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Abstract

While it is currently estimated that 40–50% of eukaryotic proteins are phosphorylated, little is 

known about the frequency and local effects of phosphorylation near pharmaceutical inhibitor 

binding sites. In this study, we investigated how frequently phosphorylation may affect the 

binding of drug inhibitors to target proteins. We examined the 453 non-redundant structures of 

soluble mammalian drug target proteins bound to inhibitors currently available in the Protein Data 

Bank (PDB). We cross-referenced these structures with phosphorylation data available from the 

PhosphoSitePlus database. 322/453 (71%) of drug targets have evidence of phosphorylation that 

has been validated by multiple methods or labs. For 132/453 (29%) of those, the phosphorylation 

site is within 12Å of the small molecule-binding site, where it would likely alter small molecule 

binding affinity. We propose a framework for distinguishing between drug-phosphorylation site 

interactions that are likely to alter the efficacy of drugs vs. those that are not. In addition we 

highlight examples of well-established drug targets, such as estrogen receptor alpha, for which 

phosphorylation may affect drug affinity and clinical efficacy. Our data suggest that 

phosphorylation may affect drug binding and efficacy for a significant fraction of drug target 

proteins.
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INTRODUCTION

Current estimates indicate that approximately 40–50% of human proteins are 

phosphorylated. 20,266 non-redundant human proteins have been reported and reviewed in 

the UniProt database (http://www.uniprot.org)1. PHOSIDA reports 8283 

(www.phosida.com)2 non-redundant phosphorylated human proteins, Phospho.ELM reports 

8698 (phospho.elm.eu.org)3, and a search of phosphorylation sites identified in either 

multiple high throughput reports or in low throughput reports in PhosphoSitePlus returns 
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10,062 human proteins (www.phosphosite.org)4. Two recent advances have greatly 

accelerated the pace of progress in our understanding of protein phosphorylation. First, 

whole-cell mass spectrometry efforts have identified large numbers of phosphorylated 

proteins 5. Secondly, phosphorylation sites in mammalian proteins that have been reported 

in the literature are maintained in a curated database, PhosphoSitePlus 4. The number of 

reported protein phosphorylation sites has increased from ~2,000 in 2003, when the database 

was created, to 20,000 in 2007 and over 200,000 currently 4,6.

Protein kinases, which regulate other proteins through phosphorylation, are one of the most 

important classes of drug targets. Kinases are commonly turned on through phosphorylation 

of the activation loop near the active site 7. Small molecule inhibition of an 

unphosphorylated kinase can cause feedback phosphorylation of the available kinase pool 8. 

In some cases where phosphorylation is known to reduce drug affinity, strategies have been 

developed to either lock the drug target in an inactive conformation or retain drug affinity in 

the phosphorylated state 9,10. Recent studies in MEK inhibiton even suggests different 

upstream activators and MEK phosphorylation states have dramatic effects on clinical drug 

candidate efficacy 11,12. Given that a large fraction of proteins in general, and kinases in 

particular are phosphorylated, it is reasonable to suggest that changes in protein 

phosphorylation could affect small molecule drug binding and efficacy for a significant 

fraction of drug target proteins. Yet, to our knowledge, no group has investigated the 

frequency of with which phosphorylation may affect drug binding, nor its occurrence 

outside of kinases. Both target and computational-based screening methods do not typically 

consider phosphorylation given the limited number of available phosphorylated protein 

structures. As a result, these screening methods may discount significant local structural 

effects of phosphorylation on the drug target protein 13. Here we investigate the effects and 

frequency of phosphorylation near the site of drug binding for 453 drug targets in the PDB.

METHODS

We first generated a comprehensive list of experimental drug targets in both preclinical and 

clinical studies, by combining those in the DrugBank database with all available PDB 

structures containing keywords “drug”, “inhibitor”, “agonist”, “antagonist” in the PDB. 

