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Abstract The phytohormone ethylene is essential to plant
growth and development. It plays crucial roles in responses
to biotic and abiotic stress. The mulberry tree is an important
crop plant in countries in which people rear silkworms for silk
production. The availability of the mulberry genome has made
it possible to identify mulberry genes involved in ethylene
biosynthesis and signal pathways. A total of 145 mulberry
genes were identified by both homology-based and hidden
Markov model (HMM) search, including 29 genes associated
with ethylene biosynthesis and 116 genes in the AP2/ERF
family. Studies on gene structure have provided a genetic basis
for understanding the functions of these genes. The differ-
ences in gene expression were also observed in different
tissues. The expression of two mulberry genes in the AP2/
ERF family, MaERF-B2-1 and MaERF-B2-2, was found to be
associated with the response to flooding stress.

Keywords Ethylene - Plant hormone - Mulberry - Gene
expression

Introduction

Ethylene plays important roles in various aspects of plant
growth and development including fruit ripening, germina-
tion, flowering, sex determination, leaf senescence, root
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nodulation, and responses to biotic and abiotic stress
(Johnson and Ecker 1998; Lin et al. 2009). As early as 1910,
ethylene was used to accelerate the ripening of bananas
(Abeles et al. 1992). In Arabidopsis, ethylene signaling has
been found to be important to flooding and salt response
(Zhang et al. 2011; Voesenek and Blom 1989). Recent work
has indicated that ethylene promotes hypocotyl elongation in
light and suppresses it in darkness (Zhong et al. 2012).
Ethylene biosynthesis and signaling networks are well
understood in plants. Biosynthesis of ethylene occurs in three
steps. First, the amino acid methionine is converted to S-
adenosylmethionine (AdoMet) by S-adenosylmethionine syn-
thetase (Yang and Hoffiman 1984). AdoMet is then converted
to 1-aminocyclopropane-1-carboxylic acid (ACC) and 5'-de-
oxy-5'methylthioadenosine (MTA) by 1-aminocyclopropane-
1-carboxylase synthase (ACS) (Adams and Yang 1979). The
formation of the ACC is the rate-limiting step in ethylene
biosynthesis, and it requires pyrodoxal-5-phosphate (PLP)
as a cofactor. When a large amount of ethylene is produced,
MTA is recycled to methionine through the Yang cycle to
supplement the methionine pool (Miyazaki and Yang 1987).
In the third step, ACC is transformed into ethylene, CO,, and
cyanide by l-aminocyclopropane-1-carboxylase oxidase
(ACO). The cyanide is detoxified into 3-cyanoalanine by f(3-
cyanoalanine synthase (Blumenthal et al. 1968). Ethylene can
be detected by a family of membrane-localized receptors. A
copper cofactor is necessary for the transduction of this signal
(Rodriguez et al. 1999). When ethylene is present, the confor-
mation of the compound of ethylene receptor and constitutive
triple response 1 (CTRI) changes and the suppression ends
(Gao et al. 2003). Ethylene-insensitive 2 (EIN2) is then acti-
vated, resulting in the activation of EIN3 transcription factors
(Alonso et al. 1999). Proteins EIN3 and EIN3-like 1 (EIL1)
are specifically bound to the promoter of ethylene response
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factor 1 (ERF1) in AP2/ERF family, and ERF1 plays important
roles in the transcriptional regulation of a variety of biological
processes associated with growth and development and with
biotic and abiotic stress responses. ERF1 binds to the promoters
that contain the GCC box. These promoters are present in many
inducible ethylene genes (Fujimoto et al. 2000). The related
apetala 2.2 gene from Arabidopsis (RAP2.2, At3g14230) has an
ERF-bearing AP2 domain (Hinz et al. 2010). Overexpression
of RAP2.2 has been shown to improve plant survival under
hypoxia stress conditions. The ERF-associated amphiphilic
repression (EAR) motif is a repression domain in the C-
terminal region of repressor-type ERF proteins. These genes
are implicated in developmental, hormonal and stress signaling
pathways and can be negatively regulated through the EAR
motif (Ohta et al. 2001; Kagale et al. 2010).

Mulberry trees are deciduous and woody. They are widely
used to produce crops for the sericulture industry. The domes-
ticated silkworm, Bombyx mori, feeds only on mulberry leaves.
In this way, the silk industry depends on the quality and
quantity of available mulberry leaves. Mulberry fruits are also
used to make jam, juice, and wine. Ethylene has been shown to
affect seasonal leaf abscission and fruit ripening (Adams-
Phillips et al. 2004). The genes involved in ethylene signaling
and biosynthesis are important targets for the improvement of
leaf and fruit yield. In China’s Three Gorges Reservoir Region,
the most serious type of environmental stress limiting mulberry
crop productivity is water-logging. ERFs have been reported to
play important roles in the regulation of biotic and abiotic stress
(Dietz et al. 2010). One ERF subfamily, the VIIERFs, responds
to hypoxia stress and promotes the expression of hypoxia-
related genes (Hinz et al. 2010). In the present study, we found
the expression patterns of two mulberry genes in the AP2/ERF
family, MaERF-B2-1 and MaERF-B2-2, changed in association
with flooding treatment.

