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To better understand the role of tensegrity structures in biological systems

and their application to robotics, the Dynamic Tensegrity Robotics Lab at

NASA Ames Research Center, Moffett Field, CA, USA, has developed and

validated two software environments for the analysis, simulation and

design of tensegrity robots. These tools, along with new control methodologies

and the modular hardware components developed to validate them, are pre-

sented as a system for the design of actuated tensegrity structures. As

evidenced from their appearance in many biological systems, tensegrity (‘ten-

sile–integrity’) structures have unique physical properties that make them

ideal for interaction with uncertain environments. Yet, these characteristics

make design and control of bioinspired tensegrity robots extremely challen-

ging. This work presents the progress our tools have made in tackling the

design and control challenges of spherical tensegrity structures. We focus on

this shape since it lends itself to rolling locomotion. The results of our analyses

include multiple novel control approaches for mobility and terrain interaction

of spherical tensegrity structures that have been tested in simulation. A hard-

ware prototype of a spherical six-bar tensegrity, the Reservoir Compliant

Tensegrity Robot, is used to empirically validate the accuracy of simulation.
1. Introduction
Prior work has investigated the unique structural properties of tensegrity

systems, their role in biology and control strategies for different tensegrity mor-

phologies. One of the centres for this research is NASA Ames Research Center,

Moffett Field, CA, USA, where there is interest in these systems for planetary

exploration missions.

1.1. Tensegrity structures
Tensegrity structures are composed of compression elements encompassed

within a network of tensional elements; consequently, each element experiences

either pure compression or pure tension. This allows individual elements to be

extremely lightweight, as designs do not need to resist bending or shear forces.

Active motion in tensegrity structures can be performed with minimal energy

expenditure as actuators work linearly along load paths in tension elements,

avoiding torques caused by long lever arms of traditional robotic designs.

A unique property of tensegrity structures is how they internally distribute

forces. As there are no lever arms, forces do not magnify around joints or other

common points of failure. Rather, externally applied forces distribute through

the structure via multiple load paths, creating system-level mechanical robustness

and tolerance to forces applied from any direction or failure of individual
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Figure 1. Computer simulations of a nucleated tensegrity cell model exhibits
mechanical coupling between the cell, the cytoskeleton and the nucleus.
(Adapted from [2], with permission from Macmillan Publishers Ltd.)
(Online version in colour.)

Figure 2. Tensegrity models of the spine show how vertebrae float without
touching. (Image courtesy of Tom Flemons. & copyright 2006 [7].)

Figure 3. Mission scenario—a tightly packed set of tensegrities expands, spreads
out, falls to the surface of the Moon and then safely bounces on impact. The same
tensegrity structure cushioning landing is then used for exploration.
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actuation elements [1]. Thus, tensegrity structures are ideally

suited for operation in dynamic environments where contact

forces cannot always be predicted.

1.2. Tensegrity and biology
Tensegrity structures are being discovered in many aspects

of biological systems, which motivate this work’s bioinspired

modelling and control approaches. The tensegrity concept

appears at various scales, from the cytoskeleton of individual

cells (figure 1) [2–4] to mammalian physiology [5]. Emerging

biomechanical theories are shifting focus from bone-centric

models to fascia-centric models. Fascia is the connective

tissue in our bodies (including muscles, ligaments, tendons,

etc.) that forms a continuous web of tension, even surrounding

and supporting bones, which, unlike traditional mechanical

systems, have no rigid connections between them [6]. This

new view is challenging the ‘common-sense’ view of skeletal

structures as the primary load-bearing elements of human

and mammalian bodies (figure 2). In the emerging ‘bio-

tensegrity’ model, bones are still under compression, but they

are not passing compressive loads to each other; rather, it is

the continuous tension networks of fascia that are the primary

load-bearers [5,6].

1.3. Tensegrity robotics for space exploration
NASA is supporting research into tensegrity robotics to create

planetary rovers with many of the same qualities that benefit

biological systems. The high strength-to-weight ratio of ten-

segrity structures is attractive due to the impact of mass on

mission launch costs. Likewise, large tensegrity structures are

deployable from compact configurations, enabling them to fit

into space-constrained spacecraft. While these qualities have

inspired studies of deployable antennae and other large

space structures [8], the unique force distribution of
tensegrity robots has only recently been investigated for plane-

tary exploration [9]. Initial work in the NASA Innovative

Advanced Concepts project [10] shows that controllable com-

pliance and force distribution properties allow for reliable

and robust environmental interactions during landing and

planetary surface exploration.