From this dataset, we removed (1) redundant targets at ≥90% sequence identity, (2) all 

structures that did not contain a 100–1000 Da ligand, a lenient range for drug-like 

molecules, (3) all non-mammalian targets, whose species is not covered in PhosphoSitePlus, 

(4) transmembrane protein structures lacking a cytoplasmic domain, whose extracellular 

domains may bind to inhibitors but are rarely phosphorylated and (5) off-target ligand-

structure complexes and other proteins that do not have any known therapeutic potential 

based on a literature search [Fig. 1(a)]. 15,442 (79%) of the available drug target structures 

were redundant with other available structures, due to targets for which multiple ligand 

structures are available in the PDB. A ligand-bound structure was available for 2275 (55%) 

of unique targets. By investigating exclusively mammalian targets, we eliminated 1749 

drug-bound structures, notably including a number of antibacterial agents. These drug-target 

interactions certainly may be affected by phosphorylation, but far fewer bacterial 

phosphorylation sites have been reported as the bacterial Phosphorylation Site Database 

contains only 2250 entries 14.
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We next cross-referenced the PDB entries for the 453 non-redundant mammalian ligand-

bound drug target structures with reported phosphorylation sites in PhosphoSitePlus 4. We 

investigated serine, threonine, and tyrosine phosphorylation exclusively as histidine 

phosphorylation is rare and other post-translational modifications are rarely validated 

beyond mass spectrometry (MS) studies 15,16. Data are discussed in terms of the number of 

phosphorylated “hits” out of 453.

In the absence of additional data, identification of a phosphorylated site by mass 

spectrometry alone is generally considered to be insufficient to demonstrate 

phosphorylation. We consider a phosphorylated site to be “valid” if multiple groups have 

published evidence of endogenous phosphorylation of the protein target in cells, either by 

mass spectrometry, biochemical and cell biological studies, or combination of those. By this 

criterion, 322/453 (71%) of drug targets with structures have valid evidence of 

phosphorylation, while 131/453 (29%) have no known validated phosphorylation sites 

[Figure 1(b)].

We define “hits” as ligand-bound structures with validated phosphorylated residues within 

12Å of any atom in the small molecule (Table I, Supporting Information Table S1). A 12Å 

distance cutoff is based on past studies of several phospho-proteins, in which 

phosphorylation within 12Å of the site of small molecule binding could induce local 

conformational rearrangements that would affect ligand affinity. For example, Hsp90α is 

phosphorylated at Thr90, where the hydroxyl is 11.8Å away from a bound inhibitor 17. This 

phosphorylation causes a decrease in affinity for ATP 18. In cyclin-dependent kinase 2 

(Cdk2), phosphorylation 9.5Å away from ATP reduces substrate peptide affinity 2.5 fold 19. 

Peptide phosphorylation can similarly induce conformational changes on the order of 

10Å 20. A much more stringent cutoff is phosphorylation within 3Å of the drug binding site, 

which would directly affect drug binding through steric and electrostatic interactions, as 

shown in the case of E. coli isocitrate dehydrogenase and its natural substrate 21. While 

phosphorylations greater than 12Å away from a drug binding site may induce more global 

conformational changes within proteins that significantly affect affinity, we cannot easily 

predict these effects without phosphorylated or phospho-mimetic structures, which are rarely 

available. As a result, our estimate of effects is likely conservative considering the changes 

to activity long-range phosphorylation produce 22. The resolution of the crystal structure 

data for the 453 ligand-bound drug targets in our study ranges from ~1.5Å to ~3Å. Crystal 

structure resolution does not directly correlate with proper ligand geometry and fit to the 

electron density 23, therefore, differences in structural resolution were ignored in 

determining distances between the ligand and phosphorylation site.

RESULTS AND DISCUSSION

Nearly one-third of known drug targets are phosphorylated near the drug binding site

Our results show that of the 453 small-molecule bound drug targets in the PDB, 322 (71%) 

have at least one validated phosphorylation site. It is interesting that the frequency of 

phosphorylation for drug target proteins appears to significantly exceed the estimated 

frequency of phosphorylation for all human proteins. This may be because highly 

phosphorylated proteins in signaling cascades and also make good drug targets, as with 
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kinases. It could also be the case that proteins with measurable signaling activity, such as 

kinases, are more likely to be selected as drug targets. Those drug target proteins are likely 

to be more well-studied and validated when compared to other phospho-proteins in general.

