains are well-formed, but may still be invalid because of the contents of random

frankencerts acting as intermediate certificates. For example, the key usage extension of an

intermediate certificate may not include keyCertSign, as required by the X.509 RFC [69], or

an intermediate certificate may violate a name constraint which limits the set of subjects it is

allowed to certify.

Algorithm 1

Generating a single frankencert

1: procedure Frankencert(certs, exts, issuer)

2: new_cert ← Create a blank cert

3: for all field ∈ new_cert do

4: if field =“key” then

5: new_cert.key ← Create a random key

6: else if field =“issuer” then

7: new_cert.issuer ← issuer

8: else

9: random_cert ← CHOICE(certs)

10: new_cert.field ← random_cert.field

11: end if

Brubaker et al. Page 14

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

12: end for

13: num_exts ← RANDOM(0, 10)

14: for i ∈ 1..num_exts do

15: random_id ← CHOICE(exts)

16: random_val ← CHOICE(exts[random_id])

17: new_cert.extensions[i].id ← random_id

18: new_cert.extensions[i].val ← random_val

19: if RANDOM < 0.05 then

20: Flip(new_cert.extensions[i].critical)

21: end if

22: end for

23: Sign(new_cert, issuer.key)

24: return new_cert

25: end procedure

Algorithm 2

Generating a chain of frankencerts

1: procedure Frankenchain(certs, ca, length)

2: issuer ← ca

3: chain ← Ø

4: exts ← Getextensions(certs)

5: for i ∈ 1..length do

6: chain[i] ←Frankencert(certs, exts, issuer)

7: issuer ← chain[i]

8: end for

9: return chain

10: end procedure

B. Generating synthetic mutations

The purpose of synthetic certificate parts is to test how SSL/TLS implementations react to

extension values that follow the ASN.1 grammar for X.509 but do not conform to the X.509

specification.

Taking a frankencert as input, we first parse all extensions present in the certificate using

OpenSSL. The critical bit and the rest of the extension value are extracted using

X509_EXTENSION_get_critical() and X509_EXTENSION_get_data(), respectively. Then,

for each of these extensions, the extension value is replaced with a randomly generated

ASN.1 string and a null character (0) is probabilistically injected into this string. Because

most of the SSL/TLS implementations in our testing are written in C, and C strings are

terminated by a null character, this step helps verify whether implementations parse

extension values correctly. Finally, the extension is randomly marked as critical or non-

critical.

Brubaker et al. Page 15

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Algorithm 3

Extracting unique extensions from a corpus of certificates

1: procedure GetExtensions(certs)

2: uniq_exts ← Ø

3: for all cert ∈ certs do

4: for all ext ∈ cert.extensions do

5: id ← ext.id

6: val ← ext.val

7: if id ∉ uniq_exts then

8: uniq_exts[id] ← Ø

9: end if

10: if val ∉ uniq_exts[id] then

11: uniq_exts[id] ← uniq_exts[id] ∪ val

12: end if

13: end for

14: end for

15: return uniq_exts

16: end procedure

VIII. Testing SSL/TLS Implementations

We tested open-source SSL/TLS libraries and several Web browsers. The tested libraries are

OpenSSL 1.0.1e, PolarSSL 1.2.8, GnuTLS 3.1.9.1, CyaSSL 2.7.0, MatrixSSL 3.4.2, NSS

3.15.2, cryptlib 3.4.0-r1, OpenJDK 1.7.0_09-b30, and Bouncy Castle 1.49. The tested

browsers are Firefox 20.0, Chrome 30.0.1599.114_p1, WebKitGTK 1.10.2-r300, Opera

12.0, Safari 7.0, and IE 10.0.

Testing was done in parallel on 3 machines: an Ubuntu Linux machine with two Intel Xeon

E5420 (2.5Ghz) CPUs and 16 GB of RAM, an Ubuntu Linux machine with an Intel

i7-2600K (4.0Ghz) CPU and 16GB of RAM, and a Gentoo Linux machine with an Intel

i5-3360M (2.8Ghz) CPU with 8GB of RAM. Each machine generated and tested

frankencerts independently, with the results merged later. The average speed of generating a

frankencert chain with 3 certificates is 11.7ms.

SSL/TLS clients

We implemented a simple client for each SSL/TLS library. Each client takes three

arguments (host, port, path to the file with trusted root certificates) and makes an SSL 3.0

connection to the host/port. The server presents a frankencert. The client records the answer

reported by the library, including error codes if any. When implementing these clients, we

used the documentation provided by the libraries and followed the sample code in the

documentation as closely as possible. We expect that most application developers using the

library would follow the same procedure.

Brubaker et al. Page 16

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

For testing Web browsers, we created scripts with the same input/output format as our

clients for the libraries, allowing straightforward integration of browsers into our testing

framework. For Firefox, we used Xulrunner to make an SSL connection and print the output

without bringing up a Firefox window. For Chrome, we could not find an easy way to avoid

launching the window. Therefore, we used a JavaScript file to make the connection and

record the results.

Each execution of a library client takes between 0.04 and 0.10 seconds, with OpenSSL being

the fastest and PolarSSL the slowest. The browser scripts are much slower: 0.6–1.0 seconds

for Firefox and 1.1–1.4 seconds for Chrome.

Differential testing

For differential testing of multiple SS-L/TLS implementations, we implemented a Python

script that generates frankencerts and executes all clients against each frankencert. The

entire script is 367 lines of code, including 102 lines for certificate generation and 163 lines

for parallel execution of clients. Certificates are generated in batches of 200; executing all

clients on a single batch takes 25 seconds.

If a certificate causes disagreement between the clients (i.e., the clients produce different

error codes when presented with this certificate), the certificate is indexed by its SHA-1 hash

and stored into the appropriate bucket. Buckets are defined by the tuples of error codes

returned by each client. For example, if client A accepts the certificate, client B rejects it

with error code 34, and client C rejects it with error code 1, the certificate is stored into the

0-34-1 bucket. The size of each bucket is capped at 512 certificates.

In total, we tested our clients on 8,127,600 frankencerts. It is not computationally feasible

to exhaustively generate certificates with all possible combinations of extension values from

Table IV, but every value of every extension appeared in at least one of the frankencerts

used in the testing.

Our testing yielded 208 distinct discrepancies between SSL/TLS implementations, with a

total of 62,022 frankencerts triggering these discrepancies.

Analysis of the results

All SSL/TLS implementations we tested are supposed to implement the same protocol and,

in particular, exactly the same certificate validation logic. Whenever one implementation

accepts a certificate and another rejects the same certificate, their implementations of the X.

509 standard must be semantically different. In other words, differential testing has no false
positives. This is very important when testing on over 8 million inputs, because any non-

negligible false-positive rate would have resulted in an overwhelming number of false

positives.

While all discrepancies found by differential testing indicate genuine differences between

implementations, not every difference implies a security vulnerability. For each discrepancy,

we manually analyzed the source code of the disagreeing implementations to identify the

root cause of the disagreement and find the flaw (if any) in the certificate validation logic of

Brubaker et al. Page 17

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

one or more implementations. Because some parts of the X.509 standard are left to the

discretion of the implementation, a few of the discrepancies turned out to be benign. For

example, the differing treatments of the Authority Key Identifier (AKI) extension (Section

IX-E) fall into this category.