A key goal of this NASA work is to develop a tensegrity

probe with an actively controlled tensile network, enabling

compact stowage for launch followed by deployment for land-

ing. Compliant tensegrity probes can safely absorb significant

impact forces, enabling high-speed entry, descent and landing

scenarios where the probe acts like an airbag [9]. However,

unlike an airbag that must be discarded after a single use, the

tensegrity also provides rolling mobility (figure 3). This enables

compact and lightweight planetary exploration missions with

the capabilities of traditional wheeled rovers, but with a

mass and cost similar to a stationary probe. Dual use of struc-

ture allows a tensegrity mission to have a high mass fraction

between science payload and overall weight (as measured at

atmospheric entry). This reduces mission cost and enables

new forms of surface exploration using the tensegrity’s natural

tolerance to impacts [9].

1.4. Tensegrity control
Tensegrity structures are a fairly modern concept, having

been initially explored in the 1960s by Buckminster Fuller

[11] and the artist Kenneth Snelson [12]. Initial tensegrity

research was mostly concerned with form-finding techniques

[13] and the design and analysis of static structures [14,15].

Research into control of tensegrity structures began in the

mid-1990s, with initial efforts at formalizing the dynamics

of tensegrity structures only recently emerging [15]. The

very properties that make tensegrities ideal for physical

interaction with the environment (compliance, multi-path

load distribution, nonlinear dynamics, etc.) also present sig-

nificant challenges to traditional control approaches. A

recent review shows that there are still problems actively

controlling tensegrities [16]. Work has continued in the

analytical understanding of the equations of motion and

dynamics of tensegrity structures [17]. However, environ-

mental interactions cause additional modelling difficulties,

typically limiting the effectiveness of such approaches.
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Consequently, successful demonstrations of tensegrity mobi-

lity have primarily used non-analytical methods [1,18–20].

Our approach to these problems is therefore to develop control

algorithms based on central pattern generators (CPGs),

distributed learning and genetic algorithms instead of more

traditional control approaches.
publishing.org
J.R.Soc.Interface

11:20140520
1.4.1. Central pattern generators
CPGs are neural circuits found in both vertebrate and invert-

ebrate animals that produce rhythmic patterns of neural

activity without receiving rhythmic inputs. CPGs have been

studied from a biological perspective and have been used exten-

sively in robotics [21]. The term central indicates that rhythms of

the CPG are not driven by sensory input, but are self-generated.

CPGs are the fundamental building blocks for locomotor neural

circuits in many animals and are also key to other fundamental

rhythmic activities such as chewing, breathing and digesting.

Recent research shows a close relationship between CPGs and

motion primitives in the spine that enable both rhythmic and

discrete motions [22]. Alongside their biological inspiration

for use in robotic motion, CPGs present several interesting

and useful properties including distributed control, robustness

to perturbations, inherent tolerance to redundancies, fast con-

trol loops and the ability to modulate locomotion by simple

control signals.

CPGs are therefore well suited for controlling tensegrities

[23] and other biomimetic structures [24]. Additionally, there

is intuition for pairing tensegrity robots with CPG networks:

the dynamics of physical forces propagating through a tense-

grity structure are similar to the dynamics of control patterns

propagating through CPG networks.
1.4.2. Evolutionary algorithms
Instead of defining a control policy directly, evolutionary algor-

ithms can be used to learn a control policy. This is accomplished

through an iterative cycle, where in simulation a control policy

is run and evaluated, and this evaluation is fed back into

the genetic algorithm so that it can improve the control

policy. Evolutionary algorithms have the following advantages:

(1) Complex, nonlinear control policies can be learned.

(2) Underlying dynamics need not be known.

(3) Control policies can be learned or parameters of existing

control policies can be optimized.

(4) Distributed learning can be used to scale to larger

tensegrities and to accelerate learning.

Moreover, coevolutionary algorithms provide distributed

learning for multi-agent problems [25]. Each component can

individually learn a control policy that decides how to

actuate its individual end cap in such a way that global

performance is maximized [26]. Challenges controlling ten-

segrity robots using traditional approaches have led some

researchers to consider biologically inspired evolutionary or

coevolutionary algorithms [1,27–29].
1.5. Outline
This paper is organized as follows: §2 introduces our simu-

lators and hardware platform; §3 presents our simulator

validation results; §4 describes our various control strategies;

and §5 discusses our future work and our results and
control strategies in context of other work. And last, §6

presents our conclusion.
2. Systems and models
We introduce three systems to evaluate the design and con-

trol of tensegrity structures. The first two are simulation

environments, while the third is an untethered, lightweight

robot prototype.

2.1. Spring – cable assemblies
All tensile members of the structures we study in this work

are compliant and we refer to them as spring–cable assemblies.

Although various implementations are possible, all spring–

cable assemblies in this work can be modelled as a zero

rest-length passive spring in series with a non-elastic cable.

The tension on spring–cable assembly i is given by

fi ¼ ki max (kpi,0 � pi,1k � ‘i, 0), (2:1)

where ki is the spring stiffness, kpi,0 � pi,1k is the Euclidean

distance between the attachments of the spring–cable assem-

bly and ‘i is the cable length. Actuated members have a

controllable rest length ‘i.

