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We aimed to test the proposal that progressive combinations of multiple pro-

moter elements acting in concert may be responsible for the full range of

phases observed in plant circadian output genes. In order to allow reliable

selection of informative phase groupings of genes for our purpose, intrinsic

cyclic patterns of expression were identified using a novel, non-biased

method for the identification of circadian genes. Our non-biased approach

identified two dominant, inherent orthogonal circadian trends underlying

publicly available microarray data from plants maintained under constant con-

ditions. Furthermore, these trends were highly conserved across several plant

species. Four phase-specific modules of circadian genes were generated by

projection onto these trends and, in order to identify potential combinatorial

promoter elements that might classify genes into these groups, we used a

Random Forest pipeline which merged data from multiple decision trees to

look for the presence of element combinations. We identified a number of regu-

latory motifs which aggregated into coherent clusters capable of predicting the

inclusion of genes within each phase module with very high fidelity and these

motif combinations changed in a consistent, progressive manner from one

phase module group to the next, providing strong support for our hypothesis.
1. Introduction
Circadian clocks are ubiquitous and are found in bacteria, fungi, plants and

animals [1]. They constitute endogenous 24 h systems that allow organisms to

anticipate changes in the daily environment. In plants, the circadian clock can

be directly linked to yield potential through adaptive advantage and hybrid

vigour [2,3]. The clock plays a pervasive role in temporal compartmentalization

of diurnal and photoperiodic responses, including photosynthetic capacity,

floral transition, photomorphogenesis and stress responses and, hence, contributes

to proper growth and development [4].

At the heart of the clock in higher organisms is a central transcriptional

feedback loop. The model of the Arabidopsis thaliana circadian clock consists

of a central loop termed a repressilator, with three groups of clock proteins,

each repressing expression of the previous one in turn to form a complete

loop which oscillates with a 24 h period [5]. However, it is not well

understood how the circadian ‘output genes’ are regulated by this central

clock mechanism in plants.

One way to infer the topology of clock transcriptional regulation is to con-

struct a network that relies upon regulatory elements residing in the promoters.

A small number of individual circadian cis elements have been identified in

plants by looking for enrichment of a particular sequence among the promoters

of genes sharing a common timing or phase [6]. However, recent studies have
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shown that it is unlikely that the rhythmicity of clock-regu-

lated genes is induced via the action of regulatory proteins

on a single cis element sequence [7]. For example, in Arabidop-
sis, circadian regulation of ELF4 is exerted via positive action

of the transcription factors FHY3, FAR1 and HY5, acting

through fbs and ACE cis elements; and negative regulation

by the transcription factors CCA1 and LHY, acting through

the evening element [8].

The identification of circadian genes is, of course, the criti-

cal first step for in-depth understanding of the network

topology of clock regulation. Much microarray data are pub-

licly available from plant circadian time courses and a range

of approaches have been used to identify circadian genes.

Identification of circadian genes varies greatly from one

method to another and no defined subset of plant circadian

genes has been agreed upon [9]. Existing approaches com-

monly involve supervised selection of genes fitting to certain

predefined patterns. However, such approaches are, by defi-

nition, biased. In order to form phase groupings of output

genes which genuinely reflect the action of distinct driving

transcription actors, a non-biased method is required. Despite

the undisputed utility of Fourier theory as a non-biased

method for the identification of rhythmic patterns in time

series, there are limitations to the applicability of this method

for short time series with a low resolution such as those that

have been generated by microarray analyses.

In this study, we proposed that global patterns of circadian

output gene expression may be explained by the concerted

action of multiple promoter elements within each gene, and

that the element combinations driving expression of successive

groups of genes change gradually in a progressive manner. We

have used a machine-learning, decision-tree-based approach,

Random Forest (RF), to go beyond the established single cis
element analysis approaches and search for combinations of

cis elements which, in concert, classify Arabidopsis circadian

genes into phase-specific modules. With a view to identifying

the inherent phase modules of circadian genes, we developed

a linear projection method as a non-biased method of identify-

ing trends underlying short time-course circadian microarray

data. Circadian pathways have been shown to be conserved

across several plant species [10], and so this approach was

also applied across species to examine conservation of the

trends. Comparison of inferred cis element combinations

from each phase module demonstrated that progressive

patterns of element combinations do determine the phase of

Arabidopsis circadian output genes.
2. Material and methods
2.1. Datasets
The following transcriptomic datasets were used in this study:

