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Abstract

Objectives—The Systemic Capillary Leak Syndrome (SCLS) is a rare and potentially fatal 

disorder resembling systemic anaphylaxis that is characterized by transient episodes of 

hypotensive shock and peripheral edema. The pathogenesis of SCLS is unknown, and triggers for 

attacks are apparent only in a minority of patients. We introduce a clinical algorithm for the 

diagnosis of SCLS, and we investigated potential serum biomarkers of acute SCLS episodes.

Methods—We analyzed serum cytokines in a cohort of 35 patients with an established diagnosis 

of SCLS and characterized the effects of SCLS sera on endothelial cell function. We investigated 

the cellular source(s) of CXCL10, a chemokine that was significantly elevated in both basal and 

acute SCLS sera, by flow cytometry.

Results—Several cytokines were elevated in acute SCLS sera compared to baseline or sera from 

healthy controls, including CXCL10, CCL2, IL-1β, IL-6, IL-8, IL-12 and TNFα. The majority of 

acute sera failed to activate endothelial cells as assessed by surface adhesion marker expression. 

Monocytes appear to be the major source of serum CXCL10, and the percentage of CXLC10+ 

monocytes in response to IFNγ stimulation was increased in SCLS subjects compared to controls.

Conclusions—The presence of proinflammatory cytokines in acute SCLS sera suggests that 

inflammation or infection may have a role in triggering episodes. The enhanced capacity of 

monocytes from SCLS patients to produce CXCL10 suggests a new therapeutic avenue for SCLS.
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Introduction

The Systemic Capillary Leak Syndrome (SCLS) is a life-threatening disorder that occurs 

sporadically, typically in middle-aged Caucasians [1,2]. SCLS is characterized by recurrent, 

reversible episodes of distributive shock and anasarca due to sudden and unexplained 

leakage of plasma into the tissues. SCLS resembles, and is often erroneously diagnosed as, 

more common disorders such as sepsis, angioedema, and systemic anaphylaxis. Although a 

monoclonal gammopathy of unknown significance (MGUS) is highly associated with SCLS 

[3,4], its pathophysiologic significance is unclear. Therefore, because no specific biomarkers 

or pathognomonic clinical sign(s) of SCLS exist currently, the triad of transient hypotension, 

hemoconcentration, and serum hypoalbuminemia in the absence of underlying causes is 

sufficient to establish the diagnosis [2,5,6]. Fewer than 250 cases have been reported since 

Clarkson described SCLS in 1960 [2]. There is no specific treatment for acute SCLS other 

than hemodynamic support with intravenous fluids and vasopressors. Drugs such as 

theophylline, β2-adrenergic agonists, and most recently, imatinib, have been used as 

prophylactic agents to promote vascular integrity in SCLS [6]. Based on anecdotal evidence 

accumulated over several years, it has become apparent that monthly intravenous 

immunoglobulin (IVIG, 2 g/kg) infusions have severely curtailed attacks in a majority of 

patients who receive this therapy indefinitely [6–8].

Most research findings on SCLS have been based on single case reports, or purely clinical 

observations [2,6]. Using samples from our (then) 23-patient cohort, we reported previously 

that sera from SCLS patients during acute disease intervals uniformly induced 

hyperpermeability of human microvascular endothelial cell (HMVEC) monolayers due to 

disruption of endothelial adherens junctions and actin stress fiber formation [4]. In contrast, 

sera from these patients obtained during remission had little to no impact on HMVEC 

barrier integrity and resembled sera from healthy controls. HMVEC hyperpermeability 

elicited by acute SCLS sera was inhibited by pretreatment of target endothelial cells with 

IVIG or by antibody neutralization of Angiopoietin-2 (Ang2), a known mediator of vascular 

permeability that was elevated in acute SCLS sera compared to sera from healthy donors [4].

Although the trigger(s) of acute SCLS episodes are unclear, a longitudinal case registry 

study of 28 SCLS patients found that about three quarters of subjects experienced flu-like 

symptoms prior to attack onset [6]. Analysis of our expanded cohort (35 subjects) revealed 

elevated levels of several proinflammatory cytokines in acute sera, particularly CXCL10. 

Monocytes from a subset of these patients demonstrated an increased capacity for CXCL10 

production. These results suggest a potential role for CXCL10 in the initiation of acute 

SCLS.

Materials and Methods

Study subjects

Patients were diagnosed with SCLS and classified according to established criteria described 

previously [2,6]. Patients were seen at the Clinical Center of the National Institutes of 

Health. Written informed consent was obtained from each patient, and the study protocol 
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(09-I-0184) conformed to the ethical guidelines of the 2008 Declaration of Helsinki as 

reflected in a priori approval from the Institutional Review Board of the National Institute of 

Allergy and Infectious Diseases of NIH. Age-, sex-, and race-matched serum samples and 

lymphapheresis samples were obtained from the NIH Blood Bank.