2.2. Euler – Lagrange simulator
We extended the Euler–Lagrange formulation described in

Skelton’s reference work on tensegrity systems by adding

support for ground contacts and gravity [15]. In Skelton’s

work, the tensegrity structure struts are modelled as cylin-

ders with infinitesimal radius. Strut-to-strut contacts are

not modelled, which is an acceptable approximation for

NASA-scale missions.

We found that this environment provides particularly accu-

rate results for two types of experiments: tests of structural

forces and tests of effective structural stiffness. This simulator

is used for payload acceleration prediction during impacts

from drop tests, as well as stiffness analyses and form-finding.

However, its simple underlying model makes it unsuited for

the study of complex environmental interactions.

2.3. NASA Tensegrity Robotics Toolkit
Our main simulation environment, the NASA Tensegrity

Robotics Toolkit (NTRT), is built on the discrete time Bullet

Physics engine (a game physics simulator) [30].

As game physics requires real-time simulation, Bullet is

designed to handle collisions without excessive processing

power. However, the Bullet physics library does not currently

provide models of ropes, cables or springs with realistic

material properties and stress analysis. Instead of using

these default soft body models, we built an additional library

to simulate spring–cable assemblies as two-point tensional

elements that apply directional forces to rigid bodies.

This approach gives the ability to calculate the amount of

stretch and tension for each simulated cable, as well as the

force exerted to the bodies, using more mathematically rigorous

models. A current limitation of this method is that the cables do

not exist in the simulation world as physical bodies. Thus, their

collisions and interaction with rigid bodies are not simulated.

For locomotion tasks and terrain types we have explored so

far, this is not a problem, but will be addressed in the future

to simulate more extreme terrain interactions.



Figure 4. ReCTeR: an untethered, highly compliant, spherical tensegrity
robot. Top left: deployed robot. (Credit: NASA Ames/Eric James.) Centre
right: active folding. Bottom: ReCTeR rolling from right to left.
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2.4. Prototype
In addition to these two software environments, a physical

prototype of the six-bar tensegrity was constructed. Reservoir

Compliant Tensegrity Robot (ReCTeR) is a highly compliant,

lightweight (1.1 kg), underactuated tensegrity icosahedron

robot, as shown in figure 4. The robot’s 24 outer tensile

elements are passive spring–cable assemblies with low-

stiffness springs (28.4 N m21) under moderate pretension

(�10 N). Six actuated spring–cable assemblies run through

the robot connecting active and passive end caps (also see

§2.5). Their rest length is adjusted by a rotational DC motor

(4.5 W, 4.4 : 1 gear ratio) that spins a snag-resistant bobbin

(5.5 mm diameter). The other end of the cable attaches to a

stiffer spring (81 N m21) affixed to a passive end cap. We

use low-stiffness springs to allow active folding (figure 4)

without plastic deformation of the 24 passive tensile

members or excessive motor power requirements.

The six active spring–cables run through the robot and

connect non-parallel struts in an advantageous way. Stiffness

analysis revealed that this pattern allows for large shape

deformations with low motor power requirements. As a con-

sequence of low spring stiffnesses, the lowest natural

frequencies of oscillatory modes for the structure are of the

order of a few hertz.

Sensing and feedback control are achieved by 24 tension

sensors using strain gauges, six ground reaction-force sensors

and three six-DOF inertial measurement units distributed

evenly among the actuated end caps. To allow dynamic

motion and rolling, each self-contained strut holds a hardware

module with battery power and wireless communication. The

battery is mounted at the centre of the strut to minimize the

moment of inertia around its longitudinal axis. This makes

ReCTeR fully untethered.

2.5. Robot models
Our control methods are implemented on platforms with

varying configurations. Figure 5 shows the three tensegrity

icosahedra analysed in this paper.

We put a particular emphasis on spherical icosahedron

tensegrities. This symmetric configuration provides a large

interior volume with a moderate number of members

and can be folded easily. It lends itself naturally to rolling

locomotion because of its triangular faces. Additionally,

tensile-member failure will result in reduced locomotion

capabilities instead of full failure, due to its redundant

number of tensile members [31].
The basic tensegrity icosahedron is shown in figure 5a.

This structure has 24 spring–cable assemblies and six rigid

rods. The spring–cable assemblies are also referred to as

outer-shell elements.

A tensegrity icosahedron with a payload is displayed in

figure 5b. This structure has an additional 12 spring–cable

assemblies to suspend the payload in the centre of the

robot. We also refer to these as inner members.

Figure 5c displays the model ReCTeR’s configuration with

actual dimensions. ReCTeR has the basic tensegrity icosahedron

configuration with six extra actuated spring–cable assemblies.
3. Validation of simulations
3.1. Experimental set-up
To track the full state of the robot, an active marker motion

capture set-up was used. Passive struts were fitted with

two markers, and active struts received three markers.