132 of the 453 small-molecule bound drug targets in the PDB (29%) contained a validated 

phosphorylation site within 12Å of the drug binding site. These are the “hits” of our study, 

which are discussed in detail below (Table I, Supporting Information Table S1). In these 

tables the highest resolution drug target structures available in the PDB were used, and 

reported distance is the shortest from the small molecule to the phosphorylated residue. The 

ligand in the crystal structure is rarely the drug candidate in used clinical trials. Target “hits” 

are listed in Table I and Supporting Information Table S1 in order of class, validation, and 

stage of drug development as described below. Table I contains all proteins for which 

phosphorylation has known effects on target function, and Supporting Information Table S1 

contains all other “hits”.

The distribution of the distances between the bound ligand and the phosphorylated residue 

are shown in Figure 2(a). 9/132 hits contained a site within 3Å of the ligand binding site. 

There are large bottlenecks between MS verification of phosphorylation by multiple groups 

and more detailed data such as biochemical and cell based studies, as well as data 

establishing physiological effects of phosphorylation for the 132 hits [Fig. 2(b)]. 

Phosphorylation sites reported for 70/132 hits have been accompanied by functional 

biochemical or cellular studies, with 57/132 having demonstrated both biochemical and 

cellular functional relevance. To date, only 3 of the 132 hits have established clinical 

correlation of drug treatment outcome with target protein phosphorylation 24–26. All of these 

are described in detail below.

Not surprisingly, protein kinases comprised the largest fraction of our hits. Of the 453 drug 

target structures, 130 are kinases. 95% (123/130) of those kinase targets are phosphorylated, 

with 77/130 (59%) of those phosphorylation sites occurring within 12Å of the inhibitor. The 

fact that phosphorylation occurs in the vast majority of kinase targets is expected given 

activation loop phosphorylation and involvement in signaling cascades. In addition to 

protein kinases, nuclear receptors were an interesting group, comprising 25 of the 453 drug 

target structures. 9 of those 25 had phosphorylation within 12Å of drug binding sites (36%), 

as phosphorylation has been established as a common mechanism of modulating the activity 

of these proteins 27, (Supporting Information Fig. S1).

Classification of hits

For 70/453 of the hits, it is known whether phosphorylation activates the target, has little 

effect, or whether it is inhibitory [Fig. 2(b)]. These 70 hits fell into one of two classes as 

shown in Figure 3. Class 1 hits (27/70, 39%) have an inhibitory phosphorylation site that is 

close to the site of drug binding. In this situation, if phosphorylation reduces drug efficacy, it 

will also inactivate the target by modifying the same site. Regardless of whether the drug 

binds or the target is phosphorylated such that the drug cannot bind, the target is inactivated. 

Mineralocorticoid receptor is an example of a Class 1 hit, in which phosphorylation at 

Ser843 reduces the affinity for the natural agonist and inactivates the receptor 28 [(Fig. 4(a)]. 

Because phosphorylation occurs at the binding site for both the agonist and inhibitor of 

Smith et al. Page 4

Proteins. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



mineralcorticoid receptor, we would predict that phosphorylation of Ser843 results in 

reduced drug affinity. This would not translate to a loss in efficacy, in fact one could expect 

the opposite effect. If a larger fraction of targets are phosphorylated, then a larger fraction of 

targets will be inactivated for a particular dose of a drug compound.

Another example of a Class 1 hit is the androgen receptor (AR, Supporting Information 

Table S1). Approved antiandrogens like bicalutamide act as antagonists to the androgen 

receptor in hormonal dysfunction diseases such as prostate cancer. AR Ser790 is 

phosphorylated in vitro and in vivo by Akt 29. Phosphomimetic substitution of Ser790 to 

aspartate nearly abolishes the ability of AR to bind androgen and localize to the nucleus 30. 

