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Abstract

Pathological speech usually refers to the condition of speech distortion resulting from atypicalities 

in voice and/or in the articulatory mechanisms owing to disease, illness or other physical or 

biological insult to the production system. Although automatic evaluation of speech intelligibility 

and quality could come in handy in these scenarios to assist experts in diagnosis and treatment 

design, the many sources and types of variability often make it a very challenging computational 

processing problem. In this work we propose novel sentence-level features to capture abnormal 

variation in the prosodic, voice quality and pronunciation aspects in pathological speech. In 

addition, we propose a post-classification posterior smoothing scheme which refines the posterior 

of a test sample based on the posteriors of other test samples. Finally, we perform feature-level 

fusions and subsystem decision fusion for arriving at a final intelligibility decision. The 

performances are tested on two pathological speech datasets, the NKI CCRT Speech Corpus 

(advanced head and neck cancer) and the TORGO database (cerebral palsy or amyotrophic lateral 

sclerosis), by evaluating classification accuracy without overlapping subjects’ data among training 

and test partitions. Results show that the feature sets of each of the voice quality subsystem, 

prosodic subsystem, and pronunciation subsystem, offer significant discriminating power for 

binary intelligibility classification. We observe that the proposed posterior smoothing in the 

acoustic space can further reduce classification errors. The smoothed posterior score fusion of 

subsystems shows the best classification performance (73.5% for unweighted, and 72.8% for 

weighted, average recalls of the binary classes).
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1. Introduction

Speech intelligibility assessment is an important measure for evaluation functional outcomes 

of surgical and non-surgical treatment, speech therapy and rehabilitation. Patients with vocal 

disorder or illness that affects the natural control of their vocal organs suffer from 

compromised communication capability including degraded speech intelligibility. With the 

overarching goal of improving quality of life, several assessment and treatment approaches, 

including those targeting speech intelligibility, have been proposed and used in clinical 

research practice (Kent, 1992). Although the demand for accurate, reliable, and robust 

intelligibility assessment with low cost is huge (Middag et al., 2009b), the state of the art 

still relies on the perceptual judgment of clinicians and therapists in general. The assessment 

of pathological speech by professionals can be costly and time consuming, and technology 

tools can play a supporting role in assisting the experts. In this study we describe an 

automatic intelligibility assessment system which performs binary intelligibility 

classification by capturing atypical variation in pathological speech.

The number of vocal disorders and disruption of vocal processes due to illness and disease 

are many, and therefore there are numerous types of variation possible in pathological 

speech. For example, differences in the location and size of tumors in the head and neck lead 

to differences in how the speech signal gets influenced. The tumors of laryngeal cancers 

affect vocal fold control, resulting in the distortion of voice quality of speech sounds (Kazi 

et al., 2008). Surgery on lips or nasal cavity can also alter voice quality and resonance or 

induce hyper-nasality (Hufnagle et al., 1978). Non-laryngeal tumors impede the control of 

supra-laryngeal organs for speech production (Jacobi et al., 2010). The modified articulatory 

tension and structural variation, e.g., on the palatal surface and the pharyngeal wall, by non-

laryngeal tumors may lead to compromised vocal production, resulting in speech variability.

The signal characteristics of dysarthric speech have also been studied widely in the 

literature. A previous study showed that change of articulatory manner is associated with 

dysarthric speech, while variability in articulatory place occurs in both normal and 

dysarthric speech (Kim, 2010). This study also reported that speakers tend to have more 

articulatory errors in the production of more complex phones; their findings are based on the 

complexity metric (for the production of each phone) that Kent (1992) proposed. With 

regards to the voice source signal, dysarthric speech has been shown to have more variation 

in utterance-level prosodic features (Kim et al., 2010).

Capturing the wide variability of sources and patterns in pathological speech may require 

high dimensional acoustic features. These potential variabilities pose challenges for human 

expert assessment. But, the wide variability in speaker factors, such as gender, age, dialectal, 

native/nonnative difference, makes automated system development even harder. Despite 

these difficulties, previous studies have reported a range of effective signal cues, including 

voice quality features (e.g., harmonics to noise ratio, jitter, shimmer), spectral features (e.g., 
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mel-frequency cepstral coefficients, formants), automatic speech recognition scores (i.e. the 

confidence score of phone or word recognition), perceptual features, phonemic features, 

prosodic features, and estimated speech production parameters like phonological features 

(Middag et al., 2009a; Dibazar et al., 2002, 2006; Maier et al., 2010, 2009; Van Nuffelen et 

al., 2009; Middag et al., 2011). Although there have been efforts to demonstrate the 

effectiveness of some features, e.g., spectral and phonological features, in sentence-level or 

passage-level data (Maier et al., 2010; Middag et al., 2011; Dibazar et al., 2002), the 

effectiveness of these signal cues, especially prosodic features and voice quality features, 

has been studied mostly on datasets collected with simple stimuli, e.g., prolonged vowels 

and words in limited contexts, presumably in order to reduce the effects of considerable 

noise in feature extraction due to irregularities of pathological voice.