Materials and methods
Database searches and sequence analysis

The mulberry genome database was downloaded from
MorusDB (http://morus.swu.edu.cn/morusdb/). The
Arabidopsis genome database was obtained from TAIR
(http://www.arabidopsis.org/). The majority of amino acid
sequences of the Arabidopsis thaliana genes involved in the
ethylene biosynthesis and signaling pathways were retrieved
from Uniprot (http://www.uniprot.org/). The 4. thaliana AP2/
ERF genes were downloaded from the DATF website (http://
datf.cbi.pku.edu.cn/index.php). All of the A4. thaliana
sequences were used as templates in a search of the
mulberry genome using BLASTP. Hidden Markov
model (HMM) was used to identify motifs of mulberry
proteins. The presence of AP2 domains in the mulberry
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sequences identified in this way was determined by
(http://smart.embl-heidelberg.de/) (SMART) analyses
(Letunic et al. 2012).

Sequence alignments and construction of the phylogenetic
tree

Multiple alignment analysis was performed with ClustalX and
subsequently adjusted manually by Genedoc (Larkin et al.
2007). A phylogenetic tree of AP2/ERF was constructed using
maximum-likelihood method in PhyML 3.0 using a Perl
script. Web tools at the Gene Structure Display Server
(http://gsds.cbi.pku.edu.cn/help.php) were used to draw the
structures of the genes (Guo et al. 2007).

Analysis of the expression of the genes involved in ethylene
biosynthesis and signal transduction

The reads per kilobase of exon model per million mapped
reads (RPKM) was used to analyze the expression levels of all
predicted mulberry genes using RNA sequencing data
(Mortazavi et al. 2008). The clustering analyses were carried
out using Gene Cluster 3.0. The data were adjusted by log
transformation and the mean center method. Hierarchical
clustering (HCL) with average linkage was set to calculate
K-medians with five clusters. Heat maps illustrating the gene
expression data were generated using Java TreeView.

RNA extractions and quantitative RT-PCR

Total RNA was isolated from mulberry roots, barks, leaves,
male flowers, female flowers, and fruits using RNAiso Plus
(Takara, Japan) according to the manufacturer’s instructions.
The quality and concentration of RNA samples were mea-
sured using a ND-1000 UV spectrophometer (Nanodrop
Technologies, USA). Reverse transcription was performed
following the manufacturer’s instructions (Takara, Japan).
Primers were designed using Primer Premier 5 software
(http://www.primer-e.com/). Polymerase chain reactions
were performed in a 96-well plate with a StepOne Plus
System apparatus, amplified with SYBR® Green 11 (Takara,
Japan) according to the manufacturer’s instructions. Cycling
conditions were as follows: 90 °C for 30 s; 40 cycles of 95 °C
for 5 s and 60 °C for 30 s. Amplification specificity was
verified by a dissociation curve. To compare data from differ-
ent PCR runs, cycle threshold (Cr) values for samples were
normalized to that of the mulberry ribosomal protein gene
(Morus024083). The cDNA quantity was calculated using
27ACT - here, ACy is the difference in the number of cycles
between tests and controls. The change in gene expression
after flooding treatment was measured using 2-22€T | where
AAC~=(AC7 sample—ACr control). Gene-specific primers
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used for the real-time RT-PCR are listed in Supplementary
Table 2. All results are representative of three independent
experiments.

Prediction of cis-acting elements

To identify cis-regulatory elements, upstream regions within
about 2 kb of the transcription start sites of three genes,
MnERF-B1, MnERF-B2, and MnERF-B3, were analyzed.
All promoter sequences were placed in the PlantCare database
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html),
which has 435 different plant transcription binding sites. The
search results are divided into four categories including stress

response, hormone response, light response, and others
(Lescot et al. 2002).

Plant growth and flooding treatment

Mulberry species, Husang-32 (Morus alba L. var.
multicaulis), maintained at the Mulberry Germplasm
Nursery of Southwest University (China), was used in the
present study. Husang-32 seedlings were grown in plastic pots
filled with soil, vermiculite, and perlite mixture (6:1:1) in
incubators (25 °C; 16 h day, 8 h night; 75 % relative humid-
ity). After being incubated for 2 months, the seedlings with
15-cm length were subjected to flooding treatment. Plants in

Table 1 Genes involved in ethylene biosynthesis and signaling pathways in the M. notabilis genome

