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The cornerstone of today’s plant virology consists of deciphering the mole-

cular and mechanistic basis of host–pathogen interactions. Among these

interactions, the onset of systemic infection is a fundamental variable in study-

ing both within- and between-host infection dynamics, with implications in

epidemiology. Here, we developed a mechanistic model using probabilistic

and spatio-temporal concepts to explain dynamic signatures of virus systemic

infection. The model dealt with the inherent characteristic of plant viruses to

use two different and sequential stages for their within-host propagation:

cell-to-cell movement from the initial infected cell and systemic spread by

reaching the vascular system. We identified the speed of cell-to-cell movement

and the number of primary infection foci in the inoculated leaf as the key fac-

tors governing this dynamic process. Our results allowed us to quantitatively

understand the timing of the onset of systemic infection, describing this global

process as a consequence of local spread of viral populations. Finally, we

considered the significance of our predictions for the evolution of plant

RNA viruses.
1. Introduction
Virus colonization of a multicellular host is a highly complex process that involves

interactions within the infecting viral population as well as interactions between

the pathogen and the host organism [1]. Unravelling and quantitatively describ-

ing these interactions are essential for understanding the infection process in any

depth and, moreover, for successfully predicting disease dynamics and to a more

efficient design of antiviral interventions. Biochemistry has been harnessed to

elucidate mechanisms underlying infection at the cellular and molecular levels,

rendering spectacular results and powerful applications [2–4]. Similarly, the

application of computational methods to study spread at the population level

has led to striking successes in both understanding of infectious diseases and miti-

gating their impact [5–7]. However, infection dynamics at the within-host level

are, in many ways, poorly understood, in particular with respect to providing

quantitative descriptions of how infection progresses through time and space.

Barriers to scientific progress include the difficulty—using non-destructive

methods and in real time of infection—to target tissues where the virus replicates,

and the complexity of the host immune system.

Plant RNAviruses are highly suitable model systems for studying within-host

infection dynamics, and RNA viruses the main targets of replication—the

mesophyll cells—are located in the largely planar leaves. This allows infection

to be followed using a wide array of non-destructive approaches, including the

expression of marker proteins [8–10]. Moreover, leaves can be easily and cleanly

removed, effectively allowing for the removal of host organs at any point during

infection and for their further study [11]. Second, plant immune responses to
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Figure 1. Scheme of the dynamics of systemic infection. A primary infection focus in the leaf grows, by planar cell-to-cell virus movement, until it reaches the host
vascular system for systemic spread. Rapid or slow events of systemic infection in a population of plants can occur depending on the nature of the interaction between the
virus and the host organism. We show two different time-dependent distributions of systemic infection. Faster or slower viruses refer to cell-to-cell movement rate, and
higher or lower dose to number of virus particles in the inoculum.
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RNA viruses are mainly composed of the hypersensitive

response, leading to the formation of visibly discernible local

lesions [12,13], RNA interference, where the presence of

double-stranded RNA induces the local and systemic destruc-

tion of viral RNA [2,14], hormone-mediated (e.g. salicylic acid)

defence pathways [15] and, as recently shown, pattern-triggered

immunity [16]. This effective set of host immune responses

have contributed to a rich tradition of quantitative research on

infection dynamics using plant viruses [9,13,17–19]. Moreover,

this array of plant immune mechanisms probably contributes

to the relatively low between-host variation typically found

in experimental settings [20]. Finally, although plants are in-

valuable model systems, they are also of great agricultural

importance, as are the many diseases thwarting crop production.

Here, we consider the dynamics of a critical step during

the plant RNA virus infection cycle: the initiation of systemic

infection [11]. Plant viruses expand within the host by (i) cell-

to-cell movement, the local spread of infection by virions

or ribonuclear complexes, and by (ii) systemic movement,

whereby the virus accesses the vascular tissue and is trans-

ported within and between leaves [8]. Plant viruses are

usually phloem transported, meaning that they will spread

towards tissues that import photo-assimilates, typically

including apical tissues. Therefore, upon the establishment

of a primary infection focus—a cell infected following inocu-

lation by a viruliferous vector or mechanical means—a virus

can only colonize a small region of the inoculated leaf by

cell-to-cell movement [20]. The probability of between-host

transmission will be highest if a virus infects the majority

of host tissues, including rapidly growing apical tissues. To

initiate such a systemic infection of the plant, the virus

needs to (i) reach the host vasculature, (ii) be loaded into

the phloem to then be transported out of the inoculated leaf

and (iii) unload elsewhere in the host [1,21].