A. thaliana (Affymetrix Arabidopsis ATH1 Genome Array):

GSE8365, GSE5612; Zea mays (105 K Agilent Microarray):

GSE23918 GSE31763; Oryza sativa (57 K Affymetrix Rice Whole

Genome Array): GSE28124. Orthologous genes were identified

using the integrative orthology method available from PLAZA

and BIOMART, and the upstream promoter sequences were

retrieved from RSAT.

2.2. Pre-processing
Prior to application of dimensionality reduction, data were pre-pro-

cessed. The microarray gene expression data are represented as an
n � m matrix X with n genes (rows) under m conditions (columns).

The pre-processing procedure [11] involved log2 transformation,

centring of the columns by subtracting the average, column normal-

ization, centring the rows by subtracting the average and then row

normalization. From the resultant data, a covariation matrix was

constructed and then independent component analysis (ICA) was

performed. The resulting gene transcriptional responses had a

mean of 0 and unit standard deviation.

2.3. Gene regulation by independent component
analysis

The FastICA package for Matlab (http://research.ics.aalto.fi/ica/

fastica/) was used to carry out ICA on the microarray dataset.

As the FastICA algorithm relies on random initializations for its

maximization and faces the problem of convergence to local

optima, we iterated FastICA 100 times and took the average in

order to alleviate the instability of the slightly different results in

each iteration. ICA measures the interestingness of a linear combi-

nation aTx in terms of the size of its absolute kurtosis. After

pre-processing and normalization, the ICA model for gene

expression data can be expressed as: X ¼ AS. In this ICA model,

the columns of A ¼ [aT
1 , aT

2 , . . . , aT
m] are the n � m latent vectors

of the gene microarray data. Each column of A is associated with

a specific gene expression mode. S contains the m � m gene signa-

tures where the rows of S are statistically independent of each

other. The gene profiles in X are considered to be a linear mixture

of statistically independent components S combined by an

unknown mixing matrix A. Once latent variable matrix A was

obtained, the corresponding elementary modes were identified

to extract information for classification.

2.4. Empirical significance test for independent
component analysis

To test whether d independent components are significant in

representing the whole microarray data, we designed an empirical

significance test. The idea is that, if the data matrix X can be prop-

erly represented by d independent components, then the

reconstruction error r.e. ¼k Xn,m � Ân,dŜd,m k should be small,

where Ân,d and Ŝd,m are estimated by an ICA algorithm, and jj.jj
denote the Euclidean distance between X and the reconstruction

Ân,dŜd,m. As a result, randomized reconstruction errors, which

are obtained by randomizing X, learning A and S, and calculating

the reconstruction error, have a probability to be larger than r.e.

Based on this idea, we report an empirical p-value to test how

much d independent components are significant in the ICA by

the following procedure. For the original data X, we ran ICA,

and obtained r.e. We then randomized X to RX by a rotations-

based procedure SwapDiscretized [12], which guarantees that

the distributions of the discretized values in the rows and columns

do not change. For RX, we ran the ICA procedure to obtain a ran-

domized r.e. (r.r.e.). We then repeated steps 2 and 3 1000 times so

that we had 1000 r.r.e. values. Finally, the empirical p-value was

the frequency with which r.r.e. values are smaller than r.e.