Cells and reagents

Human umbilical vascular endothelial cells (HUVECs) were purchased from American 

Tissue Type Collection. Endothelial Growth Medium (EGM) 2 was obtained from Lonza. 

AlexaFluor 647-conjugated anti-ICAM1, phycoerythryin-conjugated anti-VCAM1, anti-

CXCL10, phycoerythryin/Cy7-conjugated anti-CD14 antibodies and the protein transport 

inhibitor monensin were purchased from BioLegend. Phycoerythryin-Cy5-conjugated anti-

E-selectin and APC-conjugated anti-CD19 antibodies were obtained from BD Biosciences. 

Qdot 605-conjugated anti-CD3 and Live/Dead fixable violet dead stain kit were from Life 

Technologies. Recombinant human TNFα and IFNγ, and CXCL10 Quantikine ELISA kit 

were purchased from R & D Systems.

Cytokine measurements

Serum cytokines were measured using a Bio-plex Pro human cytokine 27-plex and a 

customized human cytokine 9-plex assay kit purchased from Bio-Rad according to the 

manufacturer’s instructions.

Endothelial activation marker analysis

HUVECs were seeded in 6-well plate and incubated overnight at 37°C. Cells were incubated 

with test serum (10% vol/vol final concentration) in growth medium for 4 hours. The cells 

were then detached with CellStripper (Mediatech), washed once with PBS, and stained with 

the indicated antibodies for 30 minutes. Cells were then washed twice, fixed with 4% 

paraformaldehyde for 10 minutes, and analyzed by flow cytometry.

CXCL10 measurement by ELISA

HUVECs were seeded in 96-well plate overnight at 37°C, and followed by incubation with 

test sera (10% vol/vol final concentration) in growth medium for 24 hours. Cell culture 

supernatants were collected and analyzed for CXCL10 by ELISA.

PBMC isolation

Peripheral blood mononuclear cells (PBMCs) were isolated from lymphapheresis samples 

using lymphocyte separation medium (LSM, LP BioMedicals). Briefly, apheresis samples 

were diluted 1:1 in PBS, and 30 ml of diluted sample was overlaid on onto LSM (15 ml) in a 

50 ml conical tube. Samples were centrifuged at 800 × g in a tabletop centrifuge at room 

temperature for 40 minutes with break off.

Flow cytometric analysis of CXCL10 production

PBMCs were left untreated or stimulated with IFNγ (20 ng/ml) in the presence of monensin 

overnight in 37°C. The following day cells were stained with Live/Dead violet staining kit 

according to manufacturer’s instructions and fixed in 4% paraformaldehyde. Fixed cells 
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were permeabilized with blocking buffer (0.1% saponin, 1 mM CaCl2, 1 mM MgSO4, 0.1% 

BSA, 10 mM HEPES, 5% milk, and 5% human Fc receptor inhibitor, in PBS) for 30 

minutes followed by staining with antibodies in blocking buffer for additional 30 min. 

Stained cells were washed twice and analyzed using LSRII flow cytometer (BD 

BioSciences).

Statistical analysis

Data were analyzed with the GraphPad Prism 6 software package. 1-way ANOVA or 

Kruskal-Wallis (for multiple groups) was used for grouped cytokine analyses, and unpaired 

parametric Student’s t test was used for flow analysis of CXCL10 production. P values < 

0.05 were considered significant.

Results

Algorithm for the diagnosis of SCLS

SCLS should be considered in a patient with unexplained, transient hypotension and/or 

peripheral edema (Figure 1). If a temporally linked exposure (e.g. food, insect venom, drug) 

is suspected, elevated serum tryptase should exclude systemic anaphylaxis. Although our 

experience and that of others [6,9] suggest that acute triggers for SCLS attacks are often 

absent, viral-type upper respiratory and/or systemic symptoms may be present in many 

patients with SCLS prior to the onset of an episode. While catastrophic SCLS attacks are 

typically accompanied by massive edema of the face, trunk, and peripheral extremities, 

swelling resembling angioedema may be confined to certain areas (periorbital, back, and 

abdomen) in less severe episodes. Thus, complement factor 1 esterase inhibitor (C1 INH) 

levels and function should be evaluated in all patients with suspected SCLS to rule out 

hereditary or acquired angioedema.