While some research suggests Akt inhibition/activation of AR is not critical for progression 

of prostate cancer 31,32, clinical studies indicate that high phosphorylation of Ser790 is 

associated to a longer time to death from recurrence in castration-resistant prostate cancer 26.

For Class 2 hits (43/70, 61%), phosphorylation does not significantly inhibit target function 

or in some cases it may actually increase activity. As phosphorylation can reduce drug 

affinity without inhibiting activity, Class 2 proteins may avoid inhibition by small molecule 

drugs when phosphorylated. Nearly all kinase hits fall into this category (33/41), including 

insulin-like growth factor 1 receptor [IGF-1R, Fig. 4(b)]. One study on IGF-1R showed that 

despite high membrane permeability, lack of efflux transporters, and nanomolar affinity to 

the unphosphorylated state, inhibitors failed to show efficacy in cell-based assays 33. The 

inhibitors used in this study were “DFG-out” inhibitors that bind only to the inactive 

conformation when the DFG loop is out, away from the active site. This causes the 

activation loop to occlude the nucleotide pocket and prevent ATP binding [Fig. 4(b), dark 

gray/red structure]. While “DFG-out” inhibitors can keep the protein in an inactive 

conformation, they do not bind well to the active, phosphorylated enzyme. The 

phosphorylated crystal structure of IGF-1R shows large rearrangements of the activation 

loop. The DFG sequence is “in”, while the activation loop itself is out and away from the 

nucleotide pocket, enabling ATP binding [Fig. 4(b), cyan/green structure, 34]. Therefore it is 

plausible that in vivo phosphorylation causes a reduction in drug affinity. In the case of the 

BCR-Abl “DFG-out” inhibitor imatinib, there is a 200-fold reduction in affinity when the 

kinase is phosphorylated 9.

Among the examples of Class 2 proteins listed in Table I is Estrogen Receptor Alpha (ERα), 

a well-established drug target in the treatment of hormone-responsive breast cancer. The 

alpha carbon of tyrosine 537 is 11.3 Å away from the binding site for 4-hydroxytamoxifen. 

Tyr537 makes several key interactions that stabilize the inactive conformation 35, and is 

phosphorylated both in vitro and in vivo by Src-family kinases 36. Phosphorylation of 

Tyr537 activates the ERα receptor, possibly by facilitating dimerization and interactions 

with other binding partner proteins37,38, although the precise mechanism is disputed 39,40. 

Phosphomimetic mutation of Tyr537 to glutamate reduces the affinity of estradiol to ERα by 

10-fold 41 and results in ligand-independent activation of the receptor 42. Recent clinical 

evidence associated high levels of Tyr537 phosphorylation, as studied in breast cancer, with 

poor overall survival of patients treated with tamoxifen 25. Furthermore, it is intriguing that 

in the vast majority of tamoxifen-resistant, ERα-positive cancers, ERα does not contain any 
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mutations 43,44. These data together suggest that aberrant phosphoregulation of ERα, rather 

than mutation of the receptor, can cause poor drug response.

The emerging cancer drug target Proliferating Cell Nuclear Antigen (PCNA) also falls under 

Class 2. When Tyr211 is phosphorylated, PCNA is activated and localized to the nucleus 

where it is involved in DNA replication/repair and cell cycle progression 45. Because of its 

function in these proliferative processes, it is being investigated as a drug target and 

biomarker in cancer 46,47. The hydroxyl group of Tyr211 is 11.4Å away from the inhibitor 

and makes several interactions with a flexible loop 48. This loop moves to accommodate the 

inhibitor and phosphorylation would likely alter PCNA inhibitor binding. Clinically, 

phosphorylation at Tyr211 is correlated with poor survival in breast cancer patients 24, and 

blocking Tyr211 phosphorylation using PCNA peptide mimetics reduces tumor growth in 

vivo 49. These data together suggest that for Class 2 hits, including kinase targets of “DFG-

out” inhibitors, ERα, and PNCA, phosphorylation of the target protein may block the action 

and efficacy of drug inhibitors.