Although experiments with such short duration stimuli provide useful segmental information 

relevant to intelligibility testing with less complexity, data reflecting real-world 

communication scenarios, e.g., sentence-level or spontaneous speech data, are desirable to 

ensure both ecological validity and generalizability. The feature characteristics and 

robustness for single phone- or word-level data might not be consistent with sentence-level 

speech data due to the high variability and complexity of sentence-level speech production. 

Hence it is important to examine the effectiveness of conventional pathological speech 

features (for intelligibility judgment) in the context of sentence-level data and seek suitable 

novel features which are more effective, robust and reliable for these data.

In addition to feature engineering, this paper also tests several subsystem-fusion schemes for 

arriving at the final intelligibility decision. Feature-level fusion is one of the most common 

and easy fusion methods, which combines a variety of features reflecting the possible 

sources of variability, and often includes feature selection to deal with the curse of 

dimensionality. This paper examines subsystem-level (decision) fusion, which is another 

way of handling the high-dimensionality issue. As a by-product, such high-level subsystem 

fusion offers both an overall intelligibility judgment of a test utterance and quantitative 

information regarding specific aspects of pathological variability, depending on subsystem 

design.

The present study also proposes a post-classification smoothing scheme that makes a final 

decision on a test sample based on the likelihood score of both the test sample itself and 

other samples in the test set. The main idea is that given the situation that we do not have 

enough data to cover the wide variability of pathological speech in the train and 

development sets, we include similarity information in the test set for improving decision 

making. Also, in real-world scenarios there can be speaker-factor mismatch between the 

datasets used for model training and parameter tuning, and for testing. It is hence reasonable 

to make a judgment by including the information underlying in the test set. Additionally our 

method ensures the consistency of predictions in the acoustic space. This paper will provide 

details of the proposed posterior smoothing scheme and analyze its behavior as a function of 

a control parameter for smoothing range.

For experiments we used two different datasets, the NKI CCRT Speech Corpus (van der 

Molen et al., 2009) and the TORGO database (Rudzicz et al., 2012), for demonstrating the 
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flexibility of our approach across disorders and languages. The NKI CCRT Speech Corpus 

includes speech audio spoken by native/non-native Dutch speakers (head and neck cancer 

patients), while the TORGO database includes dysarthric speech in English. Further details 

of the two datasets are provided in the next section of the paper.

The rest of this paper is organized as follows. In Section 2, we briefly present the NKI 

CCRT Speech Corpus, the TORGO database and our experimental setup. In Section 3, we 

describe subsystem design and feature-level fusion, followed by their classification 

performance on the two datasets. In Section 4, we describe the proposed joint classification 

and posterior smoothing schemes, followed by the evaluation of their effectiveness for 

improving intelligibility classification. In Section 5, we present the experimental results of 

our final system by late score level fusion. Finally, we provide a discussion of the results in 

Section 6, followed by conclusions and future work directions in Section 7.

2. Databases and experimental setup

2.1. NKI CCRT Speech Corpus

The NKI CCRT Speech Corpus (van der Molen et al., 2009) contains sentence-level speech 

audio and its perceptual intelligibility score. The speech audio data consist of read speech 

waveforms of 17 Dutch sentences spoken by 55 head and neck cancer patients. The speech 

audio was collected at three stages based on Chemo-Radiation Treatment (CRT) of patients: 

before CRT, 10-weeks after CRT and 12-months after CRT. The intelligibility score 

provided in this corpus is evaluator weighted estimator (EWE) for each utterance, which is 

computed from the evaluation results of professional listeners. EWE is the weighted mean of 

evaluation scores from multiple evaluators where the weight is the correlation coefficient of 

single evaluator’s evaluation score to the unweighted mean of evaluations from all 

evaluators (Grimm and Kroschel, 2005). A total of thirteen native Dutch-speaking speech 

pathologists participated the evaluation task.