A hallmark of severe acute SCLS episodes is hemoconcentration due to the loss of water and 

solutes into the extravascular space. Marked elevations in serum hemoglobin over the 

patient’s baseline, often greater than 20 g/dL, are common, occasionally leading to an 

erroneous diagnosis of polycythemia vera [10]. In contrast to cases of dehydration and 

sepsis, the hemoconcentration and hypotension of SCLS do not reverse immediately 

following administration of intravenous fluids and/or vasopressors. Central venous pressures 

remain low (typically <2 mm Hg) in the acute SCLS leak phase, and massive intravenous 

saline infusion often aggravates peripheral edema and can elicit compartment syndromes in 

the extremities.

Serum hypoproteinemia due to protein extravasation is universally present in acute SCLS, 

and albumin levels of <2 g/dL are common. Some patients may present with persistent, 

noncyclical, peripheral edema and hypoalbuminemia, and this subset may or may not 

experience acute hypotensive episodes. These patients are classified as having “chronic” 

SCLS and may also present with visceral (pleural, pericardial) effusions. Finally, it should 

be emphasized that although MGUS is present in 85–95% of SCLS cases, it is not required 

for the diagnosis.
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Characteristics of the SCLS study cohort

We evaluated 35 patients with a confirmed diagnosis of SCLS based on the criteria outlined 

above and exclusion of other primary causes of hypotension and/or edema (Table 1). The 

median age at the time of the SCLS diagnosis was 46 years (range 22 months to 66 years) 

although the vast majority of patients experienced clinical symptoms attributable to SCLS 

for several years prior to receiving the actual diagnosis. All but one patient was Caucasian, 

and 43% were female. Our cohort included three children and three adult patients with 

chronic edema. Most subjects experienced at least two episodes of SCLS per year, but the 

range varied widely, from once in five years to weekly. Overall, 86% had MGUS, and 27/29 

M-proteins were of the IgG isotype. M-proteins were not detected in any of the children, 

whereas they were present in 91% of adults with SCLS. While most patients were treated 

with theophylline and terbutaline following diagnosis, 79% (23/29) experienced 

breakthrough episodes while on this regimen. Currently, 63% are treated with monthly 

infusions of IVIG (2 g/kg), and the majority of these patients (20/22) have been essentially 

episode-free for periods of up to eight years. One patient, a seven-year old child, is receiving 

subcutaneous IG because of IVIG intolerance. Two somewhat atypical patients (Pt. 3 and Pt. 

31) experienced recurrent episodes of idiopathic hypotension, hemoconcentration, and 

hypoalbuminemia consistent with the diagnosis of SCLS, yet presented with unique 

symptomatology and did not respond at all to standard SCLS therapy, including IVIG. These 

patients also had M-protein isotypes unusual for SCLS (IgA or IgM, respectively).

Serum cytokine analysis of SCLS

Although nearly one quarter of subjects reported flu-like symptoms prior to the onset of a 

full-blown attack [4], whether this prodrome represents a concomitant infection or is a 

primary feature of SCLS is unknown. Our previous studies that include a cohort of 23 SCLS 

subjects demonstrated that some (VEGF, Ang 2), but not all (IL-2), soluble mediators of 

inflammation were increased in acute SCLS sera [4]. To assess the role of infection and/or 

inflammation in acute SCLS episodes and to discover new mediators that may contribute to 

disease onset and/or severity, we analyzed a panel of 27 serum cytokines in sera from 31 

SCLS patients in remission, 14 SCLS patients with acute symptoms (samples were not 

available from all patients), and 37 healthy controls by multiplex bead assay. Ten cytokines 

(IL-2, IL-4, IL-5, IL-10, IL-13, IL-15, IL-17, G-CSF, GM-CSF, CCL3) were absent or 

present at very low levels in most sera tested, while levels of the cytokine RANTES were 

present at levels above the detectable assay range in all samples. Quantities of eight 

cytokines (IL-1RA, IL-7, IL-9, bFGF, PDGFb, CCL4, and CCL11) did not differ 

significantly among the groups or between individual SCLS subjects. Consistent with our 

previous findings, VEGF was increased in acute SCLS sera compared with sera from 

healthy controls (Figure 2A). We detected significantly increased levels of seven cytokines 

in acute SCLS sera relative to sera from healthy donors, specifically, CXCL10, CCL2, 

IL-12, IL-1β, IL-6, IL-8, and TNFα (Figures 2B–2H). Of all cytokines measured, only 

CXCL10 was significantly increased both in baseline and acute SCLS sera relative to 

controls (Figure 2B). These data suggested that TH1-associated inflammation or infection is 

associated with acute SCLS episodes.
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Activation of vascular endothelial cells by acute SCLS sera