Genes Accession no. Protein size CDS length Gene length Exons Scaffold. no. (strand) Start codon Stop codon
MnSAMI1 Morus003267 393 1182 1182 1 1843(+) 66,189 67,370
MnSAM?2 Morus013867 393 1182 1182 1 498(+) 76,865 78,046
MnSAM3 Morus025140 393 1182 1182 1 172(+) 571,546 572,727
MnSAM4 Morus022555 390 1173 1173 1 124(+) 13,770 14,942
MnACSI Morus012919 496 1491 2732 4 298(+) 185,423 188,154
MnACS2 Morus024218 486 1461 2196 4 297(+) 4647 6842
MnACS3 Morus007775 471 1416 1782 4 300(-) 229,933 231,714
MnACS4 Morus007092 467 1404 2044 4 991(+) 117,590 119,633
MnACS5 Morus027243 446 1341 1660 3 329(-) 186,543 188,202
MnACS10* Morus023174 557 1674 3428 5 87(+) 408,302 411,729
MnACS12?* Morus012967 504 1515 1791 4 399(+) 330,934 332,724
MnACO1 Morus027261 306 921 1127 3 329(+) 408,750 409,876
MnACO2 Morus014137 322 969 1526 4 1292(-) 16,575 18,100
MnACO3 Morus004820 319 960 1682 4 528(-) 23,279 24,960
MnACO4 Morus013401 310 933 1272 3 1379(+) 391,862 393,133
MnETR1 Morus018344 738 2217 5082 6 521(-) 266,232 271,313
MnETR2 Morus008145 793 2382 2949 2 606(-) 247,113 250,061
MnERSI1 Morus007485 617 1854 2872 5 1526(+) 209,537 212,408
MnEIN4 Morus024538 764 2295 2558 2 205(-) 594,177 596,734
MnCTRI1 Morus003569 861 2586 6563 17 548(+) 106,465 113,027
MnCTR2 Morus016797 666 2001 6117 12 112(-) 213,548 219,664
MnEIN2 Morus024376 1306 3921 5614 7 342(-) 402,131 407,744
MnEBF1 Morus000805 697 2094 2590 2 1037(+) 4387 6976
MnEBF2 Morus002248 642 1929 2397 2 1513(-) 59,843 62,239
MnEIN3 Morus002490 617 1854 1854 1 3287(-)° 31,544 33,397
MnEIL1 Morus002491 607 1824 1824 1 3287(-)° 50,362 52,185
MnEIL3 Morus007978 611 1836 1836 1 18(-) 151,180 153,015
MnEIL4 Morus016592 478 1437 1910 2 841(+)° 82,684 84,593
MnEIL5 Morus016593 543 1632 1632 1 841(+)° 86,287 87,918

SAM S-adenosylmethionine synthase, ACS 1-aminocyclopropane-1-carboxylate synthase, ACO 1-aminocyclopropane-1-carboxylate oxidase, E7R
ethylene receptor, CTR! constitutive triple response-1, EIN2 ethylene-insensitive 2, EIN3 ethylene-insensitive 3, EBF EIN3-binding F-box protein,

ERF ethylene-responsive element binding factor.
# The transaminases in ACS family

°The genes located at the same scaffold
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the flooding-treated group were submerged 2—3 cm under the
surface of the water. The roots and leaves from both treated
and control groups of Husang-32 were collected after the
treatments lasting 1 h, 3 h, 5 h, 7 h, 1 day, 3 days, 5 days,
and 7 days. Plant materials were frozen in liquid N,, and
stored at —80 °C until further use for total RNA isolation.

Results

Identification of genes involved in the mulberry ethylene
biosynthesis and signaling pathways

In total, 145 genes were predicted to belong to the ethylene
biosynthesis and signaling pathways. Of these, 29 genes were
found to be involved in ethylene biosynthesis and signal
transduction (Table 1). The AP2/ERF family contains 116
genes (Supplemental Table 1). The MnACS family contains
7 genes, of which MnACS10 and 2 are transaminases. Four
of the remaining five MnACS genes each had four exons.
MnACSS5 only had three exons (Fig. 1). Sequence alignment
indicated that each MnACS protein contained seven con-
served boxes also found in ACS proteins from other plant
species. The conserved glutamate (E) residue in box 1, which
determines substrate specificity, is present in all the members
of the ACS gene family. Except for MnACS5, the MnACS
proteins all shared a Ser residue in the C-terminal, which
produced a shorter C-terminus than other ACS isozymes
(Supplemental Figure 1). ACO is a member of the Fe II-
dependent family of oxidases. They require ascorbate as a
substrate and Fe (II) as a cofactor to exert enzymatic activity.
Four MnACOs were identified in the mulberry genome.
MnACOI1 and MnACO4 have three exons, and MnACO2/3

]

has four exons (Fig. 1). The motifs for binding the cofactor
(H-X-D-X-H) and the cosubstrate (R-X-S) are also conserved
in MnACOs. In the C-terminus, E-R-E is essential to enzyme
activity, particularly R, which may be involved in the mech-
anism of CO, activation (Supplementary Figure 2).