2.2. Pathological speech sub-challenge

The goal of the Interspeech 2012 speaker trait sub-challenge for pathological speech 

(Schuller et al., 2012) was to build a classification system for binary intelligibility labels on 

the NKI CCRT Speech Corpus. The binary labels (intelligible (I) and non-intelligible (NI)), 

were obtained by partitioning the data using the median of the EWE distribution of all the 

original speech. The sub-challenge participants were required to follow a given data 

partitioning of train set, development set and test set, each of which was balanced for age, 

gender and nativeness of the speakers, but not for the number of labels. The challenge 

provided phone boundaries which were automatically generated by forced-alignment and 

manual phonetic transcription.

The sub-challenge further offered the performance of two baseline systems and their 

common feature set. The feature set consists of 6125 utterance-level functionals estimated 

from prosodic and spectral feature streams and voicing related features, and their derivatives 

(delta features). The two baseline systems are linear Support Vector Machine (SVM) with 

sequential minimal optimization and Random Forest. The Interspeech 2012 speaker trait 

challenge paper (Schuller et al., 2012) offers details of the experimental configuration, 
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feature extraction and baseline systems. Table 1 shows the partitioning of NKI CCRT 

Speech Corpus for the pathology sub-challenge, which the present study follows mostly, 

except that one NI test sample is omitted due to its poor recording quality. Therefore, the 

number of samples of NI in the test set is 263 in our experiments. Although the present 

study also presents weighted average recall, all classification performances with the 

challenge dataset are compared based on unweighted average recall of I and NI classes for 

consistency with the challenge setup. The initial work presented on this dataset was 

published by Kim et al. (2012) as an entry, and deemed an eventual winner in the 

Interspeech 2012 Pathology sub-challenge.

2.3. TORGO dataset

The TORGO database (Rudzicz et al., 2012) contains dysarthric speech audio produced by 

eight patients (five males and three females) with either cerebral palsy or amyotrophic 

lateral sclerosis and normal speech audio from seven people (four males and three females) 

representing the control group. The patients were known to have disruptions in the neuro-

motor interface which causes dysarthria. The age range of the patients is from 16 to 50. 

Although this database was recorded with various types of stimuli, the sentence-level speech 

audio is used in this study. The prompts used for recording sentence-level speech audio 

comprise three preselected phoneme-rich sentences sets: the “Grandfather passage,” 162 

sentences from the sentence intelligibility section of the Yorkston-Beukelman Assessment 

of Intelligibility of Dysarthric Speech, 460 sentences from the MOCHA database, and 

spontaneously elicited descriptive texts. The details of these prompts and the reason for this 

selection of prompts are described in the TORGO database paper (Rudzicz et al., 2012). 

This database provides intelligibility labels in five categorical grades [a,b,c,d,e] which were 

reduced from an initial 9-point scale, where ‘a’ is the label corresponding to the best 

intelligibility and ‘e’ is the worst.

For all experiments on the TORGO dataset, we used data from 10 speakers (six patients + 

four people in the control group) which contain phonetic transcripts for each utterance file, 

because some features in our system need such information. We divided the sentence-level 

data into binary intelligibility classes (I and NI), following the sub-challenge setup. Table 2 

shows the experimental setup, including the number of utterances used in this study. Note 

that only utterances with phone labels are included for experiments in this study. Since the 

intelligibility score of sentence-level speech audio of F03 is “a,” meaning ‘no difficulty,’ we 

assigned label I to her data. We assigned NI label to the data of the other patients, such as 

F01, M01, M02, M04 and M05. All speakers’ data in the control group are considered to be 

intelligible, so “I” label was assigned to them. For consistency with the experimental setup 

of the sub-challenge dataset and for reflecting real world scenarios, we trained our systems 

without the data of test set speakers, using leave-one-subject-out for testing, and used 

random cross validation for parameter tuning.

The speech audio of the TORGO database was recorded by either a head-mounted 

microphone or an array microphone. We observed that the speech data, mostly the ones 

recorded by a head-mounted microphone, often contain considerable channel noise, so we 

performed spectral noise subtraction, using the VOICEBOX toolbox (Brookes, 2005), 
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before extracting acoustic features. The number of audio samples recorded by an array 

microphone is 104 (F03 and MC03) for I labels and 109 (F01, M01 and M02) for NI labels, 

while the number of audio samples recorded by a head-mounted microphone is 430 (MC01, 

MC02 and MC04) for I labels and 155 (M04 and M05) for NI labels. In order to minimize 

the effects of remaining channel noise on the performance of evaluation, we performed 

leave-one-subject-out classification.