Differential testing with frankencerts suffers from false negatives and can miss security

flaws. SSL/TLS implementations may contain code paths that are not exercised by a given

set of frankencerts. An example of this is the recently discovered certificate validation bug

in GnuTLS [33], which is only triggered by syntactically malformed certificates. It was not

found by our testing because all frankencerts we generated comply with the X.509 grammar.

Similarly, frankencerts will not trigger flaws on the code paths responsible for processing

extensions that do not occur in the certificate corpus from which these frankencerts are

constructed, or the paths executed only for certain versions and modes of SSL/TLS, etc.

Further, if all implementations make the same mistake, it will not manifest as a discrepancy.

Finally, an implementation may reject an invalid certificate for the wrong reason(s). To

reduce false negatives in the latter case, we also analyzed the discrepancies between the

reported validation errors.

Analysis of error reporting

Proper error reporting is critical for SSL/TLS implementations because a trivial, low-risk

warning (e.g., expired certificate) may accidentally hide or mask a severe problem (e.g.,

invalid certificate issuer).

Not every SSL/TLS implementation produces fine-grained error codes that are easy to

translate into a human-understandable reason for rejection. Many simply reject the

certificate and return a generic error. If the certificate is invalid for multiple reasons, all

libraries except GnuTLS return only one error value, but some allow the application to

extract more error codes through additional function calls. This is fraught with peril because

the application may forget to make these additional calls and thus allow a less severe error to

mask a serious problem with the certificate.

Therefore, we limited our differential testing of error reporting to Web browsers, OpenSSL,

NSS, GnuTLS, and OpenJDK. For this testing, each output was mapped to one of the

following reasons: “Accepted,” “Invalid issuer,” “Expired,” “Not yet valid,” and “Unknown

or invalid critical extension.” For Web browsers, we also included “Hostname in the

certificate does not match the server.”

IX. Results

Depending on the combination of mutations in a frankencert, the same flaw in a given

implementation of X.509 certificate validation can produce different results. We analyzed

208 discrepancies between the implementations found by our testing and attributed them to

15 distinct root causes.

Table V summarizes the results. As the second column shows, most of the issues could not

have been discovered without frankencerts because the certificates triggering these issues do

Brubaker et al. Page 18

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

not exist in our corpus (but, of course, can be crafted by the adversary to exploit the

corresponding flaw).

A. Incorrect checking of basic constraints

Basic constraints, described in Section IV, are an essential part of CA certificates. Every X.

509 version 3 CA certificate must have the CA bit set, otherwise any domain with a valid

leaf certificate could act as a rogue CA and issue fake certificates for other domains.

Untrusted version 1 intermediate certificate—Before version 3, X.509 certificates

did not have basic constraints, making it impossible to check whether a certificate in the

chain belongs to a valid CA except via out-of-band means. If an SSL/TLS implementation

encounters a version 1 (v1) CA certificate that cannot be validated out of band, it must reject

it [69, 6.1.4(k)].

Both MatrixSSL and GnuTLS accept chains containing v1 certificates. As we explain

below, this can make any application based on MatrixSSL or GnuTLS vulnerable to man-in-

the-middle attacks. In MatrixSSL, the following code silently skips the basic constraints

check for any certificate whose version field is 0 or 1 (encoding X.509 version 1 or 2,

respectively, because the version field is zero-indexed):

/* Certificate authority constraint only available in

version 3 certs */

if ((ic->version > 1) && (ic->extensions.bc.ca<= 0)) {

psTraceCrypto(“Issuer does not have basicConstraint

CA permissions\n”);

sc->authStatus = PS_CERT_AUTH_FAIL_BC;

return PS_CERT_AUTH_FAIL_BC;

}

GnuTLS, on the other hand, contains a very subtle error. This error could not have been

uncovered without frankencerts because none of the real certificate chains in our corpus

contain v1 intermediate certificates.

GnuTLS has three flags that an application can set to customize the library’s treatment of v1

CA certificates: GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT (only accept v1 root

certificates), GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT (accept v1

certificates for root and intermediate CAs), and

GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT (reject all v1 CA

certificates). Only GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT is set by default. The

intention is good: the application may locally trust a v1 root CA, but, to prevent other

customers of that root CA from acting as CAs themselves, no v1 intermediate certificates

should be accepted.

The relevant part of GnuTLS certificate validation code is shown below (adapted from lib/

x509/verify.c). After a root v1 certificate has been accepted, GnuTLS needs to prevent any

Brubaker et al. Page 19

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

further v1 certificates from being accepted. To this end, it clears the

GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT flag on line 12 before calling

_gnutls_verify_certificate2. The latter function accepts v1 certificates unless a different flag,

GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT is set (line 25).

1 unsigned int _gnutls_x509_verify_certificate(. . .)

2 {

3 . . .

4

5 /* verify the certificate path (chain) */

6 for (i = clist_size - 1; i > 0; i--)

7 {

8 /* note that here we disable this V1 CA flag. So

that no version 1

9 * certificates can exist in a supplied chain.

10 */

11 if (!(flags &

GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT))

12 flags &= ∼(GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT);

13 if ((ret = _gnutls_verify_certificate2 (. . .)) ==

0)

14 {

15 /* return error */

16 }

17 }

18 . . .

19 }

20

21 int _gnutls_verify_certificate2(. . .)

22 {

23 . . .

24 if (!(flags & GNUTLS_VERIFY_DISABLE_CA_SIGN) &&

25 ((flags &

GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT)

26 || issuer_version != 1))

27 {

28 if (check_if_ca (cert, issuer, flags) == 0)

29 {

30 /*return error*/

31 . . .

32 }

33 }

34 /*perform other checks*/

Brubaker et al. Page 20

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

35 . . .

36 }

There is an interesting dependency between the two flags. To prevent intermediate v1

certificates from being accepted, GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT must

be false and GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT must be true.

The calling function sets the former, but not the latter. Therefore, although by default

GnuTLS is only intended to accept root v1 certificates, in reality it accepts any v1

certificate.

The consequences of this bug are not subtle. If an application based on GnuTLS trusts a v1

root CA certificate, then any server certified by the same root can act as a rogue CA,

issuing fake certificates for any Internet domain and launching man-in-the-middle attacks

against this GnuTLS-based application. Unfortunately, trusting v1 root certificates is very

common. For example, Gentoo Linux by default has 13 v1 root CA certificates, Mozilla has

9, and we observed thousands of CA-issued v1 leaf certificates “in the wild” (Section VI).

Untrusted version 2 intermediate certificate—We never observed X.509 version 2

certificates “in the wild,” but, for the purposes of testing, did generate version 2

frankencerts.

As explained above, MatrixSSL silently accepts all CA certificates whose version field is

less than 2 (i.e., version number less than 3). In GnuTLS, gnutls_x509_crt_get_version

returns the actual version, not the version field, and the following check blocks version 2

certificates:

issuer_version = gnutls_x509_crt_get_version (issuer);

// ...

if (!(flags & GNUTLS_VERIFY_DISABLE_CA_SIGN) &&

((flags &

GNUTLS_VERIFY_DO_NOT_ALLOW_X509_V1_CA_CRT)

|| issuer_version != 1))

{

// ...

}

Version 1 certificate with valid basic constraints—Basic constraints were added

only in X.509 version 3, but several SSL/TLS implementations always verify basic

constraints if present in the certificate regardless of its version field.