Ethylene signal transduction is important to ethylene syn-
thesis. Many genes take part in this process. Ethylene recep-
tors (ETRs) form a family of membrane-localized receptors.
There are four MnETRs in the mulberry genome. The N-
terminal of MnETRs includes three highly conserved trans-
membrane regions. This region has been demonstrated to be
essential to the ethylene binding activity of MnETRs. The C-
terminal region of all MnETRs except MnERSI, which has a
truncated C-terminal, contains a receiver domain. In addition,
the N-terminal regions of MnETR2 and MnEIN4 are much
longer than those of other receptors. SMART prediction re-
vealed that they contain four transmembrane regions
(Supplementary Figure 3). EIN3 and EIN3-like proteins are
essential to the ethylene signal pathway. They are positive
regulators, and they bind to the promoter regions of the
downstream genes to regulate their expression. Five EIN3s
were found here in the mulberry genome. They all have a
conserved amino-terminal acidic domain (AD), pro-rich re-
gion (PR), and five small basic domains (BDI-V). The Gln-
rich and Asn-rich regions, found in mung bean plants, are only
conserved in MnEIN3 and MnEILI (Supplementary Figure 4).
MnEIN3, MnEILI, MnEIL4, and MnEILS5 were all located on
the same scaffold in the mulberry genome (Table 1).

Expression of mulberry ethylene biosynthesis and signal
pathway genes

Genes whose expression was detected by qPCR are listed in
Fig. 2. Results showed that the genes in these four families
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Fig. 1 Exon/intron structures of ACS, ACO, ETR, and EIN3 genes in mulberry plants. Gene structures were plotted using the GSDS server. The intron
phases indicate the position of the intron within a codon. The scale bar indicates 1 kb
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Fig. 2 Expression patterns of 18 genes involved in the ethylene biosyn-
thesis and signal transduction pathways. Six tissues were used. Relative
levels of gene expression by qRT-PCR were normalized against the

have diverse expression profiles across different tissues.
MnACS2, MnACO2, MnACO3, MnETR2, MnEIN3, and
MnEIL1 have higher levels of expression. On the contrary,
the expression of MnACS3, MnACS4, MnACO4, MnERSI,
MnEIN4, MnEIL3, and MnEIL4 was relatively repressed. In
addition, MnACS5 exhibited tissue-specific expression in fe-
male flowers. Among ACO genes, MnACO!I and MnACO?2
exhibited tissue-biased expression in fruit, although the ex-
pression levels of MnACOI were only about one tenth of
those of MnACO?2. MnEIN3 and MnEILI showed more ex-
pression than the rest of the EIN3 family in roots and fruits.

Phylogenetic and structural analysis of the AP2/ERF
transcription factor family

In the present study, 116 AP2/ERF transcription factors were
identified in the mulberry genome. According to the number

mulberry ribosomal protein gene Morus024083. Data are represented as
mean=standard error of three replicates

of AP2 domains and their structural features, these 116 pro-
teins can be divided into five subfamilies. There are 58 genes
in the ERF subfamily, 33 genes in the DREB subfamily, 21
genes in the AP2 subfamily, 3 genes in the RAV subfamily,
and 1 gene in the Soloist subfamily. A phylogenetic tree was
constructed using the amino acid sequences of AP2/ERF
transcription factors of Morus and Arabidopsis. This tree
was separated into 15 groups. Groups I-IV represent the
DREB subfamily, and V-X represent the ERF subfamily
(Supplementary Figure 5). All groups except for the V group
have lower numbers of genes in mulberry tree than those in
Arabidopsis. There are 11 genes in the V group of mulberry
and 5 in the V group of Arabidopsis.

The pattern of exon/intron splicing usually provides infor-
mation useful to understanding of the emergence and evolu-
tion of a gene family. Structural analyses of genes indicated
that all genes in the AP2 subfamily had different numbers of
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Fig.3 EAR motif-like sequences A 20 40
of AP2/ERF in mulberry plants. a C-MnERF-B1-5 : GDFAASSSCRKPLPEFNRYFPE---LEEPSFAS-DGHDLHC- : 36
. C-MnERF-B1-3 : DDCVLTSSSCRVLDE® SEWCG-GGVD---- : 36
The genes contain DLNXXP
motif. b The genes contain N-MnAP2-8 ! EMIIR-DDESEGCS : 23
LXLXL motif e Th C-MnDREB-A5-5 : ALHATSSPSKSNPTPNRVEY|Z---—NPENSDEDH-———--- : 30
mottl. ¢ *1e genes C-MnDREB-A5-4 : GDAEMKPCGGFVNRVIMAKLIZ---—-PE\SDGECDWDRNS- : 36

contain LDLNLXPP motif.
Multiple sequence alignments
were performed using ClustalX.
The letters C, M, and N prior to
protein names indicate location in
the C-terminal, middle of the
sequence, and N-terminal
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Cc

C-MnERF-B1-4
C-MnERF-B1-6

introns ranging from zero to twelve. However, 28 of the 33
genes in the DREB subfamily, 44 of the 58 genes in the ERF
subfamily, and 2 of the 3 genes in the RAV subfamily had no
introns. Results showed that most genes in the AP2 family
shared similar patterns of exon/intron splicing
(Supplementary Figure 6).