3.2. Kinematics
The forward kinematics of the Euler–Lagrange and NTRT

simulators were compared against motion capture data

from ReCTeR.

The six-strut ReCTeR robot was placed on one of its tri-

angular faces and two top spring–cable assemblies were

actuated, as shown in figure 6. We tracked vertical displace-

ment of an end cap not directly actuated by one of these

two members. The incident strut was suspended in air by a

total of 10 springs.

Lengths of the two actuated spring assemblies were

varied from the point of no tension in the given configuration

(slack) to 0.32 m beyond this length. Each range was sampled

at 10 equally spaced lengths, resulting in 100 measurement

positions. Ranges were manually tuned to maximally

deform the robot without causing it to roll. This experiment

was repeated three times with no meaningful difference in

observed displacements.

The average observed difference between motion capture

data and the Euler–Lagrange simulator was 6.5 mm. For

NTRT, we obtained an average error of 15 mm (0.5% and

1.3% of ReCTeR’s diameter).

3.3. Dynamics
Next, we compared the dynamics of the NTRT simulator with

the ReCTeR hardware. This experiment was designed for two

purposes: first, to verify that the simulator can replicate

ground interactions; and second, that it can simulate conversion

of potential energy into kinematic energy when a spring is

released. The experimental set-up is shown in figure 7. The

robot initially has a non-minimal ground contact (four end

caps on the ground instead of just three), and three actuated

springs are tensioned. Next, one of the tensioned, actuated

springs is loosened by its actuator, causing the robot to roll over.

As the experiment also depends on ReCTeR’s initial state, the

observed initial state from the motion capture data was copied

to the NTRT simulator. The ReCTeR model in the NTRT simu-

lator was then released from this initial configuration, allowing

it to reach the simulated, predicted equilibrium. Recorded

motor positions from the physical test were then applied into

the simulator, causing a similar roll-over motion.
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4. Locomotion control
Once it had been determined that the NTRT simulator mod-

elled these robotic dynamics reasonably well, locomotion

experiments were performed with tensegrity robots in both

simulation and hardware. The algorithms described in §4.1

apply to various configurations, but are presented here in

simulation for the first configuration, as shown in figure 5

with 1.5 m rods, weighing 15 kg. The controls in §4.2 were

applied to simulations of the second configuration. Section
4.3 presents hardware results on ReCTeR and a comparison

of those results with previously simulated implementations.

Appendix A provides a summary of the control methods in

this work and an overview of related work.

4.1. Coevolutionary control
The first control method from our group is based on coevolu-

tionary algorithms [25]. We demonstrated successful rolling

locomotion of a tensegrity icosahedron with this technique
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in the NTRT [29]. In this scheme, each spring–cable assembly

is active and has a controller that evolves independently

from the other controllers (i.e. in independent pools), but

cooperation is used to optimize behaviour of the entire

robot. The objective function for this maximization was set

to be ReCTeR’s distance travelled during a fixed amount

of time. The simplest implementation of this technique is

an optimization of open-loop control signals that are only a

function of time; sinusoidal functions performed well.

After this method was explored, the effects of different

complexities and frequencies of these open-loop signals

were analysed. More precisely, we optimized stepwise func-

tions with varying numbers of via points. This enables the

study of computational load and scaling properties needed

to estimate power consumption of various controllers, as

well as to investigate the effects of actuator failure. Figure 8

shows the learning curve of this process. In this case, opti-

mized rest-length signals had four via points. An analysis

of practical aspects of these results (power consumption,

actuator failure, etc.) is underway.

While these open-loop controllers demonstrated basic

rolling behaviour, they commonly failed in the presence of

external forces or unexpected terrain conditions. To solve

this problem, we developed a simple rolling algorithm that

uses ground-contact sensors located on the simulated end

caps. Preliminary results have shown steerable rolling on

various terrains.

This brief analysis of coevolutionary learning for icosahe-

dral tensegrity locomotion demonstrates that learning-based

controls can provide robust rolling locomotion without

analytical knowledge of the robot’s dynamics.
4.2. Bioinspired control
In contrast to the direct learning technique presented above,

our second set of approaches is more designer-involved

and specific to this structure. State feedback was used to

increase rolling performance of the tensegrity robot with

payload simulated with the NTRT (figure 5).
The idea behind these control laws is to create torque by

moving the robot’s centre of mass with respect to the

ground-contact surface to cause the robot to roll, as illustrated

in figure 9. This motion is achieved with a two-layer control

architecture: the robot’s heading and speed are controlled by

displacement of the central payload using the inner spring–

cable assemblies, and motion is simplified by actuating the

outer shell.