3. Subsystem design and testing

3.1. Subsystem for prosody

We observed that NI speakers often have difficulty in pronouncing a few specific speech 

sounds, resulting in atypical prosodic and intonational shape. Additionally, we observed that 

the pitch trajectory of the NI speakers’ data was often not smooth. Figure 1 shows the 

examples of pitch contours of two utterances (one for I and the other for NI) of the same 

sentence. Motivated by these observations, we designed the following phone- and utterance-

level features derived from pitch contours of each utterance.

• Utterance-level features included [0.1 0.25 0.5 0.75 0.9] quantiles, interquartile 

range of pitch and its delta, normalized L0-norm (the number of non-zero elements 

divided by the sum of mean duration of each phone in the utterance), normalized 

utterance duration (utterance duration / the sum of mean duration of each phone in 

the utterance), the sum of normalized L0-norm ratio and the normalized utterance 

duration, the z-score of each phone duration, variance of pitch. The sum of mean 

duration of each phone in the utterance was computed from the entire intelligible 

speech audio in the train set. For each phone the z-score zi of sample xi ∈ X = [x1, 

x2, …, xi, …, xN], where X is all samples of the phone, and N is the number of the 

samples, is defined as follows: zi = (xi − X̅)/S, where X̅ is the sample mean of X and 

S is the standard deviation of X.

• Phone-level features included the variance pitch contour and pitch stylization 

parameters obtained by fitting quadratic polynomials for each phone.

These features were designed in sentence-independent fashion in order to obtain a sufficient 

number of samples for classifier training. The pitch contour features based on polynomial 

expansion have also been applied on an age and gender recognition task in a previous study 

(Li et al., 2013).

3.2. Subsystem for voice quality

We tested three types of voice quality features, viz. harmonics to noise ratio (HNR), jitter 

and shimmer, for intelligibility classification. They have been popularly used for vocal 

disorder assessment of sustained vowel sound, e.g., /AA/. Since the databases used in the 

present study are made of sentence-level running speech, we concatenated vowel segments 

of each utterance instead. Then, we estimated statistics, such as [.05 .1 .25 .5 .75 .9 .95] 

quantiles, mean, maximum and minimum in the segments for each utterance. We used Praat 

(Boersma and Weenink, 2009) for extracting HNR with its default parameter set and 

Opensmile (Eyben et al., 2010) for extracting jitter and shimmer.
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3.3. Subsystem for pronunciation

Under the hypothesis that vocal organ malfunction may cause pronunciation variation, 

thereby contributing to intelligibility loss, we also tested pronunciation features for 

intelligibility classification. A previous study has shown that formants, cepstral mean 

normalized 39-dimension Mel-Frequency Cepstral Coefficients (MFCCs), and phone 

duration are effective in representing pronunciation variation in Dutch (Witt, 1999). Loosely 

inspired by this study, we developed temporal and spectral feature statistics. The statistics of 

spectral features include [.05 .1 .25 .5 .75 .9 .95] quantiles, interquartile range, and three-

order polynomial coefficients (except the residual term) of the first, second and third 

formants and their bandwidths, and their derivatives for each vowel segment in each 

utterance. Then, we took the mean of vowel segments (total 132 = 11 statistics × (3 formants 

+ 3 bandwidths) × 2). We also estimated the maximum and standard deviation of cepstral 

mean normalized 39 MFCCs (total 78 = 2 statistics × 39 MFCCs) extracted from utterance-

level speech waveforms whose initial and the final silence regions were excluded. The 

temporal features included average syllable duration, pause duration (without silence before 

and after speech audio) to the number of syllable ratio, average vowel duration computed 

with manual phonetic transcription and phone boundaries provided in the database.

3.4. Evaluation of each subsystem and feature-level fusion

In this section, we evaluate the discriminating power of our sentence-level feature sets of 

individual subsystems and feature-level fusion for intelligibility classification on both NKI 

CCRT Speech Corpus and TORGO dataset.