Genes in the AP2/ERF family containing the EAR motif

The ERF-associated amphiphilic repression (EAR) motif
(DLNxxP or LXLXL) has been reported to be a repres-
sion domain in repressor-type ERF proteins. These pro-
teins negatively regulate genes involved in developmen-
tal, hormonal, and stress signaling pathways. There are
three types of EAR motifs in mulberry plants,
DLNXXP, LXLXL, and LDLNLXPP. These three motifs
have been found in ERF, DREB, AP2, and RAV sub-
family (Fig. 3). All of MnERF proteins bearing EAR
motif belong to MnERF-B1 group except MnERF-B4-3
and MnERF-B6-8. Only four genes in MnDREB sub-
family contain EAR motif, and the DLNXXP motif has
been identified in MnDREB-A5-4 and MnDREB-A5-5.
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Sequence analyses revealed the 19 genes that bear
LXLXL motif found in mulberry proteins.

Expression of MnERF genes

To investigate the levels of expression of AP2/ERF genes in
different tissues, RPKM data of these genes were analyzed in
roots, barks, leaves, flowers, and buds. Heat maps were con-
structed based on the RPKM data. Sixteen MnERF genes,
including five genes in MnERF-B1, four in MnERF-B3, three
in MnERF-B2, two in MnERF-B4, and one each in MnERF-
B5 and MnERF-B6, had relatively high levels of expression in
five tissues (Fig. 4a). This was also true of 8 of the 33 genes in
the DREB subfamily, 6 of the 21 genes in the AP2 subfamily,
and 1 ofthe 3 genes in the RAV subfamily. In addition, several
genes were also found to be expressed in a tissue-biased
manner. For example, MnERF-B3-21 was expressed solely
in male flowers (Fig. 4a). MnDREB-A4-7 was more abundant-
ly expressed in leaves than in other tissues (Fig. 4b). MnAP2-5
had high levels of expression in male flower (Fig. 4c).
However, the expression of nine genes (MnERF-B6-1/8,
MnDREB-A3-1, MnDREB-A4-4, MnDREB-A6-1/2, MnAP2-
13/18/21) was not detectable in any tissue.
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ily; and d RAV and Soloist subfamilies. The clustering analyses were
carried out using Gene Cluster 3.0. The data were adjusted by log
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(HCL) with average linkage was set to calculate K-medians with five
clusters. Heat maps illustrating the gene expression data were generated
using Java TreeView