Some of our frankencert chains include version 1 intermediate certificates with correct basic

constraints (obviously, such certificates do not exist “in the wild”). OpenSSL, GnuTLS,

MatrixSSL, CyaSSL, Opera, and Chrome accept them, Open-JDK and Bouncy Castle reject

them, NSS and Firefox fail with a generic Security library failure error. Neither choice

appears to lead to a security vulnerability.

Brubaker et al. Page 21

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Intermediate CA not authorized to issue further intermediate CA certificates—
When a higher-level CA certifies a lower-level CA, it can impose various restrictions on the

latter. For example, it can limit the number of intermediate certificates that may follow the

lower-level CA’s certificate in a certificate chain. This is done by setting the

pathLenConstraint field in the basic constraints extension of the lower-level CA’s

certificate.

For example, if path length is set to zero, then the lower-level CA is authorized to issue only

leaf certificates, but not intermediate CA certificates. This is good security practice: a CA

delegates its authority to a lower-level CA, but prevents the latter from delegating it any

further. We observed 17 CA certificates with path length constraints in our corpus.

MatrixSSL ignores path length constraints. This can be exploited by a malicious or

compromised CA to evade restrictions imposed by a higher-level CA. For example, suppose

that a trusted root CA authorized a lower-level CA—call it EnterpriseCA—but prohibited it

from creating other CAs (via path length constraints) and from issuing certificates for any

domain other than enterprise.com (via name constraints—see Section IX-B). This provides a

degree of protection if EnterpriseCA is compromised. If the attacker uses EnterpriseCA to

issue a certificate for, say, google.com, this certificate should be rejected by any SSL/TLS

implementation because it violates the constraints expressed in EnterpriseCA’s own

certificate.

This attack will succeed, however, against any application based on MatrixSSL. The impact

of this vulnerability may be amplified by the fact that MatrixSSL targets embedded devices,

whose manufacturers are the kind of organizations that are likely to obtain CA certificates

with restricted authority.

There is an interesting discrepancy in how the implementations react when an intermediate

CA whose path length is zero is followed by a leaf certificate that also happens to be a CA

certificate. In our testing, only MatrixSSL and GnuTLS accepted this chain. All other

SSL/TLS implementations rejected it because they do not allow any CA certificate to follow

an intermediate CA whose path length is zero. This interpretation is incorrect. The X.509

standard explicitly permits a leaf CA certificate to follow an intermediate CA whose path

length is zero [69, Section 4.2.1.9], but only GnuTLS implements this part of the standard

correctly.

B. Incorrect checking of name constraints

The higher-level CA may restrict the ability of a lower-level CA to issue certificates for

arbitrary domains by including a name constraint in the lower-level’s CA’s certificate. For

example, if the issuing CA wants to allow the lower-level CA to certify only the subdomains

of foo.com, it can add a name constraint *.foo.com to the lower-level CA’s certificate.

GnuTLS, MatrixSSL, and CyaSSL ignore name constraints and accept the server’s

certificate even if it has been issued by a CA that is not authorized to issue certificates for

that server.

Brubaker et al. Page 22

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

C. Incorrect checking of time

Every X.509 certificate has the notBefore and notAfter timestamp fields. The SSL/TLS

client must verify that the current date and time in GMT (or the time zone specified in these

fields) is within the range of these timestamps.

PolarSSL ignores the notBefore timestamp and thus accepts certificates that are not yet

valid. When verifying the notAfter field, it uses local time instead of GMT or the time zone

specified in the field.

MatrixSSL does not perform any time checks of its own and delegates this responsibility to

the applications. The sample application code included with MatrixSSL checks the day, but

not the hours and minutes of the notAfter field, and uses local time, not GMT or the time

zone specified in the field.

D. Incorrect checking of key usage

SSL/TLS clients must check the key usage and, if present, extended key usage extensions to

verify that the certificates are authorized for their purpose. Leaf certificates must be

authorized for key encipherment or key agreement, while CA certificates must be authorized

to sign other certificates.

CA certificate not authorized for signing other certificates—All CA certificates in

the chain must include keyCertSign in their key usage. GnuTLS, CyaSSL, and MatrixSSL

do not check the key usage extension in CA certificates. An attacker who compromises any

CA key, even a key that is not intended or used for certificate issuance, can use it to forge

certificates and launch man-in-the-middle attacks against applications based on these

libraries.

Server certificate not authorized for use in SSL/TLS handshake—PolarSSL,

GnuTLS, CyaSSL, and MatrixSSL do not check the key usage extension in leaf certificates.

This is a serious security vulnerability. For example, if an attacker compromises some

company’s code signing certificate, which is only intended for authenticating code, he will

be able to impersonate that company’s network and Web servers to any application based on

the above SSL/TLS libraries, vastly increasing the impact of the attack.

Server certificate not authorized for server authentication—PolarSSL, gnuTLS,

CyaSSL and MatrixSSL do not check the extended key usage extension. Given a certificate

with key usage that allows all operations and extended key usage that only allows it to be

used for TLS client authentication (or any purpose other than server authentication), these

libraries accept the certificate for server authentication.

E. Other discrepancies in extension checks

Unknown critical extensions—If an SSL/TLS implementation does not recognize an

extension that is marked as critical, it must reject the certificate. GnuTLS, CyaSSL, and

MatrixSSL accept certificates with unknown critical extensions.

Brubaker et al. Page 23

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Malformed extension values—Given a certificate with a known non-critical extension

whose value is syntactically well-formed ASN.1 but not a valid value for that extension,

OpenSSL, GnuTLS, CyaSSL, and MatrixSSL accept it, while the other libraries and all

browsers reject it.

Inconsistencies in the definition of self-signed—Self-issued certificates are CA

certificates in which the issuer and subject are the same entity [69]. Nevertheless, given a

(very odd) certificate whose subject is the same as issuer but that also has a valid chain of

trust, GnuTLS and MatrixSSL accept it.

Inconsistencies between the certificate’s Authority Key Identifier and its
issuer—The Authority Key Identifier (AKI) extension differentiates between multiple

certificates of the same issuer. When an AKI is present in a certificate issued by CA whose

name is A, but the AKI points to a certificate whose subject name is B, some libraries reject,

others accept.

If the serial number field is absent in the AKI, then GnuTLS accepts. But if this field is

present and does not match the issuer’s serial number, then GnuTLS rejects.

F. “Users… don’t go for the commercial CA racket”

We planned to include cryptlib in our testing, but then discovered that it does not verify

certificate chains. We let the following code snippet, taken from session/ssl_cli.c, speak for

itself (there is no code inside the if block):

/* If certificate verification hasn’t been disabled

, make sure that

the

server’s certificate verifies */

if(!(verifyFlags & SSL_PFLAG_DISABLE_CERTVERIFY)

)

{

/* This is still too risky to enable by default

because most users outside of web browsing

don’t go for the commercial CA racket */

}

return(CRYPT_OK);

G. Security problems in error reporting

Rejection of an invalid certificate is not the end of the story. Web browsers and other

interactive applications generate a warning based on the reason for rejection, show this

warning to the user, and, in many cases, allow the user to override the dialog and proceed.

Different errors have different security implications. A recently expired, but otherwise valid

certificate may be evidence of a sloppy system administrator who forgot to install a new

Brubaker et al. Page 24

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

certificate, but does not imply that the SSL/TLS connection will be insecure. “Expired

certificate” warnings are sufficiently common that users have learned to ignore them and

browser developers are even advised to suppress them [1].