2.5. Projection down to a subspace and goodness
of embedding

Projection scatter plot coordinates qi,k for transcriptional response

ni projected on component vk were calculated as qi,k ¼ ni . vk. The

gene transcriptional responses were projected onto the two ICA-

derived circadian components described in the Results section. A

stringent radial cut-off of 0.8 was used following projection in

order to define circadian genes, this being a commonly used

cut-off for Pearson analyses [13]. The genes were later sorted

with regards to their angular positions.
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2.6. Module detection and preservation
Genes classified as circadian were divided into modules based

on the eigengene axis to which they showed highest dot pro-

duct score. Two types of analysis were performed to assess

the preservation of patterns between datasets. One involved

assessment of similarity of eigengenes across datasets; the

second involved assessment of conservation of circadian ortho-

logues in terms of transcriptomic profiles. For analysis of

similarity of eigengenes across datasets, concurrence was con-

firmed by Pearson correlation analysis. The integrative

correlation coefficient [14] was used as a measure of cross-

study reproducibility for gene expression array data. For this,

we compare two microarray studies, Sa and Sb, with sample

size of na and nb, respectively, and a total of m common

genes. All genes were transformed to the same distribution,

that is, mean zero and variance one. The expression vector

for a gene x in study Sa is notated as xa. A denotes the (m 2

1) � na data matrix for study Sa without gene x. Similarly, B
denotes the (m 2 1) � nb data matrix for study Sb without gene

y. Furthermore, cEm is the m � m matrix with every element

equal to c and Im denotes the m � m identity matrix. If x and y
are two random vectors of length m, then [Im � (1=m)Em]x returns

x� �x, [Im � (1=m)Em]y returns y� �y and cov(x,y) ¼ yt[Im 2 (1/

m)Em]2x. Denote Im ¼ [Im 2 (1/m)Em]2. The integrative correlation

coefficient for gene x in studies Sa and y in Sb can be defined as

xaAtJm�1Bxt
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xaAtJm�1Axt
a)

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xbBtJm�1Bxt

b

q :

2.7. Jaccard index for modules
We used the Jaccard similarity score TP/(TP þ FP þ FN) to asses

module composition [15], where TP is true positive, FP is false

positive and FN is false negative. The similarity of two modules

is measured by the Jaccard index score between the edges of two

co-expression graphs whose nodes are the members of the mod-

ules and whose edges are those pairs with a co-expression

greater than or equal to 0.8. This involves permutation to

derive significance scores.

2.8. Classification based on promoter elements
To assess the ability of combinations of promoter elements to

correctly predict the phase module class of our circadian

genes, an RF approach was used. One-kilobase-pair lengths of

promoter sequences were selected and matrices of individual

promoter elements were constructed following a simple over-

representation analysis based on all combinations of 5–8 mers

of letters (A,T,C,G). The 21 most overrepresented individual

features from this analysis were then selected for combinatorial

analysis by RF (electronic supplementary material, table S1).

Classification was performed using Random Forest Matlab

(http://code.google.com/p/randomforest-matlab). This was

portrayed by a NetLOGO model (http://ccl.northwestern.

edu/netlogo). Trees were grown from different randomly

selected subsets of four features from among the 21 possible

(this being the standard ‘mtry’, equal to the integer value

of the square root of the number of possible features). To

measure performance, two-thirds cross validation was used.

In RF, a tree or classifier is selected if it performs well according

to internally defined criteria in cross validation between the

training and the remaining samples. Training samples were

randomly selected, with the training set consisting of two-

thirds of the samples, including an equal number of genes

from each of the phase classes. The selected scheme was an

RF with 2000 trees. Final classification is made by combin-

ing results from trees via voting. The relative contribution

(importance) of each promoter motif (variable) to the
classification of the genes is given in terms of a variable

importance (VIMP) measure.

The performance of RF in correctly classifying genes

within each phase module was assessed using receiver operating

characteristic (ROC) curves.
3. Results
3.1. Pattern inference through independent

component analysis
In order to test our hypothesis that progressive combinations

of promoter elements acting in concert allow the realization of

the full range of possible phases of circadian output genes,

we carried out a combinatorial analysis of potential pro-

moter elements determining phase of expression. We began

by developing an unbiased method to identify circadian

patterns of gene expression from within relatively short time-

course transcriptomic data. We argued that this marks an

improvement for this particular purpose on the current

favoured method of looking for preconceived patterns of

gene expression as it would allow identification of natural

groupings of output genes which may reflect regulation by

common transcription factor combinations. We employed

ICA to identify dominant descriptive components or trends,

which we have termed ‘eigentrends’, within data. This was

followed by projection of all data onto these dominant eigen-

trends. Our hypothesis was that, in the absence of variation

in external stimuli, variation in gene expression over a multi-

day, free-running time course would be primarily due to

circadian processes within the organism. We proposed that

these circadian patterns should, therefore, constitute the

eigentrends which account for the most variation within the data.