CONCLUSIONS

In this comprehensive bioinformatics study, we found that 132/453, or 29% of proteins 

analyzed in this study are known to have phosphorylation occurring within 12 Å of a drug 

binding site. For 70 of the 132 phosphorylated targets, it is known whether phosphorylation 

activates or inhibits the target. 39% (27/70) of these were classified as Class 1 hits, for 

which the drug and phosphorylation have similar effects on activity, while 61% (43/70) 

were Class 2 hits, for which the drug and phosphorylation have opposing effects on activity. 

These results suggest that phosphorylation can alter drug efficacy for a rather large fraction 

of target proteins. Kinases and nuclear receptors represented a large fraction of the hits in 

our study, and some of the reason for their high representation is likely selection bias in the 

available data. For example numerous studies of kinase activation by phosphorylation in or 

near the active site have led to inhibitor design, as in the case of the “DFG-out” inhibitors 

described above.

Clinical studies examining the effects of specific target phosphorylation sites on specific 

therapies were only performed for 3 drug target proteins in our study. For the Class 1 hit 

AR, phosphorylation near the drug binding site was correlated with good outcome/drug 

sensitivity. In contrast, for the Class 2 hits ERα and PCNA, phosphorylation near the drug 

binding site was correlated with poor sensitivity to the drug. Our speculation is that in the 

case of Class 1 hits, a large fraction of the target proteins may be inactivated via 

phosphorylation, such that a lower concentration of drug may be required to cause sufficient 

inhibition of the remaining active targets. In Class 2 hits, phosphorylation of the target 

protein can directly cause drug resistance in the absence of any target protein mutations.

Our model in Figure 3 depicts phosphorylation either directly or allosterically inhibiting 

drug binding. Phosphorylation should inhibit drug binding if it causes a direct structural 

clash with the drug in its binding site or causes unfavorable structural rearrangements. For 

the three proteins with known clinical effects of phosphorylation described above, 

phosphorylation does appear to reduce drug efficacy, consistent with inhibition of drug 
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binding. However, for the majority of our hits (127/132), it is not known whether 

phosphorylation inhibits or enhances drug binding, and examples of phosphorylation 

enhancing drug binding do exist. In phosphodiesterase-5, phosphorylation of Ser102 

increases the enzymatic activity 1.6-fold 50. Through allosteric rearrangements, 

phosphorylation increases the affinity of cGMP to PDE5, causing activation50,51. The 

inhibitor tadalafil is able to overcome this by showing a 3-fold increase in binding affinity 

when Ser102 is phosphorylated 52. We did not identify PDE5 in our screen because the 

domain containing Ser102 has not been crystallized in an inhibitor-bound structure. In 

another example, phosphorylation of phenylalanine dehydroxylase (PAH) at Ser16 increased 

substrate-dependent enzymatic activation 53. The site is in a disordered region of the protein 

and there is no electron density present in crystal structure. Small-molecule activators of 

PAH are being pursued for treatment of phenylketonuria (PKU). While both 

phosphorylation54 and drug candidates55 stabilize protein folding and maintain the activity 

of PAH, the combined effects have yet to be investigated and are difficult to determine 

through crystallography.

Our study is likely to have under-reported the phenomenon of phosphorylation affecting 

drug inhibition of targets, for several reasons. First, because drug-bound structures are often 

kept confidential during drug development while phosphorylation sites are continually being 

identified and verified, we are under-reporting the actual occurrence of phosphorylated, 

drug-bound proteins. Second, other post-translational modifications like acetylation are 

reported to have critical roles in both upregulating56 and downregulating57 activity, but are 

rarely investigated to the extent that phosphorylation is. Third, we were unable to assess 

targets with phosphorylation in unstructured domains. Extremely flexible protein regions are 

commonly phosphorylated but are rarely seen in crystal structures. Fourth, given the 

difficulties of predicting long-distance allosteric effects of phosphorylation on protein 

activity or drug binding, we did not assess the 131/453 drug target proteins with 

phosphorylation sites that were not within 12 Å of the drug binding site in the crystal 

structures. Some of these long-range phosphorylation sites even have known physiological 

effects. For example, phosphorylation of PPAR-γ at Ser112 reduces drug agonist binding by 