Here, we attempt (i) to better understand the timing of the

onset of systemic infection, (ii) to identify what are the key fac-

tors governing this dynamic process and finally, (iii) to

consider its significance for the evolution of plant RNAviruses.
We develop a simple theory that is able to explain differences in

dynamic signatures of viral systemic infection, based on the

speed of cell-to-cell movement and number of primary infec-

tion foci in the inoculated leaf (figure 1). Moreover, we

confront these models with experimental data in order to test

their validity. Our work is of relevance as it contributes

to tackle mathematically questions about the relationship

between local and global virus movement, the determinants

of the variance of infected individual plants in a population

and the interaction between virus genetic factors (e.g. speed

of cell-to-cell movement) and environmental conditions

(e.g. dose of the inoculum) to get systemic infection.
2. Results
2.1. Model definition
Primary infection foci tend to be quite circular in form and of

approximately the same size [8,9,20]. To model the process of

radial expansion of primary infection foci, we introduced the

effective diffusion coefficient of the local infection (D).

Although viral cell-to-cell movement is complex and there

may be stochastic effects, for our model we considered

isotropic diffusion. Thus, we could write

D ¼ dA(t)
dt

, (2:1)

where A(t) is the circular area covered by the virus at a given

time t—usually measured in hours post-inoculation (hpi).

Typical values of D are 0.01–0.03 mm2 h21 [22,23]. This

reaction–diffusion system, where viral particles replicate

within cells and then move to neighbour cells to proliferate,

constitutes the local infection dynamics—the first step for

long-distance infection—before the virus reaches the host vas-

culature and is loaded into the phloem. We then assumed that

the area required to reach the vascular system follows a normal

distribution, with meanm and standard deviations. This is jus-

tified by the regular spacing observed between veins and the
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way the particular developmental programmes operate [24],

which could reflect a given evolutionary contingency linking

leaf shape and vascular patterning. Of note, m and s are, at

least in theory, host-dependent parameters that vary with the

density of the vascular system in the leaf, being independent

of the virus.

The time to reach systemic infection needs also to account,

among other factors, for latency periods (T0)—e.g. time for

replication in the first infected cell—and vascular movements

of the virus (T1). Following the seminal work by Samuel [25],

there is slow cell-to-cell movement of the virus in the infec-

tion foci, combined with rapid dissemination throughout

the plant via the vascular system. According to recent exper-

imental data, the time required to complete the infection

cycle of Tobacco mosaic virus in the primary inoculated cell

of Nicotiana tabacum is T0 ¼ 18–20 hpi [26]. This is in tune

with model predictions showing latency periods of about 1

day [17]. In addition, virions move through the veins and

midrib at rates of 20–50 mm h21 [22], which gives 2–5 h to

cover a space of 100 mm (typical rough length to reach the

stem from the primary infection foci). T1 also accounts for

systemic movements through further vascular tissues to

infect the whole plant, a process that may take additional

hours, depending on the host molecular infrastructure [1], and

that we did not model in this work. For simplicity, we joined

together these terms in a single parameter (T ¼ T0 þ T1),

which may depend on the whole plant pathosystem. An

upper bound of T can be obtained as the minimal time measured

when systemic infection appears—e.g. about 40 hpi for Tobacco
etch virus (TEV) infecting N. tabacum [11].

Therefore, by integrating equation (2.1), we had

A(t) ¼ D
ðt�T1

T0

dt ¼ D(t� T), (2:2)

where t 2 T represents the time for which the virus moves

locally in the primary infection foci, being t the absolute

time. Because, on average, systemic infection is produced

when the infected area in the inoculated leaf is m, we obtained

m ¼ D(ktsysl� T), (2:3)

where ktsysl is the average time of systemic infection—the

time at which 50% of the individuals in the population

present systemic infection. Moreover, simply by squaring

and averaging equation (2.2), we obtained

s ¼ DDtsys, (2:4)

whereDtsys is the standard deviation of systemic infection time.