If, on the other hand, the certificate issuer is not valid, this means that the server cannot be

authenticated and the connection is not secure against man-in-the-middle attacks. If the

server’s hostname does not match the subject of the certificate, the user may inspect both

names and decide whether to proceed or not. For example, if the hostname (e.g.,

bar.foo.com) is a subdomain of the common name in the certificate (e.g., foo.com), the user

may chalk the discrepancy up to a minor misconfiguration and proceed.

To test whether SSL/TLS implementations report certificate errors correctly, we performed

differential testing on leaf certificates with all combinations of the following:

• Expired (E): Current time is later than the notAfter timestamp in the certificate.

• Bad issuer (I): There is no valid chain of trust from the certificate’s issuer to a

trusted root CA.

• Bad name (N): Neither the common name, nor the subject alternative name in the

certificate match the server’s hostname.

I is the most severe error. It implies that the connection is insecure and must be reported to

the user. On the other hand, E is a common, relatively low-risk error.

Table VI shows the results. For these tests, we extended our client suite with common Web

browsers, since they are directly responsible for interpreting the reasons for certificate

rejection and presenting error warnings to human users.

Most SSL/TLS implementations and Web browsers return only one error code even if the

certificate is invalid for multiple reasons. What is especially worrisome is that some

browsers choose to report the less severe reason. In effect, they hide a severe security
problem under a low-risk warning. These cases are highlighted in bold in Table VI.

For example, if a network attacker—say, a malicious WiFi access point—presents a self-

signed, very recently expired certificate for gmail.com or any other important domain to a

user of Safari 7 or Chrome 30 (on Linux), the only error warning the user will see is

“Expired certificate.” 1 Many users will click through this low-risk warning—even though

authentication has failed and the server has been spoofed! This vulnerability is generic in all

NSS-based applications: if the certificate is expired, that’s the only reported error code

regardless of any other problems with the certificate.

A related problem (not reflected in Table VI) is caused by “Weak Key” warnings. When

presented with a certificate containing a 512-bit RSA key, Firefox and Chrome accept it,

while Opera warns that the key is weak. If the certificate is invalid, Opera still produces the

same “Weak Key” warning, masking other problems with the certificate, e.g., invalid issuer.

1As this paper was being prepared, the same bug was reported in http://news.netcraft.com/archives/2013/10/16/us-government-aiding-
spying-against-itself.html

Brubaker et al. Page 25

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://news.netcraft.com/archives/2013/10/16/us-government-aiding-spying-against-itself.html
http://news.netcraft.com/archives/2013/10/16/us-government-aiding-spying-against-itself.html

The other warnings are available in the details tab of the error dialog, assuming Opera users

know to look there.

Finally, if Firefox encounters two certs issued by the same CA that have the same serial

number, it shows an error message describing the problem. This message masks all other

warnings, but there is no way for the user to override it and proceed, so this behavior is safe.

H. Other checks

Weak cryptographic hash functions—Digital signatures on SSL/TLS certificates can

use a variety of cryptographic hash (aka message digest) functions. As Table VII shows,

only NSS, GnuTLS, and Chrome reject MD5 certificates, which are known to be vulnerable

to prefix-collision attacks [77].

Short keys—Table VIII shows that virtually all tested implementations support short keys

(512 bits for RSA) and unusual key sizes (1023 bits, chosen because it occurs 87 times in

our certificate corpus).

Additional checks—Table IX summarizes which SSL/TLS libraries perform additional

checks, such as Certification Revocation Lists (CRL), subject alternative name, and

hostname. The latter check is critically important for security against man-in-the-middle

attacks [31], but often delegated by libraries to higher-level applications.

X. Developer Responses

We notified the developers of all affected SSL/TLS implementations about the issues

discovered by our testing.

GnuTLS has fixed the bug involving version 1 intermediate CA certificates (starting from

version 3.2.11) and also created a patch for older versions. A security advisory

(CVE-2014-1959) has been issued for this bug. GnuTLS used to check the keyUsage field in

earlier versions, but removed these checks after getting bug reports from developers who

were using certificates with incorrect keyUsage fields.2 This was necessary for compatibility

with several other SSL/TLS implementations that do not check this field. Delignat-Lavaud

et al. [19] independently reported that GnuTLS does not reject certificates with unknown

critical extensions. According to GnuTLS, rejecting such certificates may allow certain

corporations to lock out GnuTLS by issuing certificates with custom extensions and thus

forcing developers to use the corporation’s own SSL library instead of GnuTLS.

MatrixSSL plans to reject version 1 intermediate CAs and check path length constraints

starting from the next release. In general, MatrixSSL only performs basic checks on the

certificate and depends on the application-provided callbacks to check key usage, extended

key usage, expiration timestamps, etc. To facilitate these checks, MatrixSSL will parse the

critical flags and the extended key usage extension. Since MatrixSSL primarily targets

embedded devices, which do not always have the time zone information, in most cases the

2http://www.gnutls.org/faq.html

Brubaker et al. Page 26

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.gnutls.org/faq.html

notBefore and notAfter timestamps in the certificate will have to be checked against the

available local time.

CyaSSL is fixing all reported issues. The fixes will be part of CyaSSL 3.0.0, expected to be

released in April 2014.

PolarSSL is currently working on the fixes.

cryptlib does not support certificate chain validation to avoid validation failures for the users

who run their own CA hierarchy or do not use certificates. The cryptlib manual3

recommends other techniques for authenticating the server, such as matching key

fingerprints. In addition, it strongly recommends using the PSK cipher suites for mutual

authentication of both the client and server. The manual also provides an outline for the

application writers who want to use certificates on how to perform certificate validation on

their own.

NSS developers informed us that all Mozilla products use a glue layer called Personal

Security Manager (PSM) over NSS instead of using NSS directly. The PSM certificate

validation routine, CERT_VerifyCertificate, takes an argument named CERTVerifyLog that,

if not set to NULL, returns a list of all certificate validation errors. An example usage of the

function can be found at http://mxr.mozilla.org/mozilla-central/source/security/

manager/ssl/src/SSLServerCertVerification.cpp#622

As of this writing, we are still talking to Web-browser developers about user warnings

generated by their browsers when certificate validation fails.

XI. Conclusions

We designed, implemented, and applied the first automated method for large-scale

adversarial testing of certificate validation logic in SSL/TLS implementations. Our key

technical innovation is “frankencerts,” synthetic certificates randomly mutated from parts of

real certificates. Frankencerts are syntactically well-formed, but may violate the X.509

specification and thus exercise rarely tested functionality in SSL/TLS implementations. Our

testing uncovered multiple flaws in popular SSL/TLS libraries and Web browsers, including

security vulnerabilities that break server authentication guarantees and can be exploited for

stealthy man-in-the-middle attacks.

Certificate validation is only one part of the SSL/TLS handshake. Bugs in other parts of the

handshake—e.g., accidentally omitting to check that the server’s messages are signed with

the key that matches the certificate [49]—and incorrect usage of SSL/TLS implementations

by higher-level software [29, 31] can completely disable authentication and leave

applications vulnerable to man-in-the-middle attacks. Development of automated methods

that can analyze the entire SSL/TLS software stack and prove that it has been implemented

securely and correctly remains an open challenge.