Each subsystem described in Sections 3.1, 3.2, 3.3 consists of a large number of features, for 

the amount of training data available. Hence, the best feature sets were selected based on 

unweighted average recall of linear discriminant analysis (LDA) classifier, k-nearest 

neighbor (KNN) classifier and support vector machine (SVM). KNN and SVM have two 

parameters for tuning, so we followed a standard procedure of joint parameter tuning and 

forward feature selection. We used mahalanobis distance metric on the development set, 

varying k from 1 to 20 for the KNN classifier. For the SVM classifier we chose the best 

kernel function among linear, quadratic, polynomial and Gaussian radial basis functions, in 

terms of classification accuracy. We used LIBSVM Matlab toolbox (Chang and Lin, 2001) 

for SVM model training and testing. For each of the three feature sets (prosody, 

pronunciation and voice quality), we performed a forward feature selection using the 

development set, for each value of I = 1, …, 20, where I indicates the number of best 

features. This gave us different selected sets of features corresponding to different values of 

I. The I of the first locally maximal classification accuracy was chosen and tested on the test 

set. For the SVM classifier, we performed a forward feature selection with four kernel 

functions: linear, 2nd-order polynomial, 3rd-order polynomial and radial basis function. For 

feature-level fusion, feature selection was performed with all features in the three 

subsystems with each classifier. Table 3 shows the feature selection results of the linear 

discriminant analysis (LDA) classifier, KNN and SVM, and their classification accuracy on 

the test set.
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Table 3 shows that the best intelligibility classification of an individual subsystem is 

achieved by the pronunciation feature set with SVM classifier and 3rd-order polynomial 

kernel function. The pronunciation features offer the best individual feature performance 

with the KNN classifier as well, although it fails with the LDA classifier. Feature-level 

fusion with all features from the three feature sets shows the best performance (69.6% for 

unweighted average recall, 71.1% for weighted average recall) with SVM with 2nd-order 

polynomial kernel function. SVM shows better performance than KNN and LDA in general, 

except in the case of the unweighted average recall of the prosody subsystem on which the 

best performing classifier is KNN, with similar feature dimensionality. Table 3 suggests that 

the feature set of each subsystem is useful for intelligibility classification of sentence-level 

pathological speech from patients with head and neck cancer.

Since the TORGO dataset has an even smaller amount of data than the sub-challenge dataset 

and since the number of speakers used for experiments was also considerably small, we 

performed a leave-one-speaker-out cross validation. For each fold, all the data except those 

from one speaker were used to train classifiers to ensure no speaker overlap between 

training and testing. Recall that on the TORGO dataset all utterances from a speaker have 

the same intelligibility rating, which poses overfitting issues while tuning parameters on a 

development set. This can be understood in terms of bias variance decomposition of 

classification error. Parameter tuning on the development set seeks to minimize the bias on 

that set, but in turn causes the model variance to increase, since the amount of data is 

limited. Hence, on the TORGO dataset, we refer to only results using the LDA classifier, 

since it does not require any hyperparameter tuning. We still report results using SVM for 

the sake of completeness. As can be seen, the prosody feature set is less stable with respect 

to parameter tuning and feature selection on the limited dataset. Table 4 shows the average 

results of the leave-one-speaker-out cross validation using the optimally-tuned parameters 

for each fold. For the sake of brevity we omit the optimal parameter values for each fold.

Table 4 shows that the best intelligibility accuracy of an individual feature set is achieved by 

classifying using only the pronunciation feature set with an LDA classifier. Feature-level 

fusion with forward feature selection on all three feature sets shows slightly lower 

performance than the best subsystem, i.e. pronunciation. Classification results in Table 4 

support that the feature set of each subsystem is considerably effective for intelligibility 

classification of sentence-level dysarthric speech.

4. Joint classification of test samples

We attempt to further improve the posterior scores obtained from classifiers by smoothing 

them on the test set. This is based on the assumption that annotators are less likely to give 

very different intelligibility ratings to utterances with very similar speech characteristics. In 

other words, we assume that the predicted labels should be locally smooth in this space of 

speech features that we describe next.

4.1. Joint classification with clustering

In our previous study (Kim et al., 2012) for the pathology sub-challenge, we verified our 

assumption separately on the train and development sets by clustering the utterances based 
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on the speech characteristics of subjects. In order to group similar speech utterances 

together, we performed a single Gaussian based bottom-up agglomerative hierarchical 

clustering (AHC) proposed by Han et al. (2008) with K-means post refinement, using 

generalized likelihood ratio (GLR) distance. The smoothness constraint was then enforced 

by an ad-hoc scheme of jointly classifying all utterances inside a cluster using a majority 

voting rule.