To calculate the probability of systemic infection at a

given time, Psys(t), as A(t) is assumed Normally distribu-

ted, we followed the corresponding cumulative distribution

function (where erf is the error function) to derive

Psys(t) ¼

0, t � T

1

2
1þ erf

A(t)� m

s
ffiffiffi
2
p

� �� �
, t . T

8>><
>>:

: (2:5)

This expression can be rewritten in terms of time, instead of

area, by using equations (2.2)–(2.4). In particular, we derived

the following equality:

A(t)� m

s
¼

t� ktsysl
Dtsys

, (2:6)
which shows the equivalence between standardized areas

and times.

Importantly, this model can explain differences in dynamic

signatures of systemic infection between viruses. Indeed, the

speed of cell-to-cell movement (D) appears as a fundamental

parameter. For instance, if we denote two viruses infecting a

common host organism as A and B, and given that m and s

are parameters that only depend on the host organism, it

turns out

d ¼ DA

DB ¼
kt B

sys
l� T

kt A
sys

l� T
, (2:7)

having defined d as the ratio of speed of cell-to-cell movement

between viruses, and

DA

DB ¼
Dt B

sys

Dt A
sys

: (2:8)

Therefore, we can predict relative changes in the average time

of systemic infection and the associated variance—magnitudes

that quantify the infection at the global level—according to

differences in the speed of cell-to-cell movement, which

describes infection dynamics at the local level.

In addition, it has been argued that the number of pri-

mary infection foci in the inoculated leaf plays an

important role in determining when the plant will become

systemically infected [11]. We therefore generalized this

theoretical framework by also considering the effect of the

number of primary infection foci in the inoculated leaf (N ).

We derived an analytical expression to calculate the effec-

tive probability of systemic infection for N different viral

populations spreading at the same time, Psys(t)N. Lafforgue

et al. [11] showed that systemic infection by multiple viral

populations does not depend on their interactions, thus

it is justified to assume that Psys(t)N ¼ 1 2 (1 2 Psys(t))
N,

and therefore

Psys(t)N ¼
0, t � T

1� 1� 1

2
1þ erf

A(t)� m

s
ffiffiffi
2
p

� �� �� �N

t . T,

8<
:

(2:9)

where for N ¼ 1, equations (2.5) and (2.9) are the same.

According to equation (2.5), Psys(ktsysl) ¼ 0:5, by definition.

However, this does not hold for the effective probability,

Psys(ktsysl)N ¼ 1� 1=2N . Indeed, the effective average time of

systemic infection, ktsyslN , decreases with N, ktsyslN , ktsysl, as

systemic infection is produced once the vascular system is

invaded by the first viral population. By imposing

Psys(ktsyslN)N ¼ 0:5, the effective average time of systemic

infection was

ktsyslN ¼ T þmax
m

D
þ s

D

ffiffiffi
2
p

erf�1(1� 21�1=N), 0
n o

¼ max ktsyslþ Dtsys

ffiffiffi
2
p

erf�1(1� 21�1=N), T
n o

:

(2:10)

The term erf21 (12212(1/N )) is negative, describing the decrease

with N. Moreover, by imposing (d=dt)Psys(ktsyslN)N ¼
1=(DtsysN

ffiffiffiffiffiffi
2p
p

), the effective standard deviation of systemic

infection time was given by

DtsysN ¼
Dtsys

N
exp (erf�1(1� 21�1=N))

2 þN � 1

N
ln(2)

� �
,

(2:11)
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Figure 2. Experimental results of two strains of TuMV with different pipo alleles ( pipo61 and pipo70). (a) Dynamics of expansion of infection foci. Error bars correspond to
standard deviations. We estimated D ¼ 0.0527 mm2 h21 for pipo70 and D ¼ 0.0099 mm2 h21 for pipo61. (b) Dynamics of systemic infection (circles and squares). Error
bars correspond to standard deviations calculated according to a binomial distribution. Solid lines correspond to model predictions (equation (2.5)).
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where this expression is only valid for ktsyslN . T. This value

also decreases with N.
2.2. Experimental validation
To test this theory, we considered an experimental system with

the plant pathogen Turnip mosaic virus (TuMV) and the host

plant Nicotiana benthamiana (see [23]). To perform infections,

we used a TuMV clone tagged with the enhanced green fluor-

escent protein (eGFP) [27] and a large population of four-week-

old N. benthamiana plants. Five micrograms of infectious TuMV

plasmid (GenBank no. AF530055.2) were mixed with 5 ml of

inoculation buffer (carborundum 100 mg ml21, 50 mM potass-

ium phosphate, pH 8) on one leaf per plant and gently rubbed.