A classical component analysis technique for detecting and

visualizing relevant information from measured data is princi-

pal component analysis (PCA). However, the fact that PCA

necessarily identifies orthogonal components (uncorrelated

with the preceding components) is problematic. In looking

for circadian patterns of expression, we wished to remove

this restriction as only two cycling orthogonal components

with the same period are mathematically possible (essentially,

sine and cosine patterns). Instead, we used ICA, a variation on

PCA which does not impose the limit of orthogonality [11].

We began by analysing a well-characterized microarray

dataset from Arabidopsis [16]. Plants had been entrained in

light/dark cycles prior to release into constant light. The

dataset comprised approximately 22 810 transcripts moni-

tored for 12 time points taken at 4 h intervals. For practical

reasons, we used the degree of kurtosis to sort the eigen-

trends [17]. We reasoned that latent trends with the most

negative kurtosis can give us the most relevant information

on the basis that more data points than expected will be posi-

tively or negatively correlated with these eigentrends. After

ordering the eigentrends by kurtosis, the two most significant

eigentrends were apparently circadian, supporting this pro-

posal, whereas the third possibly represents a damping

rhythm (figure 1a,b; electronic supplementary material,

figure S1): a rhythm gradually lost following transfer to con-

stant conditions. Subsequent eigentrends beyond the third

showed an apparently random pattern.

Following an ordering of eigentrends by kurtosis, we deter-

mined how many were truly significant in terms of representing

http://code.google.com/p/randomforest-matlab
http://code.google.com/p/randomforest-matlab
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo
http://ccl.northwestern.edu/netlogo
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the data. The data were projected onto a subspace defined by

the eigentrends and then compared with the original data by

measuring the distance between the original data and their esti-

mates based on these components. This was done initially for

the first eigentrend then recalculated as each subsequent

eigentrend was added. We observed that the subsequent

addition of eigentrends after the first three did not strongly

decrease reconstruction error, suggesting that we have three

significant eigentrends (figure 2). We also devised an empirical

significance test to determine the number of eigentrends which

are significant in terms of representing the whole micro-

array data. Here, ICA was carried out and reconstruction

errors were calculated for 1000 datasets, where the

expression values within each gene’s expression pattern were
randomized. For each possible number of components, we

calculated the frequency that the randomized reconstruction

errors were smaller than the calculated reconstruction error

for the actual data. This approach also demonstrated that the

first three eigentrends significantly described the data, while

one, two, four or five eigentrends did not (figure 2). Thus,

ICA led to delineation of three apparently biologically relevant

trends. The first two of these are ‘circadiantrends’, with

the third component probably representing a dampening

rhythm. The two ‘circadiantrends’ delineated by ICA corre-

spond to four phases (positive and negative impressions of

the curves) having approximately 4/8 h difference.

On comparing the results with a PCA of the same data,

we observed that the two apparently circadian trends ident-

ified by ICA are also remarkable in almost exactly

concurring with the first two eigentrends identified by PCA

(figure 1c,d ). The concurrence was confirmed by correlation

analysis, giving an R-value of 0.9987 and 0.9972 for the first

and second eigentrends, respectively. This agreement

between results of ICA and PCA indicates that the two circa-

dian eigentrends identified by ICA are orthogonal despite

this not being imposed by the method. We propose that

this mathematical orthogonality could possibly represent an

underlying biological orthogonality in the way that rhythms

are generated at the molecular level.