3http://www.cryptlib.com/downloads/manual.pdf, page 118

Brubaker et al. Page 27

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://mxr.mozilla.org/mozilla-central/source/security/manager/ssl/src/SSLServerCertVerification.cpp#622
http://mxr.mozilla.org/mozilla-central/source/security/manager/ssl/src/SSLServerCertVerification.cpp#622
http://www.cryptlib.com/downloads/manual.pdf

Acknowledgments

We are grateful to Rui Qiu for participating in the initial exploration of the ideas that led to this work, and to our
Oakland shepherd Matthew Smith for helping smooth ruffled feathers. This work was partially supported by the
NSF grants CNS-0746888, CCF-0845628, and CNS-1223396, a Google research award, NIH grant R01
LM011028-01 from the National Library of Medicine, and Google PhD Fellowship to Suman Jana.

References

1. Akhawe D, Amann B, Vallentin M, Sommer R. Here’s my cert, so trust me, maybe? Understanding
TLS errors on the Web. WWW. 2013

2. Akhawe D, Felt A. Alice in Warningland: A large-scale field study of browser security warning
effectiveness. USENIX Security. 2013

3. AlFardan N, Paterson K. Lucky thirteen: Breaking the TLS and DTLS record protocols. S&P. 2013

4. Amann B, Sommer R, Vallentin M, Hall S. No attack necessary: The surprising dynamics of SSL
trust relationships. ACSAC. 2013

5. Amrutkar C, Singh K, Verma A, Traynor P. VulnerableMe: Measuring systemic weaknesses in
mobile browser security. ICISS. 2012

6. Amrutkar C, Traynor P, van Oorschot P. An empirical evaluation of security indicators in mobile
Web browsers. IEEE Trans Mobile Computing. 2013

7. Anand S, Burke E, Chen T, Clark J, Cohen M, Grieskamp W, Harman M, Harrold M, McMinn P.
An orchestrated survey of methodologies for automated software test case generation. Journal of
Systems and Software. 2013; 86(8):1978–2001.

8. Bleichenbacher D. Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS #1. CRYPTO. 1996

9. Brumley D, Boneh D. Remote timing attacks are practical. USENIX Security. 2003

10. Brumley D, Caballero J, Liang Z, Newsome J, Song D. Towards automatic discovery of deviations
in binary implementations with applications to error detection and fingerprint generation. USENIX
Security. 2007

11. Cadar C, Dunbar D, Engler D. KLEE: Unassisted and automatic generation of high-coverage tests
for complex systems programs. OSDI. 2008

12. Cadar C, Engler D. Execution generated test cases: How to make systems code crash itself. SPIN.
2005

13. Chandrasekhar B, Khurshid S, Marinov D. Korat: Automated testing based on Java predicates.
ISSTA. 2002

14. Chen, T.; Cheung, S.; Yiu, S. Technical Report HKUST-CS98-01. Department of Computer
Science, Hong Kong University of Science and Technology; 1998. Metamorphic testing: A new
approach for generating next test cases.

15. Cheon Y, Leavens G. A simple and practical approach to unit testing: The JML and JUnit way.
ECOOP. 2002

16. Clark J, van Oorschot P. SoK: SSL and HTTPS: Revisiting past challenges and evaluating
certificate trust model enhancements. S&P. 2013

17. Comodo report of incident. 2011. http://www.comodo.com/Comodo-Fraud-
Incident-2011-03-23.html

18. Daniel B, Dig D, Garcia K, Marinov D. Automated testing of refactoring engines. FSE. 2007

19. Delignat-Lavaud A, Abadi M, Birrell A, Mironov I, Wobber T, Xie Y. Web PKI: Closing the gap
between guidelines and practices. NDSS. 2014

20. Dickinson W, Leon D, Podgurski A. Finding failures by cluster analysis of execution profiles.
ICSE. 2001

21. Dietz M, Czeskis A, Balfanz D, Wallach D. Origin-bound certificates: A fresh approach to strong
client authentication for the Web. USENIX Security. 2012

Brubaker et al. Page 28

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

22. Diginotar issues dodgy SSL certificates for Google services after break-in. 2011. http://
www.theinquirer.net/inquirer/news/2105321/diginotar-issues-dodgy-ssl-certificates-google-
services-break

23. Dijkstra E. A Discipline of Programming. 1976

24. Duong, T.; Rizzo, J. Here come the ninjas. 2011. http://nerdoholic.org/uploads/dergln/beastpart2/
ssljun21.pdf

25. Durumeric Z, Kasten J, Bailey M, Halderman A. Analysis of the HTTPS certificate ecosystem.
IMC. 2013

26. Durumeric Z, Wustrow E, Halderman A. ZMap: Fast Internet-wide scanning and its security
applications. USENIX Security. 2013

27. Eckersley P, Burns J. An observatory for the SSLiverse. DEFCON. 2010

28. Ernst M. Static and dynamic analysis: Synergy and duality. WODA. 2003

29. Fahl S, Harbach M, Muders T, Smith M. Why Eve and Mallory love Android: An analysis of SSl
(in)security on Android. CCS. 2012

30. FIPS PUB 140-2. Security requirements for cryptographic modules. 2001. http://csrc.nist.gov/
publications/fips/fips140-2/fips1402.pdf

31. Georgiev M, Iyengar S, Jana S, Anubhai R, Boneh D, Shmatikov V. The most dangerous code in
the world: Validating SSL certificates in non-browser software. CCS. 2012

32. Gligoric M, Behrang F, Li Y, Overbey J, Hafiz M, Marinov D. Systematic testing of refactoring
engines on real software projects. ECOOP. 2013

33. CVE-2014-0092. 2014. https://bugzilla.redhat.com/showbug.cgi?id=1069865

34. Godefroid P, Kiezun A, Levin M. Grammar-based whitebox fuzzing. PLDI. 2008

35. Godefroid P, Klarlund N, Sen K. DART: Directed automated random testing. PLDI. 2005

36. Godefroid P, Levin M, Molnar D. Automated whitebox fuzz testing. NDSS. 2008

37. Halfond W, Anand S, Orso A. Precise interface identification to improve testing and analysis of
web applications. ISSTA. 2009

38. Heninger N, Durumeric Z, Wustrow E, Halderman A. Mining your Ps and Qs: Detection of
widespread weak keys in network devices. USENIX Security. 2012

39. Holland, JH. Adaptation in Natural and Artificial Systems. 2. University of Michigan Press; 1992.
p. 1975

40. CVE-2011-0228. 2011. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0228

41. Jagannath V, Lee Y, Daniel B, Marinov D. Reducing the costs of bounded-exhaustive testing.
FASE. 2009

42. Jana S, Shmatikov V. Abusing file processing in malware detectors for fun and profit. S&P. 2012

43. Jones J, Bowring J, Harrold M. Debugging in parallel. ISSTA. 2007

44. Kaminsky D, Patterson M, Sassaman L. PKI layer cake: New collision attacks against the global
X.509 infrastructure. FC. 2010

45. Khurshid S, Pasareanu C, Visser W. Generalized symbolic execution for model checking and
testing. TACAS. 2003

46. Kiezun A, Guo P, Jayaraman K, Ernst M. Automatic creation of SQL injection and cross-site
scripting attacks. ICSE. 2009

47. King J. Symbolic execution and program testing. Commun ACM. 1976; 19(7)

48. Lammel, R.; Schulte, W. Testing of Communicating Systems. Lecture Notes in Computer Science;
2006. Controllable combinatorial coverage in grammar-based testing; p. 19-38.