Inoculated plants were maintained in a growth chamber (16 h

light at 258C, 8 h dark at 228C). In order to consider two patho-

gens with biologically relevant differences, we used viruses

carrying two alleles of the Pretty Interesting Potyviridae ORF

( pipo) cistron of different lengths [23]. PIPO is expressed as a

C-terminal fusion to the P3 protein, referred to as P3N-PIPO.

One viral strain carries an allele that is 70 amino acids long

( pipo70), whereas the second strain has a 61 amino acids long

allele ( pipo61) [23]. Therefore, as P3N-PIPO is involved in viral
movement [28], we expected differences in the speed of cell-

to-cell and systemic movements. To obtain empirical estimates

of D for each viral strain, we analysed data for the formation

of primary infection foci. Plants were mechanically inoculated

with virions, and the inoculated leaf was examined at 48, 72

and 96 hpi. In figure 2a, we represent A(t) for these two viral

strains. Using equation (2.1), we estimated D pipo70
¼

0.0527 mm2 h21 and D pipo61
¼ 0.0099 mm2 h21. This gave a

ratio d ¼ D pipo70
=D pipo61 ¼ 5:32, and according to our model

we predicted kt pipo70

sys l ,kt pipo61

sys l and Dt pipo70

sys , Dt pipo61

sys .

We calculated Psys(t) as the fraction of systemically infected

plants at a given time, examining plants at 24, 40, 48, 72 and

96 hpi. In this plant pathosystem, the number of primary infec-

tion foci was very limited—perhaps because of a low dose for

inoculation—so, for simplicity, we considered N ¼ 1. In fact,

this is more a reformulation than a simplification (see equations

(2.10) and (2.11)). In figure 2b, we represent Psys(t) for the two

viral strains, showing significantly different dynamic signa-

tures. We considered T � 40 hpi. By nonlinear regression of

equation (2.5) to the data (figure 2b), we inferred firstly

kt pipo70

sys l ¼ 47:32 hpi (with 95% CI [46.96, 47.67]) and

Dt pipo70

sys � 1:58 h (with 95% CI [0.76, 2.40]) (R2 ¼ 0.996), and

secondly kt pipo61

sys l ¼ 80:35 hpi (with 95% CI [73.01, 87.70])



1 10 102 103

1 10 102 103

0

0.2

0.4

0.6

0.8

1.0

1 10 102 103
0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

no. primary infection foci

no. primary infection foci

pr
ob

ab
ili

ty
 o

f 
sy

st
em

ic
in

fe
ct

io
n 

pr
ob

ab
ili

ty
 o

f 
sy

st
em

ic
in

fe
ct

io
n 

pr
ob

ab
ili

ty
 o

f 
sy

st
em

ic
in

fe
ct

io
n 

t = 40 t = 44

t = 46 t = 50

t = 54

Figure 3. Experimental results of systemic infection at different times (hpi) as a function of the number of primary infection foci (N ). Solid lines correspond to
model predictions. Equation (2.9), in combination with equation (2.6), was fitted to ktsysl ¼ 51:95 hpi and Dtsys ¼ 4.45 h (nonlinear regression).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140555

5

and Dt pipo61

sys ¼ 21:14 h (with 95% CI [10.71, 31.57]) (R2 ¼

0.982). The fit of the empirical data to a binary logistic regression

model also shows a significant heterogeneity among the two

dynamic signatures of systemic infection (Pearson goodness-

of-fit test: x2 ¼ 13.606, 7 d.f., p ¼ 0.059), with the average time

of systemic infection being significantly larger for pipo61. This

supports the predicted relationship between systemic infection

times for these two viruses. We obtained a good approximation

of the ratio d ¼ D pipo70
=D pipo61

with equation (2.7), d ¼ 5.51,

although with equation (2.8) this ratio was higher, d ¼ 13.38—

perhaps because of a fitting with few time points. Finally,

using equations (2.3) and (2.4), we calculated m � 0.4 mm2

and s � 0.2 mm2.