10-fold despite being nearly 40 Å away 58. In addition to the site at Tyr537 described above, 

ERα also contains a long distance phosphorylation site that affects antagonist binding. When 

ERα is phosphorylated at Ser305, tamoxifen still binds, but fails to induce an inactive 

conformation. Based on intramolecular FRET experiments, it appears phosphorylation of 

Ser305 causes tamoxifen to exhibit agonist behavior towards ERα, leading to tamoxifen 

resistance 59. This critical conformational rearrangement is not reflected in published crystal 

structures, most of which contain only the ligand-binding domain 60. Lastly, it should also 

be noted that phosphorylation sites are enriched for mutations in cancer cells 61. The effects 

of these mutations on target protein phospho-regulation are highly clinically relevant, but 

they are not reported in PhosphoSitePlus, and hence are not included in our study.

In target-based drug discovery, target proteins are often initially produced and assayed in 

vitro or in cultured cells where the set of post-translational modifications occurring on the 

target protein could be vastly different than in vivo. Similarly, structure-based in silico 

efforts can only seldom investigate the structural changes induced by phosphorylation 
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because phosphorylated structures are rarely available (1,475/97,180 structures in the PDB, 

2%). Except in the case of kinase auto-phosphorylation, structural information about these 

phospho-proteins is extremely limited and can require partial chemical synthesis to achieve 

a high percentage of phosphorylated protein 62. Given the findings of this study, we 

encourage researchers and clinicians alike to consider the possibility of protein post-

translational modification as they approach rational drug design and evaluate potential 

reasons for drug treatment outcomes that are either much better or worse than expected.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow diagrams. Each criterion is listed along with the number of targets meeting it. A: 
Dataset preparation. B: Identification of the 132 validated hits, as defined in text.
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Figure 2. 
A: Distribution of distance from phosphorylated residue to the target. B: Validation of the 

132 phosphorylation sites within 12Å of drug binding sites. The dashed line indicates the 

cutoff for investigation in our study. Each criterion is listed along with the number of targets 

meeting it. Each level is inclusive of the one below.
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Figure 3. 
Mechanisms by which phosphorylation may affect drug efficacy. For Class 1 hits, 

phosphorylation inhibits (⊤) both drug binding and target activity, whereas for Class 2 hits, 

phosphorylation inhibits drug binding while activating (→) the target. While this schematic 

depicts phosphorylation inhibiting drug binding, it may in some cases enhance binding as 

discussed in the text.
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Figure 4. 
Structural views example Class 1 and Class 2 hits. Active targets are shown in cyan, inactive 

targets in grey. Small molecule ligands are shown in sticks. A: Overlapped structures of 

active (2AA2) and inactive (3VHV) forms of Class 1 target mineralocorticoid receptor. 

When phosphorylated, Ser843 (red) inactivates the receptor by preventing agonist binding. 

As shown, the inhibitor binds at the same site as the agonist. Inhibitor affinity would likely 

be reduced by phosphorylation of Ser843 6.4Å away (dashed lines). B: Overlapped 

structures of active, phopshorylated insulin receptor (1IR3) and inactive insulin-like growth 

factor 1 receptor (3NW7), a Class 2 target. The two proteins share 91.3% sequence 

similarity within the crystallized constructs and 100% sequence identity within the 

activation loop. In the inactive conformation, the activation loop is red. Tyr1161 (sticks) is 

7.1Å away from the “DFG-out” inhibitor (dashed lines). In the active, phosphorylated 

conformation, the activation loop is green. Phosphorylation simultaneously activates insulin-

like growth factor 1 receptor and can reduce inhibitor affinity.
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