49. Langley, A. Apple’s SSL/TLS bug. 2014. https://www.imperialviolet.org/2014/02/22/
applebug.html

50. Lenstra, A.; Hughes, J.; Augier, M.; Bos, J.; Kleinjung, T.; Wachter, C. Ron was wrong, Whit is
right. 2012. http://eprint.iacr.org/2012/064

51. Majumdar R, Xu R. Directed test generation using symbolic grammars. ASE. 2007

52. Malloy B, Power J. An interpretation of Purdom’s algorithm for automatic generation of test cases.
ICIS. 2001

Brubaker et al. Page 29

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.theinquirer.net/inquirer/news/2105321/diginotar-issues-dodgy-ssl-certificates-google-services-break
http://www.theinquirer.net/inquirer/news/2105321/diginotar-issues-dodgy-ssl-certificates-google-services-break
http://www.theinquirer.net/inquirer/news/2105321/diginotar-issues-dodgy-ssl-certificates-google-services-break
http://nerdoholic.org/uploads/dergln/beastpart2/ssljun21.pdf
http://nerdoholic.org/uploads/dergln/beastpart2/ssljun21.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
https://bugzilla.redhat.com/showbug.cgi?id=1069865
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-0228
https://www.imperialviolet.org/2014/02/22/applebug.html
https://www.imperialviolet.org/2014/02/22/applebug.html
http://eprint.iacr.org/2012/064

53. Marinov D, Khurshid S. TestEra: A novel framework for automated testing of Java programs.
ASE. 2001

54. Marlinspike, M. IE SSL vulnerability. 2002. http://www.thoughtcrime.org/ie-ssl-chain.txt

55. Marlinspike, M. More tricks for defeating SSL in practice. DEFCON; 2009.

56. Marlinspike, M. New tricks for defeating SSL in practice. Black Hat DC; 2009.

57. Marlinspike, M. Null prefix attacks against SSL/TLS certificates. 2009. http://
www.thoughtcrime.org/papers/null-prefix-attacks.pdf

58. Maurer P. Generating test data with enhanced context-free grammars. IEEE Software. 1990; 7(4):
50–55.

59. McKeeman W. Differential testing for software. Digital Technical Journal. 1998; 10(1):100–107.

60. Parsovs A. Practical issues with TLS client certificate authentication. NDSS. 2014

61. Podgurski A, Leon D, Francis P, Masri W, Minch M, Sun J, Wang B. Automated support for
classifying software failure reports. ICSE. 2003

62. Purdom P. A sentence generator for testing parsers. BIT Numerical Mathematics. 1972; 12:366–
375.

63. Ramos D, Engler D. Practical, low-effort equivalence verification of real code. CAV. 2011

64. The TLS protocol version 1.0. 1999. http://tools.ietf.org/html/rfc2246

65. Internet X.509 public key infrastructure certificate policy and certification practices framework.
1999. http://www.ietf.org/rfc/rfc2527.txt

66. HTTP over TLS. 2000. http://www.ietf.org/rfc/rfc2818.txt

67. The Transport Layer Security (TLS) protocol version 1.1. 2006. http://tools.ietf.org/html/rfc4346

68. The Transport Layer Security (TLS) protocol version 1.2. 2008. http://tools.ietf.org/html/rfc5246

69. Internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile.
2008. http://tools.ietf.org/html/rfc5280

70. The Secure Sockets Layer (SSL) protocol version 3.0. 2011. http://tools.ietf.org/html/rfc6101

71. Representation and verification of domain-based application service identity within Internet public
key infrastructure using X.509 (PKIX) certificates in the context of Transport Layer Security
(TLS). 2011. http://tools.ietf.org/html/rfc6125

72. Rizzo J, Duong T. The CRIME attack. Ekoparty. 2012

73. Saxena P, Akhawe D, Hanna S, Mao F, McCamant S, Song D. A symbolic execution framework
for JavaScript. S&P. 2010

74. Sen K, Marinov D, Agha G. CUTE: A concolic unit testing engine for C. FSE. 2005

75. Sirer, E.; Bershad, B. Using production grammars in software testing. Proc. 2nd Conference on
Domain-specific Languages; 1999;

76. Srivastava V, Bond M, McKinley K, Shmatikov V. A security policy oracle: Detecting security
holes using multiple API implementations. PLDI. 2011

77. Stevens M, Sotirov A, Appelbaum J, Lenstra A, Molnar D, Osvik D, Weger B. Short chosen-prefix
collisions for MD5 and the creation of a rogue CA certificate. CRYPTO. 2009

78. Vratonjic N, Freudiger J, Bindschaedler V, Hubaux J-P. The inconvenient truth about Web
certificates. WEIS. 2011

79. Yang X, Chen Y, Eide E, Regehr J. Finding and understanding bugs in C compilers. PLDI. 2011

Brubaker et al. Page 30

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.thoughtcrime.org/ie-ssl-chain.txt
http://www.thoughtcrime.org/papers/null-prefix-attacks.pdf
http://www.thoughtcrime.org/papers/null-prefix-attacks.pdf
http://tools.ietf.org/html/rfc2246
http://www.ietf.org/rfc/rfc2527.txt
http://www.ietf.org/rfc/rfc2818.txt
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc6101
http://tools.ietf.org/html/rfc6125

Fig. 1.
A sample X509 certificate chain.