Three control approaches test inner spring–cable

assemblies: reactive controls, inverse kinematics (IK)-based

controls and CPG-based controls. Outer spring–cable assem-

blies are controlled with hand-tuning. Actuation of the outer

shell reduces ground contacts, not directly influencing head-

ing or speed. This affects motion in several ways. First, it

allows for creation of greater torques with the same payload

displacement. Second, it smoothens rolling behaviour of

the structure by preventing discontinuities due to excessive

ground contact.

For each control approach, inputs were taken as functions

of the robotic state. The height of each strut was computed

using simulated omnidirectional distance sensors located at

the end of each rod. The height assigned to each spring–

cable assembly was computed as the average of the two

endpoints’ height. We understand that omnidirectional dis-

tance sensors can be difficult to realize in hardware; it is
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not practical to rely on the full state of the robot as input.

However, multiple solutions to this problem exist. An inter-

esting approach is to embed ground reaction-force sensors

in a protective soft cap on each rod end. A second possibility,

motivated by the separation principle of control theory [32],

is to estimate system states from other sources, such as

accelerometer and gyroscope measurements. This second

approach could be augmented with the knowledge that this

icosahedron robot often rolls over an edge of a face triangle

[20]. Finally, one could use a CPG to emulate rhythmic

activation of sensors, similar to the approach in §4.2.2.

The control for the outer-shell cables was designed to

tighten the bottom part of the structure when rolling, chan-

ging the lever arms of the gravitational force from the

robot’s centre of mass, requiring less force to induce a roll.

Typically in the presence of a slope, reduction of ground-

contact surface is sufficient to cause a roll down the slope.

In order to take this into account, we added a measure of

speed, which is computed as the dot product between the

centre-of-mass position and the robot’s overall heading direc-

tion vector. With this method, speed is a scalar number and

its sign depends on the robot’s heading (positive in the

desired direction and negative otherwise). Speed can then

be used as feedback to influence the spring actuator com-

mand. Rest lengths of the shell spring–cable assemblies are

computed using the following actuation rule:

_‘i ¼ ws(‘0 þmin (h2
i , h2

0)� ‘i), speed � 0
_‘i ¼ ws(�‘� ‘i), otherwise,

(
(4:1)

where hi is the height of spring–cable assembly i as measured

from the distance sensors; ‘i is its current rest length; ‘0, h0

and �‘ are constant parameters; and ws [ Rþ accounts for

the time scale where length corrections occur. ‘0 and h0 rep-

resent the offset-rest length of the spring and the maximum

height measurement. The parameter �‘ represents the default

rest lengths of the springs that, if given as a command to

all motors, puts the tensegrity in a stable position on the
ground. Input and output parameters of this control law

are updated continuously through feedback control. Impe-

dance control, which was adapted to tensegrities previously

[24,33], is used to modify spring–cable rest lengths.
4.2.1. Reactive controls
The first technique for actuation of inner payload spring–

cable assemblies was the use of reactive controllers. We

note that the only controllable parameter is cable length.

The variables ‘i here are the rest length of the inner springs.

Global heading direction in a chosen inertial reference

frame is defined by the unit vector v and the orientation of

each spring in this same reference frame, represented by the

vector vi. For each inner spring–cable assembly, we use the

dot product di ¼ v � vi as feedback to control the position of

the payload as follows:

_‘i ¼ (‘0 þ dig� k pi,0 � pi,1 k )wr (4:2)

and ‘i(0) ¼ ‘0, (4:3)

where the weight wr determines reactivity of the system and

g , 0 is a fixed parameter. Thus, without any external pertur-

bation, the system has a stable equilibrium position at

‘0 þ dig. Rest length of the spring–cable assemblies where

the orientation aligns with the global heading is reduced.

Vice versa, springs pointing in the opposite direction are

elongated. The global result is displacement of the payload in

the direction of the heading vector, as shown in figure 10.

Note that the heading direction v can be chosen arbitrarily

and adjusted dynamically. This method resulted in stable

and smooth rolling gaits, allowing a roll of up to 1 m s21

(�1 body-length per second) over flat terrain. The robot

could also handle slopes up to 88, bumpy terrain, obstacles

and collisions.

The main disadvantage of the reactive method is the type

and amount of sensor feedback required to implement this

approach in hardware. This issue is addressed by the control

methods presented next, which are based on the same phys-

ical principle but require less feedback information.
4.2.2. Central pattern generator controls
CPGs have been successfully used in past tensegrity systems

[23]. Such controls are a feasible alternative to reactive con-

trollers that enable generation of regular motion patterns.

For this control, full-state information is used to generate

smooth motion under reactive controls. Then, resulting peri-

odic commands were stored as a stable limit cycle of a CPG.