Figure 2, which is adopted from our sub-challenge paper (Kim et al., 2012), shows that 

labels inside each cluster are usually very similar. Most clusters contain a large percentage 

of either I or NI labels, except a few near the class boundary. Standard deviation of EWE 

scores within a cluster is also mostly small. This figure supports the validity of the 

assumption.

4.2. Posterior smoothing post classification

In the present paper we propose a more formal smoothing approach which is closer to the 

general notion of smoothing as a low-pass filtering operation. In other words, we refine the 

posterior of a test sample as the normalized sum of its neighbors’ posteriors weighted by 

their distances to the test sample in the speech space. The speech space was represented by 

Line Spectrum Pair (LSP) features (Itakura, 1975). As an alternative linear prediction 

parametric representation, LSP is closely relevant to the natural resonances or the formants 

of speech sound, and it is more accurate for the parameterization of the spectral information 

(Soong and Juang, 1984; Qian et al., 2006). Previous studies have shown the effectiveness 

of this feature for speech characterization, therefore it is popularly used for the speaker 

clustering application (Lu and Zhang, 2002;Wang et al., 2008).

We extracted LSP features from each utterance and used GLR distance to perform AHC 

clustering. The mathematical description of GLR distance is as follows. Suppose that we 

have a pair of clusters Cx and Cy and that they are represented by two different single 

Gaussian distributions N(μx, Σx) and N(μy, Σy). They consist of n-dimensional feature 

vectors with M frames and N frames, where x = [x1, x2, ⋯, xM] and y = [y1, y2, ⋯, yN], 

respectively. If they are from the same speaker, they are merged into one joint cluster Cz 

with data z = [x1, x2, ⋯, xM, y1, y2, ⋯, yN] and distribution N(μz, Σz).

GLR distance is based on a hypothesis testing described as follows:

• H0: x and y follow a joint distribution and are merged together to z.

• H1: x and y should follow different distributions and are considered as independent.

Based on these two hypotheses, we can calculate their likelihood ratio, GLR(x, y) as follows.

(1)

Taking into account the single Gaussian distribution, we get the log form of GLR distance 

(Han et al., 2008).
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(2)

14-dimensional LSP features were extracted from the data for every 40-ms Hamming-

windowed frame with 20-ms frame shift. The distance between any pair of utterances in the 

speech space was computed using the aforementioned GLR measure (Han et al., 2008).

Next, we provide a description of the posterior smoothing scheme. If d(x, y) denotes the 

distance between any two utterances x and y in the speech space, and Pi is the class posterior 

for the ith utterance, zi in the test set, then the smoothed operation is defined as follows:

(3)

where σ is the bandwidth parameter which controls the scale of smoothing. We chose a 

Gaussian kernel as our smoothing mask. Note the extra normalization term in the 

denominator is necessary in our case, since we only smooth over a finite number of points, 

instead of a uniform grid of points in the speech space. This ensures a convex combination 

of the posteriors so that the resulting smoothed posterior is a valid probability. Hence any 

isolated utterances in the speech space will not be affected by this smoothing operation. 

Note that the smoothing is only performed over the test set utterances.

To provide the reader with a better intuition as to why the smoothing of posteriors in the test 

set might be a useful idea, we will try to contrast this method against traditional pattern 

recognition in which we design classifiers to predict class labels per sample. In other words, 

if the train set is held constant, the size of the test set doesn’t change the classification 

results on the test set. This is contrary to what we typically observe. Human experts often 

perform better when classifying a batch of samples instead of individual samples. This 

notion of “smoothness” of posteriors on the test set is similar to label smoothing algorithms 

presented in Zhou et al. (2004); Zhu and Ghahramani (2002). In other words if two samples 

are known to be similar beforehand their posteriors are also expected to be similar. In our 

experiment, we attempt to simulate this idea by imposing smoothness constraints on the test 

set. By smoothing the class posteriors we try to ensure that a better decision can be made by 

jointly classifying similar samples.

4.3. Hyper-parameter tuning

We now describe the scheme used for tuning the hyper-parameter σ in Eq.(3), which 

controls the scale of smoothing of the posteriors. σ is tuned using a binary divide and 

conquer scheme that tries to find the parameter for which classification accuracy on the 

development set is maximized. Test set posteriors are then smoothed using this value of σ. 