Brubaker et al. Page 31

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brubaker et al. Page 32

TABLE I

Number of SSL/TLS certificates used by different implementations for testing

Implementation Certificate count

NSS 64

GnuTLS 51

OpenSSL 44

PolarSSL 18

CyaSSL 9

MatrixSSL 9

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brubaker et al. Page 33

TABLE II

20 most common issuers in our corpus

Common Name (CN) Occurrences

Cybertrust Public SureServer SV CA 30066

Go Daddy Secure Certification Authority 13300

localhost.localdomain 7179

GeoTrust SSL CA 7171

COMODO SSL CA 7114

RapidSSL CA 6358

COMODO SSL CA 2 5326

BMS 4878

DigiCert High Assurance CA-3 4341

Hitron Technologies Cable Modem Root Certificate Authority 4013

VeriSign Class 3 Secure Server CA - G3 3837

COMODO High-Assurance Secure Server CA 3681

PositiveSSL CA 2 2724

Entrust Certification Authority - L1C 2719

Daniel 2639

Vodafone (Secure Networks) 2634

192.168.168.168 2417

GeoTrust DV SSL CA 2174

localhost 2142

Parallels Panel 2084

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brubaker et al. Page 34

TABLE III

10 most common issuers of X.509 version 1 certificates

Common Name (CN) Occurrences

BMS 4877

Parallels Panel 2003

localhost 1668

brutus.neuronio.pt 1196

plesk 1163

remotewd.com 1120

UBNT 1094

localdomain 986

192.168.1.1 507

ZTE Corporation 501

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brubaker et al. Page 35

TABLE IV

Extensions observed in our corpus

Name or OID Occurrences Unique values

basicConstraints 161723 13

authorityKeyIdentifier 161572 21990

subjectKeyIdentifier 151823 72496

keyUsage 132970 54

extendedKeyUsage 131453 83

crlDistributionPoints 126579 4851

subjectAltName 101622 59767

authorityInfoAccess 89005 3864

certificatePolicies 81264 418

nsCertType 63913 21

nsComment 5870 185

1.3.6.1.4.1.311.20.2 2897 11

issuerAltName 1519 115

1.3.6.1.5.5.7.1.12 1474 2

SMIME-CAPS 915 4

1.3.6.1.4.1.311.21.10 875 16

1.3.6.1.4.1.311.21.7 873 312

privateKeyUsagePeriod 871 798

2.5.29.1 175 133

nsRevocationUrl 112 39

nsCaRevocationUrl 104 52

nsCaPolicyUrl 74 32

nsSslServerName 73 17

nsBaseUrl 63 31

1.2.840.113533.7.65.0 59 6

2.16.840.1.113719.1.9.4.1 54 26

nsRenewalUrl 33 7

2.5.29.80 10 10

qcStatements 8 2

2.5.29.7 7 7

2.16.840.1.113733.1.6.15 6 6

2.5.29.10 5 1

1.3.6.1.4.1.3401.8.1.1 4 4

freshestCRL 4 3

subjectDirectoryAttributes 4 2

1.3.6.1.4.1.311.10.11.11 3 3

2.5.29.3 2 1

2.16.840.1.113733.1.6.7 2 2

1.3.6.1.4.4324.33 2 2

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brubaker et al. Page 36

Name or OID Occurrences Unique values

1.3.6.1.4.4324.36 2 2

1.3.6.1.4.4324.34 2 2

1.3.6.1.4.4324.35 2 1

1.2.40.0.10.1.1.1 2 2

1.3.6.1.4.1.311.21.1 2 1

1.3.6.1.4.1.7650.1 1 1

1.3.6.1.4.1.311.10.11.87 1 1

1.3.6.1.4.1.311.10.11.26 1 1

1.3.6.1.4.1.8173.2.3.6 1 1

1.2.40.0.10.1.1.2 1 1

2.5.29.4 1 1

1.2.250.1.71.1.2.5 1 1

1.3.6.1.4.1.6334.2.2 1 1

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brubaker et al. Page 37

T
A

B
L

E
 V

Se
m

an
tic

 d
is

cr
ep

an
ci

es
 in

 c
er

tif
ic

at
e

va
lid

at
io

n
(i

nc
or

re
ct

 a
ns

w
er

s
in

 b
ol

d)

P
ro

bl
em

C
er

ti
fi

ca
te

s
tr

ig
ge

ri
ng

 t
he

pr

ob
le

m
 o

cc
ur

 in

th
e

or
ig

in
al

co

rp
us

O
pe

nS
SL

P
ol

ar
SS

L
G

nu
T

L
S

C
ya

SS
L

M
at

ri
xS

SL
N

SS
O

pe
nJ

D
K

, B
ou

nc
y

C
as

tl
e

B
ro

w
se

rs

U
nt

ru
st

ed
 v

er
si

on
 1

 in
te

rm
ed

ia
te

 C
A

 c
er

tif
ic

at
e

N
o

re
je

ct
re

je
ct

ac
ce

pt
re

je
ct

ac
ce

pt
re

je
ct

re
je

ct
re

je
ct

U
nt

ru
st

ed
 v

er
si

on
 2

 in
te

rm
ed

ia
te

 C
A

 c
er

tif
ic

at
e

N
o

re
je

ct
re

je
ct

re
je

ct
re

je
ct

ac
ce

pt
re

je
ct

re
je

ct
re

je
ct

V
er

si
on

 1
 c

er
tif

ic
at

e
w

ith
 v

al
id

 b
as

ic
 c

on
st

ra
in

ts
N

o
ac

ce
pt

re
je

ct
ac

ce
pt

ac
ce

pt
ac

ce
pt

re
je

ct
re

je
ct

Fi
re

fo
x:

 r
ej

ec
t

O
pe

ra
,

C
hr

om
e:

 a
cc

ep
t

In
te

rm
ed

ia
te

 C
A

 n
ot

 a
ut

ho
ri

ze
d

to
 is

su
e

fu
rt

he
r

in
te

rm
ed

ia
te

 C
A

 c
er

tif
ic

at
es

, b
ut

 f
ol

lo
w

ed
 in

 th
e

ch
ai

n
by

 a
n

in
te

rm
ed

ia
te

 C
A

 c
er

tif
ic

at
e

N
o

re
je

ct
re

je
ct

re
je

ct
re

je
ct

ac
ce

pt
re

je
ct

re
je

ct
re

je
ct

…
fo

llo
w

ed
 b

y
a

le
af

 C
A

 c
er

tif
ic

at
e

N
o

re
je

ct
re

je
ct

ac
ce

pt
re

je
ct

ac
ce

pt
re

je
ct

re
je

ct
re

je
ct

In
te

rm
ed

ia
te

 C
A

 n
ot

 a
ut

ho
ri

ze
d

to
 is

su
e

ce
rt

if
ic

at
es

 f
or

 s
er

ve
r’