Once this process completes, the tensegrity can be driven by

CPG output with much less feedback. We used an adaptive

frequency Hopf oscillator [34] during the learning phase

where the tensegrity was reactively control-driven. The

underlying dynamical system reads

_u ¼ g(m� (u2 þ g2))u� vgþ eb(t), (4:4)

_g ¼ g(m� (u2 þ g2))gþ vu (4:5)

and _v ¼ �eb(t)
g

u2 þ g2
, (4:6)

where u, g and v are state variables of the dynamical system,

g is a time constant, m is the target frequency and v is the

target pulsation of the signal. Note the element and time indi-

ces are dropped to simplify notation: u designates ui(t), with i
the index of the spring–cable assembly. The output u can
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synchronize to any periodic input signal b(t) and replaces the

feedback signal from the previous section,

di(t) ¼ ui(t): (4:7)

Once the signal is learned, time dependency of the pulsa-

tion is removed, i.e. v is held constant and a term

accounting for ground-contact coupling is added to the

dynamical system

_u ¼ g(m� (u2 þ g2))u� vg� hh(t), (4:8)

_g ¼ g(m� (u2 þ g2))gþ vu (4:9)

and _v ¼ 0, (4:10)

where h(t) denotes the height signal fed back by the

omnidirectional ranging sensors and h [ Rþ is a coeffi-

cient. This method has the advantage of requiring

minimal feedback and, thus, minimal computations. How-

ever, it is important to note that the dynamical system

runs on a much larger time scale than perturbations dis-

turbing the system. A tensegrity driven only by a CPG

would then, in the best case, only have a stable rolling

gait on a flat, obstacle-free terrain. Consequently, it is

necessary to include a second control method that works

on this smaller time scale and gives an appropriate

response to external perturbations.
4.2.3. Hybrid central pattern generator: inverse kinematics
controls

The final control method we tested is a hybrid technique with

inverse kinematics. First, the position of the central payload

p ¼ ( px, py, pz) is defined as a function of the inner cable

lengths ‘ ¼ (‘1, :::, ‘n). We can write this as a small displacement

dp of the payload

d pi � pi(‘
(0))þ

Xn

j¼1

@ pi(‘
(0))

@‘j
d‘j

þ 1

2

Xn

j¼1

Xn

k¼1

@2 pi(‘
(0))

@‘j@‘k
d‘jd‘k (4:11)
or

d pi � pi(‘
(0))þ

�
J(p(0))d‘

�
i

þ 1

2
d‘TH

�
pi(‘

(0))
�
d‘, (4:12)

for i [ {x, y, z} and where H( pi) ¼ [@2 pi=@‘j@‘k] jk is the

Hessian matrix associated with pi and J ¼ ½@pi=@lj�ij.
Considering equation (4.12), we additionally define

Dp ¼ dp� p(‘(0)) and f(d‘; Dp) as

fi(d‘; Dp) ¼
�

J(p(0))d‘
�

i
þ 1

2d‘
TH
�

pi(‘
(0))
�
d‘� D pi: (4:13)

Computation of the spring–cable rest-length changes d‘

for a desired payload displacement Dp corresponds to

finding the d‘ that cause f ¼ 0. As this last equation is

over-determined, nonlinear and might not possess a real sol-

ution, we employed a quasi-Newtonian iterative method to

approximate the solution. Starting from a candidate solution,

e.g. d‘0 ¼ 0, the next iteration is computed as

d‘kþ1 ¼ d‘k � J�1
k f(d‘k; Dp) (4:14)

until convergence. J21 here denotes the Moore–Penrose

pseudo-inverse of the Jacobian defined by

J ¼ @ fi
@(d‘j)

� �
ij

: (4:15)

Note that this matrix is not the same as the one in the Taylor

expansion of p(‘).

The outputs of the IK algorithm j ¼ d‘1 (where 1 indi-

cates convergence) represent length corrections that have to

be made to reposition the payload at the desired location.

The outputs j can be used together with the adaptive fre-

quency oscillator as presented in §4.2.2. This approach is

inspired by two previous works by Ajallooeian et al. [35]

and Gay et al. [36]. We update j if and only if the payload

position lies on the opposite side of the robot’s centre of

mass, and we continuously adjust j with time according to

the following evolution rule:

d

dt
j(t) ¼ �aj(t), (4:16)



0
–10

0

10

20

30

40

50

60

20

reactive

CPG

CPG + lK

40
x (m)

y
(m

)

60 80

Figure 11. Trajectory of the tensegrity (top view). The dark curve represents
the trajectory while the robot is driven by the reactive control algorithm and
the CPG is in the learning mode (50 s). Motion is regular and the heading is
maintained throughout the entire period. Light solid (yellow) and dashed
(red) trajectories represent the path travelled once the CPG controller takes
over (40 s). When the CPG is coupled to the height signal and receives
inputs from the second-order inverse kinematics algorithm (dashed red
curve), the resulting trajectory is a long and relatively straight line extending
well the reactive control. (Online version in colour.)
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complex terrain yes no no
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with a [ Rþ. In this way, corrections are made only if the

tensegrity can potentially roll in an undesired direction.