Figure 3 shows an example plot of the classification accuracy as a function of σ. It can be 

seen from the figure that there is an optimal range of σ for which posterior smoothing 

improves classification accuracy.
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4.4. Results

Table 5 shows the classification accuracy, contrasting results before and after posterior 

smoothing. It shows that classification accuracy (unweighted average recall) improves as a 

result of the posterior smoothing in most cases, except the cases of prosody subsystem and 

feature-level fusion with LDA classifier and feature-level fusion with SVM classifier in 

terms of only unweighted classification accuracy. The gains in the improved cases are 

significant at the 5% level by Mc Nemar test for most of the classifiers, except for the voice 

quality feature set with SVM.

5. Late score level fusion of multiple subsystems

This section discusses the intelligibility classification performances of our final fusion 

system. The classification accuracy of the final system on the pathology sub-challenge 

dataset is compared to the two baseline systems provided in the sub-challenge. We fused 

each subsystem at the score level using an SVM based fusion scheme. The posteriors 

obtained from each subsystem are used to train an SVM model to predict the binary 

intelligibility label on the development set. We use this model for the fusion of class 

posteriors on the test set.

Table 6 shows the classification accuracy of all final systems. The best performance (73.5% 

for unweighted and 72.8% for weighted) is achieved by subsystem fusion with smoothed 

posterior of an SVM classifier. However, subsystem fusion does not always improve 

classification performance over the best subsystem. For example, the subsystem fusion on 

KNN’s posterior after smoothing shows 0.4% lower unweighted average recall (even though 

it shows 2.1% higher weighted average recall) of the pronunciation subsystem with KNN’s 

posterior, presumably due to the different bias to I/NI classes between development and test 

sets. After posterior smoothing, both the feature-level fusion system and subsystem fusion 

system show better performance than the two baseline systems given in the sub-challenge.

6. Discussion

The performance of the system is evaluated by classification performance on the binary 

intelligibility labels. However, intelligibility score on at least a five point scale or in percent 

is more relevant to clinical practice. One possible way is to use a support vector regression 

(Smola and Schölkopf, 2004) for the final subsystem fusion and generate such final score 

output. Correlation measure between perceptual intelligibility score and system output can 

be used for evaluating such final score output (Maier et al., 2009; Middag et al., 2011).

The present study showed the effectiveness of voice quality features for automatic 

intelligibility assessment in the given datasets. One possible speculation is that atypicality of 

speech signal, which is associated with speech intelligibility, due to vocal illness, especially 

in the larynx, is captured by voice quality features. Although it is well known that laryngeal 

illness can affect voice quality in speech, there is, however, few works studying the 

relationship between voice quality and perceptual intelligibility of pathological speech 

signal. In fact, voice quality has been disregarded in the study of speech intelligibility 

assessment in general. Their is no consensus on the relations between intelligibility and 
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other speech quality factors in the literature. Preminger and Van Tasell (1995) reported that, 

in the perspective of both multi-dimensional and uni-dimensional views of speech quality, a 

few perceptual dimensions of speech quality are associated with intelligibility. Particularly, 

this study suggested that certain speech quality dimensions, such as loudness, listening effort 

and total impression, are predictable from speech intelligibility score. The present study 

provides evidence (through experimental results on limited datasets) for the hypothesis that 

voice quality is also associated with speech intelligibility.

The sentence-dependent features in our earlier system (Kim et al., 2012) are changed to 

sentence-independent features in the present paper. For example, classification for the 

subsystem of prosodic and intonational features is done for each sentence in the previously 

proposed system, while it is done for all sentences in the present paper. The benefit of using 

sentence-independent features is to secure a larger amount of available training data so that 

the trained models can have information of the more atypical variability with less concern 

about over-training. Classification results of each subsystems with sentence-independent 

features show their signficiant effectiveness (shown in Table 3) and they are higher than 

classification results of sentence-dependent features. For example, in the prosody subsystem, 

sentence-independent features show higher classification accuracy than sentence-dependent 

features (66.3% for sentence-independent features, 64.3% for sentence-dependent features) 

when KNN classifier is trained in the train set, tuned in the development set, and tested on 

the test set.