@ Springer



774 Funct Integr Genomics (2014) 14:767-777

20 40 60 80
MnERF-B2-1 : [WEEEATAIAG---LTPRNRGRRVNSSDIWPSSPFAKLSHNSFESNFCHLINHEVE-========= === NHVPLKR : 58
HRE2 CGCHT 1 WSKSESEPSQLGSVSS == === = e e e e e e e e e e e e e e RKK : 30
MnERF-B2-3 RSeAIB1S G- - - FVAAKRGRKLSPEEDWSELDTFSDLLGLDDSYNY SKVTKTKDHTTAPQKPKQSPRPAPTK G~ ===~ KKKLPEKNTQA : 81
RAP2.3 (O/e(€AINISDYAPLVTKAKGRKLTAEELWSELDAS = ===AADDFHGFYSTSKLH= === === === mm e o e e e e PTNQVNV : 56
RAR2.2 RSEEAIRHS D- - - FTPPPRSLRVINEF IWPDLKNKVKASKKRSNKRS DEFDLDDDFEADFQGFKDDSAFDCEDD- - ~DDVEVNVKPEVFTAT 85
RAP2.12 RSeeatE]s - - - FTPPPRSRRVISEFIWPDLKKNLKGSKKSSKNRSNFFDEDAEFEADFQGFKDDSS I DCDDDFDVGDVFADVKPEVETST : 88
MnERF-B2-2 [SeAIBHS D- - - FTSTPRSSRLIADY LWPDLKKSGSGKRESKPVRSVIVDI DDDFEADFQGFKDDS — - DVDDD-~-~DEVIDVKPFAFSAR : 82
HRE1 %YP —————————————————— WG — s s e R e e S S e e SR s S R e R R s S e SRR e SR S e e s S e S 12
SublA-1 [leEfA{PADMPAAPFTPRHGDGETWY DRKRRNKKKRKRGADEEWEAAFQEFMAADDDDDGG -~ ~GLVLSSKSLVLRS PGENDAGRGARAT 88
Subl1B-1 (€l€AIT{PNDYGDK PPPPPSES SEWDATTKMKKKKKRGGGGDDDWEAARFREF IAGDVDDDDD -~ ~GVSMF P == ======~~~ SGAGTMET 76
SublC-1 m ————— RVSSSPSSSSSSSPARHHKARRSRRKLVADEDWEAAFREFLSRDDDDDDDDDDGHHVVVAPLIRSSNKCVHGHEVVAST 82
Mcgg
100 120 160 180
MnERF-B2-1 : SVPSSEGEQ---================== SE W AARAY DIRAIARK T13 128
HRE2 : RKPVSVSE RTAREAARA Y DIZAARK 1|3 98
MnERF-B2-3 : AEEEEEQEGN-------==-=---- N ) . AARAY DAKR T 157
RAP2.3 KEEAVKKE----———————————————— OATEPGKRR YRGIRQ AE I RDPRKGIYRUWLGT FNTAIMEAAY A 127
RAR2.2 TKPVASAFVSTGIYLVGSAYAKKTVESAEQAE A VAARR 176
RAP2.12 PKPAVSAAA------ EGSVFGKKVTGLDGDAE ENARR T 173
MnERF-B2-2 : -KPTSSRGS---------- TTVKYTESDGQAE AJARR 162
HRE1 R e e e e e i LEL:H 73
SublA-1 : MSMPLDPVTE----------- EAEPAVAEKPRERR- PRESYEN 5 ARR [ 167
SublB-1 T Tommmm—mmmmmm e TEVAVVERPRYRRRVRIS Y P} (GRYE 1ARR I 146
SublC-1 : VGGGASGGRR-========== RADDDDGERRRFZRRRERESY P J GRRWY T2 DEVE:MYE : 162
r Y G6RqRPWG4Wa EIRDP kG R WLGTF TA eAArAYD a I G
200 220 240 260
MnERF-B2-1 N NEDTNDTYGAVOVOQAHRNQTRPLYQPHN -~ ===========——= TQEFGLGYDLNQIEQTFENSNTNC-~=======----= 189
HRE2 : RUGNALNEN--------—- PQVEEEADTK === === = e e e AGGNQN-————=——==----= 123
MnERF-B2-3 : DilMALNg------ APANAADAAQQP----- PPPKKQC-==============~ VSA-=—========- TTAEPLS—————==========—= 193
RAP2.3 ZDLHHPPPPNYTPPPSSPRSTDOPPAKKVC-—==========——-~ VVS—==———————- QSESELSQPS—===========-~ 177
RAR2.2 YEEKNPSVVSOKRPSAKTNNLOKSVAKPNKSVTLVQQPTHLSQQYCNNSFDNSFGDMS FMEEKEOMYNN--———--~ QFGLTNS : 259
RAP2.12 §(EE - NMKANSQKR - SVKAN-LOKPVAKPN -~ -~~~ PNPSPALVONSNISFEN----MCFMEEKHQVSNNN----~ NNQFGMTNS : 246
MnERF-B2-2 {DETPRALPKHPVKEGPKRSLPKENSNSSE-~~-~ SNLNNQSFNFVNNSDQDYYNAMGFLEEK[FLTNQYEHVETLPAKAGAGLK : 248
HRE1 3=NESSGKRKAKAKTVQOVEENHEADLDVAVVS - === =====-===-— SAPSSSCLDFLWEENNJZDTLLID--============ 135
Subla-1 {PADLSSPPPPSQPLCFLLNDNG=LITIGE===============—==—mooo— oo oo oo STDDAAS-============= 211
SublB-1 PDEPPRPAPSQAPFCFLLDDDDDGVARGN === == == === == mm oo oo ommm oo SSSAP---==----———-- 191
Sublc-1 N3P~ ---SPPPPEQPAAP--~=~~~~ VARER-=====mmm = mmm e e STPTTT-—~====m=————— 195
kA4 NFp P
280 300 320 340 360
MnERF-B2-1 : FGTAQTRVKEEEPRKEEKVVNLVGEEEINELQKLSEE@MAYENYMKFYQIPYLDGQS-================————————m—— o 246
HRE2 =~ 1 —===———mmmmmmmmmoo e ELISE---NQVESLSEDEMALEDYMRFYQIPVADDOS—========== === === mmmmm 157
MnERF-B2-3 : ----- YGANYYNPFONELAGNQPSEMELKEQISSLESELGLEPEVTSSSHOLSGIAG-==============——————————— - 245
RAP2.3 FPVECIGFGNGDEFQNLSYGFEP-DYDLKQQISSLESFLELDGNTAEQPSQLD === == === === === = = e e 1 229
RAR2.2 : FDAGGNNGYQYFSSDQGSNSFDCSEFGWSDHGPKTPEfISSML--VNNNE-ASFVEETNAAKKLKPNSDESDDLMAYLDN-=-======= ALW : 338
RAP2.12 : VDAG-CNGYQYFSSDQGSNSFDCSEFGWSDQAPITPDISSAV-~INNNNSALFFEEANPAKKLK-—~~~ SMDFETPYNN-=-=-===-~ TEW : 320
MnERF-B2-2 : SNAPAATTPMYFSSDQGSNSFECSDFGLGEHGSKTPEMSSVFSATSENDDSLSLEDTNPTKKLKS---DSENVVLPEENHAKTLSEELSAF : 336
HRE1 --TQWLEDI IMGDANKKHE PNDSEEANNVDASLLSEEMLAFENQTEY FSQMPFTEGN === === === === === mm o oo m e mm oo oo : 190
Subla-1  : —----- TST----- STTEASG---DARIQLECCSDDVIYDSLLAGY DVASGDDIWTWT === == === === === === e e m e 254
SublB-1  : ===-—- DSTSACTTSSTVASGERGDELILLECCSDDVIDSLLAGEDVSS === === === = = = m = = o e e e 234
SublC-1  : ====-- TPS-=-==-- AEDSG---DSRILIECCSDDLYDSLLAAFDMTTG= === ========= === == === — o mmm oo 229
380 400