s
ho

st
na

m
e

N
o

re
je

ct
re

je
ct

ac
ce

pt
ac

ce
pt

ac
ce

pt
re

je
ct

re
je

ct
re

je
ct

C
er

tif
ic

at
e

no
t y

et
 v

al
id

Y
es

re
je

ct
ac

ce
pt

re
je

ct
re

je
ct

re
je

ct
re

je
ct

re
je

ct
re

je
ct

C
er

tif
ic

at
e

ex
pi

re
d

in
 it

s
tim

ez
on

e
Y

es
re

je
ct

ac
ce

pt
re

je
ct

re
je

ct
ac

ce
pt

re
je

ct
re

je
ct

re
je

ct

C
A

 c
er

tif
ic

at
e

no
t a

ut
ho

ri
ze

d
fo

r
si

gn
in

g
ot

he
r

ce
rt

if
ic

at
es

N
o

re
je

ct
re

je
ct

ac
ce

pt
ac

ce
pt

ac
ce

pt
re

je
ct

re
je

ct
re

je
ct

Se
rv

er
 c

er
tif

ic
at

e
no

t a
ut

ho
ri

ze
d

fo
r

us
e

in

SS
L

/T
L

S
ha

nd
sh

ak
e

Y
es

re
je

ct
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
re

je
ct

re
je

ct
re

je
ct

Se
rv

er
 c

er
tif

ic
at

e
no

t a
ut

ho
ri

ze
d

fo
r

se
rv

er

au
th

en
tic

at
io

n
Y

es
re

je
ct

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

re
je

ct
re

je
ct

re
je

ct

C
er

tif
ic

at
e

w
ith

 u
nk

no
w

n
cr

iti
ca

l e
xt

en
si

on
N

o
re

je
ct

re
je

ct
ac

ce
pt

ac
ce

pt
ac

ce
pt

re
je

ct
re

je
ct

re
je

ct

C
er

tif
ic

at
e

w
ith

 m
al

fo
rm

ed
 e

xt
en

si
on

 v
al

ue
N

o
ac

ce
pt

re
je

ct
ac

ce
pt

ac
ce

pt
ac

ce
pt

re
je

ct
re

je
ct

re
je

ct

C
er

tif
ic

at
e

w
ith

 th
e

sa
m

e
is

su
er

 a
nd

 s
ub

je
ct

 a
nd

 a

va
lid

 c
ha

in
 o

f
tr

us
t

N
o

re
je

ct
re

je
ct

ac
ce

pt
re

je
ct

ac
ce

pt
re

je
ct

re
je

ct
re

je
ct

Is
su

er
 n

am
e

do
es

 n
ot

 m
at

ch
 A

K
I

N
o

re
je

ct
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
re

je
ct

re
je

ct
re

je
ct

Is
su

er
 s

er
ia

l n
um

be
r

do
es

 n
ot

 m
at

ch
 A

K
I

N
o

re
je

ct
ac

ce
pt

re
je

ct
ac

ce
pt

ac
ce

pt
re

je
ct

re
je

ct
re

je
ct

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brubaker et al. Page 38

T
A

B
L

E
 V

I

E
rr

or
 c

od
e(

s)
 r

et
ur

ne
d

by
 W

eb
 b

ro
w

se
rs

 a
nd

 S
SL

/T
L

S
lib

ra
ri

es
 f

or
 c

er
tif

ic
at

es
 w

ith
 v

ar
io

us
 c

om
bi

na
tio

ns
 o

f
B

ad
 I

ss
ue

r
(I

),
 E

xp
ir

ed
 (

E
),

 a
nd

 B
ad

 N
am

e

(N
).

 S
ec

ur
ity

 v
ul

ne
ra

bi
lit

ie
s

ar
e

hi
gh

lig
ht

ed
 in

 b
ol

d.

C
er

ts
F

ir
ef

ox
 2

0
C

hr
om

e
30

 (
L

in
ux

)
O

pe
ra

 1
2

(L
in

ux
)

O
pe

ra
 2

0
(M

ac
)

Sa
fa

ri
 7

C
hr

om
e

30
 (

M
ac

)
IE

 1
0

O
pe

nS
SL

P
ol

ar
SS

L
G

nu
T

L
S

C
ya

SS
L

M
at

ri
xS

SL
N

SS

E
E

E
E

!
E

!
E

E
E

E
E

E
E

E
E

I
I

I
I

!
I

!
I

I
I

I
I

I
I

**
I

IE
IE

E
I#

*
! E

*
*

I
I

IE
**

**
E

-

IN
IN

I
I#

!
I

!
I

I
IN

I-
I-

I-
I-

* -
I-

IE
N

IE
N

N
I#

*
! E

*
*

I-
IE

-
**

-
**

-
**

-
E

-

N
N

N
N

+
!

N
N

N
-

-
-

-
-

-

N
E

N
E

N
E

#
! E

! E
N

N
E

E
-

**
-

E
-

E
-

E
-

E
-

* is
 a

 g
en

er
ic

 “
in

va
lid

 c
er

tif
ic

at
e”

 w
ar

ni
ng

 w
ith

ou
t a

 s
pe

ci
fi

c
er

ro
r

m
es

sa
ge

; t
he

 u
se

r
ca

nn
ot

 o
ve

rr
id

e
th

is
 w

ar
ni

ng

+
is

 a
 g

en
er

ic
 “

in
va

lid
 c

er
tif

ic
at

e”
 w

ar
ni

ng
 w

ith
ou

t a
 s

pe
ci

fi
c

er
ro

r
m

es
sa

ge
; t

he
 u

se
r

ca
n

ov
er

ri
de

 th
is

 w
ar

ni
ng

**
is

 a
 g

en
er

ic
 “

in
va

lid
 c

er
tif

ic
at

e”
 e

rr
or

 c
od

e

al
l e

rr
or

s
ar

e
sh

ow
n

af
te

r
th

e
us

er
 c

lic
ks

 th
e

de
ta

ils
 ta

b

! sh
ow

s
a

ge
ne

ri
c

er
ro

r
m

es
sa

ge
 f

ir
st

; t
he

 r
ep

or
te

d
er

ro
r

is
 s

ho
w

n
af

te
r

us
er

 c
lic

ks
 th

e
de

ta
ils

 b
ut

to
n

-
th

e
ho

st
na

m
e

ch
ec

k
w

as
 n

ot
 e

na
bl

ed
 f

or
 a

ny
 o

f
th

e
te

st
ed

 c
lie

nt
s

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brubaker et al. Page 39

T
A

B
L

E
 V

II

Su
pp

or
t f

or
 c

ry
pt

og
ra

ph
ic

 h
as

h
al

go
ri

th
m

s
in

 c
er

tif
ic

at
e

si
gn

at
ur

es

A
lg

or
it

hm
O

pe
nS

SL
P

ol
ar

SS
L

G
nu

T
L

S
C

ya
SS

L
M

at
ri

xS
SL

N
SS

O
pe

nJ
D

K
B

ou
nc

yC
as

tl
e

C
hr

om
e

F
ir

ef
ox

W
eb

K
it

O
pe

ra

SH
A

-1
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt

SH
A

-2
56

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

re
je

ct
 (

u)
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

SH
A

-5
12

ac
ce

pt
ac

ce
pt

ac
ce

pt
re

je
ct

 (
u)

re
je

ct
 (

u)
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

M
D

2
re

je
ct

re
je

ct
re

je
ct

re
je

ct
re

je
ct

re
je

ct
re

je
ct

re
je

ct
re

je
ct

re
je

ct
re

je
ct

re
je

ct

M
D

4
re

je
ct

re
je

ct
re

je
ct

re
je

ct
re

je
ct

re
je

ct
re

je
ct

 (
d)

re
je

ct
re

je
ct

re
je

ct
re

je
ct

re
je

ct

M
D

5
ac

ce
pt

ac
ce

pt
re

je
ct

 (
w

)
ac

ce
pt

ac
ce

pt
re

je
ct

 (
w

)
ac

ce
pt

ac
ce

pt
re

je
ct

 (
w

)
ac

ce
pt

ac
ce

pt
ac

ce
pt

re
je

ct
 (

u)
 :

re
je

ct
 b

ec
au

se
 h

as
h

fu
nc

tio
n

is
 u

nk
no

w
n

re
je

ct
 (

w
)

: r
ej

ec
t b

ec
au

se
 h

as
h

fu
nc

tio
n

is
 w

ea
k

re
je

ct
 (

d)
 :

re
je

ct
 u

nd
er

 d
ef

au
lt

se
tti

ng
s

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brubaker et al. Page 40

T
A

B
L

E
 V

III

Su
pp

or
t f

or
 s

ho
rt

 k
ey

s
an

d
un

us
ua

l k
ey

 s
iz

es

K
ey

 s
iz

e
O

pe
nS

SL
P

ol
ar

SS
L

G
nu

T
L

S
C

ya
SS

L
M

at
ri

xS
SL

N
SS

O
pe

nJ
D

K
B

ou
nc

yC
as

tl
e

C
hr

om
e

F
ir

ef
ox

W
eb

K
it

O
pe

ra

51
2-

bi
t R

SA
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

w
ar

ni
ng

10
23

-b
it

R
SA

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

ac
ce

pt
ac

ce
pt

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brubaker et al. Page 41

TABLE IX

Verification of extra certificate fields

Library CRL subjectAltName Host name

MatrixSSL * No No

PolarSSL Yes Yes Yes

CyaSSL * Yes Yes

GnuTLS Yes Yes Yes

NSS Yes Yes Yes

OpenSSL * * *

*
not verified by default, application must explicitly enable

IEEE Secur Priv. Author manuscript; available in PMC 2014 November 15.