Smoothing of posteriors post classification was suggested to jointly exploit all the test data 

during classification. This notion of smoothness of posteriors is often exploited in semi-

supervised learning (Zhu and Ghahramani (2002); Zhou et al. (2004)) to learn structure from 

unlabelled data. For convenience, this structure is often encoded in the form of an affinity 

matrix computed using a kernel function like the Radial Basis Function (RBF) on the 

features. Since an affinity matrix only depends on pairwise distances, it allows extension to 

arbitrary distance metrics like GLR (Han et al. (2008)) which might be more intuitive for the 

problem.

It is worth emphasizing here that in spite of using features related to speaker clustering for 

computing GLR, the posterior smoothing doesn’t bias the classification task to speaker 

identity. This is because the challenge data set was designed to prevent any speaker overlap 

between the train, development or test data (Schuller et al. (2012)). Since the proposed 

posterior smoothing technique only uses samples from the test set, speaker related 

characteristics from train data are not transferred to the classification model. Instead, the 

posterior smoothing technique tries to overcome the shortcomings of the classification 

system by using information from other samples that are deemed pairwise similar according 

to the GLR criterion. This method has a direct analogy to low pass filtering by convolution 

using a filter mask and hence it is called smoothing.

7. Conclusion and future work

This study show the effectiveness of the automatic intelligibility assessment method we 

propose, which includes novel sentence-level features and a classifier posterior smoothing 
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scheme. The sentence-level features are designed to capture atypical variation in prosody, 

pronunciation and voice quality in pathological speech. Pronunciation features were 

especially found to be promising with a non-linear classifier. Our proposed smoothing 

scheme was shown to enhance the consistency of class prediction over the test set, resulting 

in classification accuracy improvement of individual subsystems, feature-level fusion 

systems, and late score level fusion systems (final systems) in most cases.

Further analysis is required to study the effect of various fusion schemes on each subsystem. 

This can be accomplished using a Bayesian network system through structure learning on a 

general Bayesian network system. In addition, it would be interesting to explore the 

usefulness of other features, e.g., inferred glottal pulses or phonological representations that 

might capture issues in speech production. It would also be worth investigating data-driven 

subsystem design for late score level fusion. This might help to capture the variability within 

the pathology classes.
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Highlights

We propose novel sentence-level features to capture atypical variation.

Our sentence-level features are effective for intelligibility classification.

We propose a post-classification posterior smoothing scheme.

Our smoothing scheme improves classification accuracy of our systems.

We test feature-level and subsystem fusions for the final intelligibility decision.
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Figure 1. 
Example pitch contours of I (top plot is train 046) and NI (bottom plot is train 006) 

utterances for the same sentence, ‘Er leefden eens een koning en een koningin en die hadden 

maar een kind’ in the IS2012 challenge dataset. Both utterances were spoken by male 

subjects.
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Figure 2. 
Distribution of pathology labels (I/NI) and EWE scores in each cluster for the train set. A 

total of 52 clusters were created. The histogram indicates the percentage of I annotations in 

clusters. The red line plot indicates the EWE mean and standard deviation. (Clusters sorted 

by average EWE score.)
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Figure 3. 
Sample variation in accuracy with change in hyperparameter σ on the development set for 

the prosody feature set as an example.
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Table 1

Partitioning of the NKI CCRT Speech Corpus

Train set Development set Test set Total

Intelligible 384 341 475 1200

Non-intelligible 517 405 263 1185

Total 901 746 738 2385
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Table 4

Classification results of feature selection and parameter tuning on the TORGO database. We report both 

weighted and unweighted average recalls in % because of unequal proportions of the two classes in this 

dataset. ‘All’ is feature-level fusion with all subsystems’ features. All accuracies in %

LDA SVM

Unweighted Weighted Unweighted Weighted

Prosody 82.1 80.3 53.6 51.3

Pronunciation 94.1 93.4 83.8 82.7

Voice quality 71.9 69.0 68.4 73.4

All 93.4 92.9 53.6 51.3
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Table 6

Unweighted (weighted) average recall in % of final systems (by chance: 50.0% for unweighted, 64.4% for 

weighted) on the test set of pathological speech challenge database (NKI-CCRT data).

System Accuracy (%)

Baseline SVM 68.0(66.2)

Baseline Random Forest 68.9(67.5)

Subsystem fusion (KNN’s posteriors, no smoothing) 70.0(69.2)

Subsystem fusion (SVM’s posteriors, no smoothing) 66.9(67.8)

Subsystem fusion (smoothed posteriors of KNN) 70.6(73.8)

Subsystem fusion (smoothed posteriors of SVM) 73.5(72.8)
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