MNERF-B2-1 : —====——————mmmm——ooeeeeee AAPSTAQESEVGE[IWSFDGDDVRSSGSDV- : 275

HRE2 =~ 1 —==——mmmmmm e AT------- DIGNEWSYQDSN-~---===-~ 171

MNERF-B2-3 : ====mm-meccceececceeee—— GGTGEFNQADSEGIWMLDDVVAHHRQQSY- : 274

RAP2.3 & === m e ESVSEVDYWMLDDVIASYE----~ 248

RAR2.2 DTPLEVEAMLGAD--========~ AGAVTQEEENPVE|WSLDEINFMLEGDF-- : 379

RAP2.12 DASLD---FLNED-=========~ AVTTQDNGANPMDJWSIDEIHSMIGGVF-- : 358

MnERF-B2-2 : ESQMKFLQMPYLEGSWDALLDTFLAGDSTQDGGNSIN/WSFDDFSTMSGEAF-- : 388

HREl =~ 1 ===eeemmmmmemeeemmeeeee s CDSSTSLSSIEEDGGNDMGLWS ==~~~ : 1221

SUblA-1 1 —==mmmmmmm o SGASSTSVNQEIKTPSIHONISYAGEA : 281

SublB-1  : ——mmmmm e ESRSILGYVN---------—---—- 244

SUb1C-1 & ==mmmmm e DMRFWS============——==m 235

Fig. 5 Alignment of amino acid sequences of ERF VII subfamily genes from mulberry, Arabidopsis and rice using the ClustalX program. HRE1/2,
RAP2.2, RAP2.3, and RAP2.12 belong to VII group of Arabidopsis. SublA-1, Sub1B-1, and Sub1C-1 belong to Oryza sativa

Response of MaERF-B2-1 and MaERF-B2-2 to flooding
stress

considered to be involved in the regulation of low-oxygen
response in plants (Fig. 5). Analyses of the promoter regions
of MnERF-B2-1, MnERF-B2-2, and MnERF-B2-3 showed

Genes in MnERF-B subfamily were expressed at relatively
higher levels in different tissues. All members of this subfam-
ily have a conserved N-terminal motif MCGGAV/II, which is

@ Springer

that they contain consensus sequences of transcription factor
binding sites. As shown in Table 2, four catalogues of putative
regulatory elements (stress response, hormone response, light
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Table 2 Cis-elements in MnERF-B2-1, MnERF-B2-2, and MnERF-B2-3 promoters

Stress responses Hormone response Light response Others
TC-r| GA TGA AT-r/ B
B B SUTRPy
M| ich HS|GC-m| A |[LT|RE-|C| - |TCA-ele|TGACG-/CGTCA-|AB AC| ATCT- AE- [G-b| GAG- | GT1- |I-b| |MN|CATT- | ich |CAAT-|TATA- MB ox
0X| 0X| -rich
BS|repe | E | otif RE|R |motilE3|elem| ment motif motif |RE|E | motif box | ox | motif | motif | ox F1| motif |elem| box | box SI [T
4 I stretch
ats f ent ent 1
MnERF-Morus00
+| - |+ |- |-+ + + + + |+ + |+ + + + + + + +
B2-1 | 1004
MnERF-[Morus00
+ |+ |+ + + + + + + |+ + + + |+ + + + + +
B2-2 | 2477
MnERF-[Morus00
+ [+ + [+ -]+ |+ + + |+ + |+ + + + + + + + +
B2-3 | 5243

response, and others) were detected in the flanking regions of
three genes. GARE, CE3, ABRE, TCA, and TGACG-motifs
are involved in the signaling of mulberry hormones. Typical
heat shock element (HSE) and low temperature stress re-
sponse element (LTR) were also observed. It is noteworthy
that ARE and GC motifs, which are known to be responsive to
the hypoxemia and anaerobic conditions, were detected in the
promoters of MnERF-B2-1 and MnERF-B2-3. In this context,
two of these three genes from Husang-32, MaERF-B2-1 and
MaERF-B2-2, were cloned, sequenced, and their expression
patterns were further investigated. Mulberry cultivar Husang-
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Fig. 6 Expression analyses of MaERF-B2-1/2/3 genes. Expression of
MaERF-B2-1, MaERF-B2-2, and MaERF-B2-3 in roots and leaves (a, b).
The qPCR data of MaERF-B2-1 and MaERF-B2-2 in roots and leaves