To better study the effect of the number of primary infec-

tion foci, we considered further experimental data on

systemic infection (reported in [11]). The experimental system

consisted of TEV, another potyvirus closely related to TuMV,

and N. tabacum as the host plant. To perform infections, a

TEV clone tagged with eGFP [27] and a population of 10

four-week-old N. tabacum plants was used for each dose,

with variation in dose resulting in different numbers of pri-

mary infection foci. Plants were inoculated by abrasion of the

third true leaf with 15 ml of the corresponding TEV dose and

5 ml of inoculation buffer. Inoculated plants were maintained

in a BSL2 greenhouse at 258C and 16 h light. In this case, D
was fixed (one virus), and the distribution of foci ranged

from N ¼ 2–224. Plants were examined at 40, 44, 46, 50 and

54 hpi. By nonlinear regression of equation (2.9) to data

shown in figure 3, we obtained ktsysl ¼ 51:95 hpi (with 95%

CI [50.93, 52.96]) and Dtsys ¼ 4.45 h (with 95% CI [3.95, 4.95])
(R2 ¼ 0.917) (figure 3). Once again, these estimates are in

good agreement with those obtained by fitting a binary logistic

model to the data (Pearson goodness-of-fit test: x2 ¼ 86.084,

44 d.f., p , 0.001). As the model—equation (2.9)—fits the

data well, it is safe to assume that there is no evidence for inter-

actions between primary infection foci in terms of the onset of

systemic infection. Moreover, using equation (2.10), we pre-

dicted for N ¼ 100, as illustrative case, an effective average

time of systemic infection of ktsyslN¼100 ¼ 40:99 hpi, which

agrees with the experimental data as Psys(t ¼ 40)N¼100 � 0.5

in this plant pathosystem.
3. Discussion
The model presented here is useful because it helps to distil the

two key processes governing the timing of the onset of systemic

infection of plant viruses, namely, the cell-to-cell movement

rate in relation to the density of host vasculature (D) and the

number of primary infection foci in the inoculated leaf (N ).

As the movement rate and number of foci increase, the onset

of systemic infection will tend to be quicker and its variability

will be reduced. However, the model also predicts that for

large numbers of primary infection foci, the onset of systemic

infection is limited by the latency period (T ) rather than the

cell-to-cell movement rate (figure 4). These model predictions

have therefore implications for the evolution of plant viruses.

Whereas some plant viruses can be transmitted vertically,

horizontal transmission depends on vectors [29] or contact

between plants [30]. The intensity of between-host transmission
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will probably vary greatly in the field, strongly depending on

the density of both plants and vectors. Plant viruses typically

exclude superinfection by conspecific or closely related viruses

[31,32], a phenomenon that even extends to simultaneous coin-

oculation [9]. Therefore, a virus that causes full-blown systemic

infection is likely to exclude its competitors, making it plausible

that the onset of systemic infection is an important fitness com-

ponent under some conditions. Therefore, when high levels of

transmission result in a large number of primary infection

foci, our model suggests the key characteristic that will be

under selection is latency (i.e. viruses with a faster replication

in the first infected cell will be selected). The rate of cell-to-cell

spread may then still be important for colonization of systemi-

cally infected tissues, but it likely will not affect the onset of

systemic infection (figure 4). On the other hand, single primary

infection focus typically results in low levels of transmission

and systemic infections [9]. In this situation, the onset of
systemic infection may not be an important fitness component

either, because low infections levels will limit co-infection and

therefore minimize the importance of within-host competition.

Consequently, our results suggest that intraspecific competition

will impose selection for rapid cell-to-cell movement only for a

limited range of primary infection foci values (1 , N , 30). More-

over, the need to overcome host immune responses could, by

itself, still drive selection for rapid cell-to-cell movement. Indeed,

in some cases, the host plant can restrict the virus spread in the

inoculated leaf (hypersensitive response), thus rapid cell-to-cell

movement would help to surmount this barrier [33].
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