Note also that, in order to use this method, both the position

of the payload and the centre of mass are required inputs.

Combining a corrective term with the output of the oscillator,

the resulting dynamical system reads

_u ¼ g(m� (u2 þ g2))(u� j(t))� vg� hh(t) (4:17)

and

_g ¼ g(m� (u2 þ g2))gþ v(u� j(t)): (4:18)

If the value of j(t) is constant over time, the dynamical

system converges asymptotically to u(t) ¼ j [36]. While the

pure CPG implementation does not allow any steering con-

trol, this implementation enables guidance on a desired

trajectory on flat terrain (figure 11).

Table 1 provides a summary of results obtained with

different control strategies over regular, flat terrain.

Note that results do not take the trajectory of the path into

account and, consequently, even if the distance travelled using

the CPG controller without any trajectory control is larger than

with hybrid control, the ‘quality’ of the path is worse (e.g.

figure 11). Interestingly, we observe that the stable gait pattern

obtained in simulation is a sequence of contacts defined as

energetically optimal by Koizumi et al. [20] for a tensegrity ico-

sahedron. With the current implementation, only the reactive

controller manages to induce rolling efficiently over complex

terrain and obstacles. To the best of our knowledge, this last

result is the only implementation of a tensegrity robot
controller demonstrating such capabilities. Figure 12 presents

such results from within the NTRT simulator.

Experimentation demonstrated that the hybrid control-

ler’s performance is highly sensitive to some parameters

appearing in the CPG equations, such as the ones presented

in equations (4.17) and (4.18). As a result, future work will

incorporate other methods to optimize feedback data and

compute corrections to more accurately navigate complex

environments. A good example of such an improvement

can be found in Gay et al. [37], where sensory information

is preprocessed by a neural network and trained using par-

ticle-swarm optimization methods before being fed back to

the CPG. In the same idea, reservoir computing (RC) can

also be a suitable tool for feedback computation, as detailed

in the following section.
4.3. Learning a Matsuoka oscillator with physical
reservoir computing

This section presents the final control results of this work: an

implementation of the physical RC (PRC) principle on the

ReCTeR hardware prototype. These results validate use of

the NTRT in an untethered, underactuated feedback control

of tensegrity icosahedra with string force sensors [38, §5.1.1].

Here, closed-loop feedback control is used when motor signals

are generated by a Matsuoka oscillator. This demonstrates a

successful adaptation of our simulation results to a physical

platform (ReCTeR), with similar learning times and robustness.

A static linear feedback controller is designed, which

robustly generates a set of desired oscillatory motor signals

after a short learning phase. For this experiment, the target

spring–cable rest lengths (‘i) are generated using a random

Matsuoka oscillator [39] (see [38, §3.1], for oscillator par-

ameters and motivation). These signals represent desired

actuator signals. We manually scaled target signals so that

the resulting behaviour corresponds to a motion pattern

with large shape deformations while keeping the physical
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structure from moving too fast (as this impeded motion track-

ing). The resulting gait was a slow crawling motion that

allowed motion-capture tracking of the full experiment.

The algorithm proceeds by first applying target rest

lengths to actuators in an open-loop set-up, inducing the

robot to start moving. Next, online learning is applied to

approximate desired signals based on sensor readings. These

approximations are the feedback signals. The ratio of open-

loop to feedback signals is gradually decreased until signals

are generated by the feedback loop alone. At this point, the

robot will robustly maintain oscillatory patterns. The precise

equations and parameters used in the experiment are provided

in [38] and the electronic supplementary material.

In our prior simulation work, we used the term PRC to

describe how nonlinear computations, which are inherently

performed by a physical system, can be easily exploited to

simplify control of tensegrities [38]. PRC extends the RC con-

cept that, at its origin, is a simple technique to train recurrent

neural networks [40,41]. The common idea is that a system

with complex dynamics is perturbed externally, but is other-

wise left untouched. Instead, a simple readout mechanism is

trained to perform the desired computational task. A number

of related demonstrations have recently appeared in the soft

robotics fields, e.g. RC applied to a soft, simulated octopus

arm [42,43].

Controller feedback signals are obtained from ReCTeR’s 24

force transducers. As these sensors are mounted perpendicu-

larly to the robot’s struts, output values depend on the angle

of attack and tension of the attached spring–cable assembly.

Thus, the sensors provide a readout of the robot’s state, simi-

lar to state observations in RC. The robot’s behaviour was

evaluated using the motion-capture set-up described in §3.1.

Figure 13 shows the result of an experiment where we

first outsourced motor-signal generation to the feedback

loop by online learning of the feedback weights. After
training, we disturbed the system (lifting and constraining

the robot). In this case, the robot stops moving and switches

back to its original oscillatory mode when released, demon-

strating robustness of the learned feedback controller,

corresponding to our simulation results.