32 is widely planted in the Three Gorges Reservoir area. As
shown in Fig. 6a, MaERF-B2-2 has higher expression than
MaERF-B2-1 or MaERF-B2-3. To understand the changes in
gene expression that takes place after flooding, the expression
of the MaERF-B2-1 and MaERF-B2-2 was detected after
treatment lasting 1 h, 3 h, 5 h, 7 h, 1 day, 3 days, 5 days,
and 7 days (Fig. 6¢). Results showed that MaERF-B2-1 was
up-regulated in roots and leaves after 1 day of flooding. The
change took place faster in leaves than that in roots.
MaERFB2-2 showed fast up-regulation in roots after 1 h of
flooding. MaERF-B2-1 showed a greater fold change than
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after flooding treatment (¢). Fold inductions are calculated by dividing the
value of treatment with that of control in corresponding time point. Data
are represented as mean=+standard error of three replicates
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MaERF-B2-2. These results indicated that MaERF-B2-1 and
MaERFB2-2 may play important roles in Husang-32’s re-
sponse to flooding.

Discussion

Genes such as ACS, ACO, and EIN3 are essential targets in the
biosynthesis of ethylene and the transduction of this signal. In
Arabidopsis, ACS is considered a rate-limiting synthase in
ethylene biosynthesis (Jakubowicz and Sadowski 2002). The
phosphorylation sites of ACS are important to rapid turnover
during the response to various kinds of stimulation (Joo et al.
2008). Previous research indicated CmACS-7 affects the de-
velopment of the stamina in female flowers (Boualem et al.
2008). The expression of MnACSS5 was restricted to female
flowers in mulberry plants, suggesting that MnACSS5, rather
than an ACC synthase, may play a different role. ACO genes
are responsible for ethylene production. In the present study,
the expression profiles of four putative Mn4ACOs were ana-
lyzed and variation was observed in their levels of expression.
Mulberry ACO genes, such as MnACO1 and MnACO2, whose
expression takes place mainly in fruit, might be involved in
the regulation of ethylene during fruit ripening. In ethylene
signal transduction, EIL and EIN3 proteins are crucial tran-
scriptional factors. They are bound to the promoters of down-
stream genes. In this way, they regulate a wide range of stress
responses (Chao etal. 1997). MnEIN3, MnEIL1, MnEIL3, and
MnEIL5 have no introns. MnEIN3, MnEILI, MnEIL4, and
MnEILS5 form tandem arrays in the mulberry genome, and the
genes in these two pairs are not only similar in sequence but in
pattern of expression, suggesting the existence of complicated
regulation affecting those processes.

The AP2/ERF family includes plant-specific transcription
factors called ethylene response element binding proteins
(EREBPs). EREBPs were originally identified through their
ability to bind to the GCC box, a DNA motif associated with
ethylene and pathogen-induced gene expression (Fujimoto
et al. 2000). In the present study, 116 of AP2/ERF genes were
identified in the mulberry genome. A phylogenetic analysis of
AP2/ERF genes in mulberry plants and Arabidopsis showed
mulberry plants to have more AP2/ERF genes in V group. Two
research groups have shown that the overexpression of WIN1/
SHNI (Atigl15360), an Arabidopsis AP2/ERF gene in V group,
resulted in the enhanced accumulation of epidermal wax
(Aharoni et al. 2004; Broun et al. 2004). The expansion of
mulberry AP2/ERF genes in V group is of particular interest.

Flooding is a serious matter in China’s Three Gorges
Reservoir Region. It has a profound effect on mulberry growth
and development. Previous studies on rice have shown that
the genes at the Submergencel (Subl) locus improve toler-
ance to submergence. This locus includes three ERF
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transcriptional factors (SubilA, SublB, and SubIC) (Jung et al.
2010). In Arabidopsis, the RAP2.12 and RAP2.2 genes became
active in response to water-logging. In flooding, the expression
of RAP2.12 is up-regulated and the product accumulates in the
nucleus to activate the expression of hypoxia genes (Licausi et al.
2011). The overexpression of RAR2.2 improves plant survival
under hypoxia stress conditions (Hinz et al. 2010). Three mul-
berry genes, MaERF-B2-1, MaERF-B2-2, and MaERF-B2-3,
appear to be the counterparts of RAP2.12, RAP2.2, and RAP2.3
based on the sequences. All of them contain conserved N-
terminal sequences, which are important in response to hypoxia.
Moreover, the presences of ARE and GC cis-elements in the
promoters of MnERF-B2-1 and MnERF-B2-3 could lead to a
proposal that these two genes might be involved in dealing with
hypoxia. Our data further indicated that the patterns of expression
of MaERF-B2-1 and MaERF-B2-2 changed in response to
flooding treatment.
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