Skin biopsies of SCLS patients have revealed the presence of perivascular leukocytic 

inflammation during acute episodes in some cases [11]. Proinflammatory cytokines 

including TNFα and IL-8 have been shown to increase adhesion molecule surface 

expression on endothelial cells, which in turn promotes leukocyte rolling, migration and 

extravasation [12]. To determine whether factors in SCLS sera could evoke endothelial 

barrier dysregulation by inducing leukocyte adhesion, we incubated HUVECs with acute 

and baseline sera from SCLS subjects or healthy donors and analyzed surface expression of 

E-selectin, VCAM-1 and ICAM-1 by flow cytometry. Unexpectedly, among the SCLS sera 

tested (20 baseline and 13 acute) only Pt. 3’s episodic serum induced upregulation of these 

adhesion molecules in HUVECs (Figure 3A–B). Surface expression of these markers 

induced by Pt. 3’s episodic sera was comparable to that evoked by TNFα (Figure 3A, dotted 

line) [13], a well-known endothelial activator that served as positive control for these 

experiments. The concentration of TNFα in Pt. 3’ episodic serum (top square dot in Figure 

2G) is comparable to that used in control experiments, 20-fold higher than that found in 

most of other SCLS sera (Figure 2G). These results and the unresponsiveness of HUVECs to 

acute SCLS serum samples containing low levels of TNFα suggest that TNFα is probably 

the cytokine that mediated endothelial adhesion/activation marker upregulation in Pt. 3’s 

episodic sera. Since endothelial cells have the capacity to produce CXCL10 in response to 

inflammatory stimuli [14], we examined whether they produced CXCL10 following 

treatment with SCLS sera. We incubated HUVECs with acute or baseline sera from healthy 

controls or subjects with SCLS for 24 hours and measured CXCL10 in culture supernatants. 

TNFα plus IFNγ served as a positive control, as described in previous work [14,15]. None 

of the SCLS sera tested elicited CXCL10 secretion from HUVECs (Figure 3C). Taking 

together, these results suggested that in classic SCLS, endothelium is probably not the major 

source of CXCL10.

Increased CXCL10-producing monocytes in SCLS subjects

CXCL10, which is induced by many proinflammatory factors such as IFNγ, is secreted by 

many cell types including monocytes, endothelial cells, and fibroblasts during inflammation 

or infections [16]. To determine the cellular source of CXCL10 in SCLS sera, we studied 

whether CXCL10 production by peripheral blood mononuclear cells differed in control 

subjects and those with SCLS. As expected, percentages of PBMCs producing CXCL10 

constitutively were low (data not shown), but INFγ elicited dramatic increases in the number 

of CXCL10+ cells (Figure 4A). Whereas percentages of CXCL10+ T and B lymphocytes 

were low, about 30% of monocytes from healthy control subjects produced CXCL10 

following IFNγ stimulation. Greater than 90% of all CXCL10-producing non-B non-T cells 

were monocytes (CD14+) (Figure 4A, lower right panel). Following IFNγ treatment, we 

detected a significantly higher number of CXCL10+ mononuclear cells and CXCL10+ 

monocytes in SCLS subjects compared to healthy controls (Figures 4B–4C). These results 

suggested that monocytes from subjects with SCLS have increased responsiveness to an 

inflammatory stimulus (IFNγ).
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Discussion

Among an extensive group of proinflammatory cytokines studied, we found that elevations 

in CCL2, IL-1β, IL-6, IL8, IL-12 and TNFα were associated with acute SCLS episodes, and 

CXCL10 levels were both constitutively and acutely increased in SCLS sera. CXCL10 

appears to be derived principally from peripheral monocytes, and SCLS patients have 

significantly more circulating monocytes with the capacity to make CXCL10 than controls.

We demonstrated increased VEGF levels in acute SCLS sera, which corroborated our 

previous ELISA results in sera from nine SCLS subjects (also included in the current group) 

[4], indicating that VEGF is a potential mediator of endothelial barrier dysfunction in SCLS. 

Although symptoms associated with viral infections do not precede SCLS episodes in all 

cases, some patients report episodes triggered by infections. Accordingly, we found 

increased quantities of CCL2, IL-1β, IL-6, IL-8, IL-12 and CXCL10 in SCLS acute sera, 

suggesting that type 1 immune responses TH1 (e.g. chronic viral, bacterial, or protozoan 

infections), rather than TH2 allergic immunity, may contribute the SCLS phenotype in at 

least a fraction of patients.