This experiment is a first demonstration of a simple,

robust feedback control strategy implemented in both hard-

ware and simulation for this class of untethered tensegrity

robots. Additionally, this result shows the usefulness of ten-

sion sensors for tensegrity control. These PRC experiments

are part of a continuous effort to develop low-level control-

lers for compliant robots that maximally exploit the robots’

proper dynamics and that allow mitigation of stringent

sensor requirements. We discussed many variations and

extensions on the hardware experiment presented here in

our prior simulation work [38].
5. Future work
Current prototype hardware allows for multiple verification

levels of NTRT simulations. However, a more capable robot

design is required to implement fully dynamic controls

from the CPG systems and related work. ReCTeR has a maxi-

mum tension–force limit in its cables, as well as with the

number of cables actuated. We are currently working on a rede-

signed six-strut robot with twice the number of actuators, with

torque and velocity capabilities an order of magnitude higher

than ReCTeR [44]. This robot will be able to implement the

more advanced control schemes described in this paper.

Design of this new robot will also target payload protection,

a crucial feature for space exploration.

On the control side, one of our future goals is further inte-

gration of CPG and RC approaches, to maximally exploit the

advantages of both.



Table 2. Overview of various types of controllers for tensegrity robots and our experiments.

controller type main features type of locomotion

robot HW/SIM loop actuators sensors references

motion capture experiments untethered, underactuated control and simulator

validation

rolling, single flop and forward kinematics

ReCTeR HW and SIM open 6 motion capture §3

reactive controller with coevolution robust feedback controller with minimal assumptions steerable rolling over unknown terrain

icosahedron with/without payload SIM closed 24 touch sensors [45] and §4.1

bioinspired strategies (CPG) robust and bioinspired steerable rolling over unknown terrain

icosahedron with payload SIM closed 36 distance sensors §4.2

physical reservoir computing robust controller with uncalibrated sensors, link with

CPGs

crawling (HW), various (SIM)

ReCTeR (HW), icosahedron (SIM) HW and SIM closed 6 (HW), variable (SIM) tension sensors [38] and §4.3

sine waves with coevolution simple, distributed implementation forward rolling on flat terrain

icosahedron with/without payload SIM open 24/36 — [29]

stepwise functions with coevolution HW constraints and power consumption information forward rolling

icosahedron with/without payload SIM open 24 — §4.1

morphological communication communication through body dynamics, distributed

control

crawling like tension

sensors

[27]

15 bar tensegrity tower SIM closed 30

genetic algorithms first dynamic locomotion crawling

3 and 4 bar prisms SIM open 9/12 — [1]

pneumatic actuators insightful control, original hardware implementation rolling

icosahedron with pneumatic actuators HW open 24 — [19,20]

feedback nonlinear control control theory approach position/trajectory control

any tensegrity SIM closed all full state [15]

vibration driven cheap hardware, exploits body dynamics various

various HW open 1 — [46]

kinematic controllers tested on HW platforms and well studied none

various (constrained) HW and SIM both variable — [47,48]

CPG resonance entrainment demonstration of HW CPG control none

class 2 tensegrity beam HW and SIM both two linear actuators tension and position [23]
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6. Conclusion
Tensegrity is a curious design concept, spanning art, science

and biology. This work presented the tensegrity workflow

developed at the NASA Ames Research Center. Our simulator

set-ups were described and demonstrated, and a new, highly

compliant, untethered tensegrity robot—ReCTeR—was used

to validate simulator set-ups in both dynamic and kinematic

situations. Next, various control strategies were presented,

based on evolutionary algorithms and CPGs, and a feedback

controller was implemented on the hardware platform to

demonstrate sensor capabilities. The biologically inspired con-

trol approaches we are exploring appear naturally suited

for biologically inspired tensegrity structures, due to their

matching nonlinear and oscillatory qualities.

An important aspect of this work is the creation of an Open

Source simulation environment (the NTRT) for tensegrity-

based mobility and manipulation controls research that has
now been validated against hardware. This simulation

environment enables us to develop an understanding of the

structure and qualities of successful control approaches.

Using evolutionary exploration of parameters for different

structural and biologically inspired control approaches, this

system can be used to develop performance-driven hardware

requirements, such as the forces experienced in the rods,

speed and torque requirements for actuators, elasticity con-

stants for springs and sensor requirements and placements.

Developing the right toolset and design workflow enables pro-

gress beyond tensegrity robots that merely move, and into a

realm where tensegrity systems purposefully interact with

the environment and execute tasks.
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Appendix A. Tensegrity control methods
overview
Table 2 provides an overview of various control methods for

tensegrity structures. We list their main features and the type

of locomotion.
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