Of all cytokines studied, CXCL10 was prominently elevated in both basal and acute SCLS 

sera relative to controls. CXCL10 has been shown to inhibit endothelial cell proliferation 

and induce apoptosis [17], a mechanism previously implicated in the pathogenesis of SCLS 

[18,19]. However, we were unable to demonstrate endothelial apoptosis induced by acute 

SCLS sera in our previous study [4]. In the current work, acute SCLS sera failed to activate 

endothelial cell adhesion marker expression (with one exception), and none of the sera 

elicited CXCL10 production by endothelial cells, suggesting that endothelial cells may not 

be a major source of CXCL10 in SCLS. Although IFNγ is a strong inducer of CXCL10, 

many TH1-associated cytokines are able to increase CXCL10 production by monocytes and 

macrophages. Because IFNγ levels were similar in SCLS and control sera, other factors 

including VEGF, TNFα, IL-β and IFNγ may act synergistically to elicit CXCL10 production 

by monocytes/macrophages in SCLS [20–22]. IFNγ-independent CXCL10 production may 

also occur [23]. For example, a single polynucleotide polymorphism (SNP) in the Cxcl10 

promoter (−135G>A) enhanced its transcriptional activity in tuberculosis [24]. Thus, 

mutations or polymorphisms in Cxcl10 could also account for aberrant CXCL10 production 

in SCLS.

Because elevated serum levels of CXCL10 have been observed in many diseases including 

rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis [25], and HIV 

infection [16], it probably has no utility as a specific diagnostic marker for SCLS. However, 

it may be useful for diagnosis and/or prognosis when considered with previously identified 

permeability mediators VEGF and Ang2. CXCL10 is a potent chemoattractant for 

monocytes/macrophages and activated T cells and promotes leukocyte transmigration 

through endothelium into inflamed tissues. Further study of abnormal CXCL10 production 

and its cellular source(s) may provide insights into the initial permeability-inducing trigger 

in SCLS episodes as well as uncover new therapeutic strategies for this potentially fatal 

disorder.
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Figure 1. 
Clinical considerations in the prospective diagnosis of SCLS. After exclusion of primary 

cardiovascular and/or allergic causes, a diagnosis of SCLS should be entertained in patients 

with unexplained, transient hypotension and/or peripheral edema. Systemic anaphylaxis and 

hereditary and/or acquired angioedema can be excluded by measurement of serum tryptase 

during the acute episode and quantitative and functional assays for the complement 

component 1 esterase inhibitor (C1 INH). Although presumptive treatment for sepsis is 

prudent in the undiagnosed SCLS patient during the first severe episode, the hypotension 

and hemoconcentration of SCLS are typically refractory to intravenous fluid resuscitation, 

which exacerbates peripheral edema. Hypoalbuminemia due to protein extravasation is a 

hallmark of classic acute SCLS whereas low serum albumin levels and edema that does not 

resolve between episodes should prompt the diagnosis of “chronic” SCLS. MGUS is not 

universally present in SCLS and is therefore not required for the diagnosis.
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Figure 2. 
Cytokine profiles of SCLS sera. (A–H) Serum cytokines were measured using a Bio-Plex 

Pro human multiple cytokine assay kit: VEGF (A), CXCL10 (B), CCL2 (C), IL-12 (D), 

IL-1β (E), IL-6 (F), IL-8 (G) and TNFα (H) (*P < 0.05, **P < 0.01, ****P < 0.00001 

Kruskal-Wallis).
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Figure 3. 
Endothelial surface activation marker expression induced by SCLS sera. HUVECs were 

incubated with 10% (vol/vol) test sera for 4 hours (A–B) or 24 hours (C) at 37°C. (A) 

Surface expression of E-selectin, VCAM-1 and ICAM-1 was evaluated by flow cytometry. 

The dotted lines represent adhesion molecule expression induced by TNFα (1.25 ng/ml). (B) 

Paired comparisons of E-selectin, VCAM-1 and ICAM-1 expression induced by basal and 

episodic sera from each individual subject. (C) CXCL10 in HUVEC culture supernatants 

was measured by ELISA.
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Figure 4. 
Abnormal IFNγ-induced CXCL10 production by PBMCs in SCLS. PBMCs were incubated 

with IFNγ and analyzed for CXCL10 production by flow cytometry. (A) Percentages of 

CXCL10+ cells among T lymphocytes (CD3+), B lymphocytes (CD19+), and monocyte 

(CD14+) populations from a representative healthy subject. (B–C) Representative flow plots 

(B) and analysis of CXCL10+ PBMCs and monocytes from SCLS subjects (n = 12) and 

healthy subjects (n = 14), presented as the fold control of the lowest value from a healthy 

donor for each individual experiment, set as ‘1’. *P = 0.02, unpaired t test.
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