3.2. Assignment of circadian genes through projection
into two-dimensional subspace

Having identified two dominant circadian eigentrends and,

therefore, four dominant oscillatory patterns, we sought to

identify circadian genes themselves by sorting the data by

similarity in expression to these eigentrends. This operated

on the assumption that circadian genes will show strong

dot product projection similarity to one or both of the two

key circadian eigentrends that we identified and, thus, fall

in a circular region some distance from the origin. This

method was chosen in favour of a simple Pearson correlation.
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In a correlation scatter plot, the significance of genes with a

low level of expression, whose pattern of expression might

be considered as noise, can appear to be magnified. Effec-

tively, the separation between signal and noise genes is

decreased for a correlation compared with a projection scatter

plot. We imposed a cut-off at a distance of 0.8. Using this

approach, we classified 2948 genes as circadian (figure 3a
and electronic supplementary material, table S2). Here, the

radial coordinate constitutes a measure of cyclicity. This is

depicted in figure 3a where the outermost genes are those

we define as circadian genes. Effectively, the angular position

around the plot represents the phase of expression.

As expected this method identified circadian genes defin-

ing the full range of possible phases. We noted a distinct

clustering for genes showing high dot product with the first

component on the x-axis (figure 3a). This would suggest

that the most prevalent phase of peak expression is around

midday. This subset was inspected for known core

circadian genes and for all circadian genes identified as

associated with the circadian clock according to The Arabi-

dopsis Information Resource Gene Ontology (GO) database

(those in the GO group, GO:0007623). All of these core

genes examined were found to be present in the circadian

subset (figure 3a, red dots). Core genes include CIRCADIAN
CLOCK-ASSOCIATED (CCA1), LATE ELONGATED
HYPOCOTYL (LHY), PSEUDORESPONSE REGULATOR
(PRR) 3, 7 and 9, TIMING OF CAB EXPRESSION 1 (TOC1),

LUX ARRHYTHMO (LUX) and EARLY FLOWERING 3
(ELF3). Furthermore, CCA1 and LHY were found to be in

antiphase with TOC1, as indicated by the opposing positions

in the agreement with their known antiphasic pattern of

expression. We also noted that the core clock genes tended

to be found directly close to the axis representing the

second component, whereas the remaining population of

circadian regulated genes were found spread around the cir-

cadian subspace with a clustering around the axis of the first

component, approximately 6 h behind these effectors.

Our identification of 2965 circadian probe-sets or 2948

distinct circadian genes within the Covington dataset is com-

parable to the 2897 circadian probe-sets or 2885 distinct

circadian genes identified by Covington et al. [16] using the

regression-based COSOPT method [18]. However, our

method identified only 1164 genes in common with the

COSOPT method, highlighting the fact that this approach

is quite distinct from the most commonly used biased

approach to circadian microarray analysis. The identification

of circadian genes is dependent on the method used and,

given the range of methods available, no benchmark set of

Arabidopsis circadian genes has been defined for comparison

[9]. We present our method as an addition to the range of

methods currently available. We do not claim that our circa-

dian set provides more valid insights into the range of

circadian processes ongoing in Arabidopsis. As stated, our aim

in deriving this method was to group genes by phase on the

basis of inherent patterns within the data with a view to improv-

ing our understanding of the action of regulatory motifs

responsible for determination of phase. The genuine oscillatory

pattern of our selected genes is demonstrated in figure 3b,c. Two

approaches were used to demonstrate this. Firstly, the changing

oscillatory patterns of the individual genes plotted around the

projection are presented in figure 3b. Secondly, genes were

ordered through angular positions in the ICA result around a

circular heat map (figure 3c). These approaches also portray
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the inherent topology of the data as a continuous distribution.

This further confirms the advantage of this method as a non-

biased approach for the identification of circadian genes.

Here, clustering, an alternative non-biased approach, would

force cluster topology on a continuous distribution, preventing

characterization of individual genes along such a continuous

distribution. Our method, furthermore, adds the ability to

order circadian genes by more than just peak phase, as has

been used in the case of biased pattern-matching approaches.

Genes sharing peaks but potentially having quite different pat-

terns of expression in terms of peak shape could not be ordered

solely on the basis of peak time, whereas our method also

allows such additional information to be considered. Despite

the fact that samples were taken only every 4 h, the shapes of

the peaks clearly show a much greater range of patterns than

the limited sign wave, square wave, triangular wave or regular

spike patterns used in previous pattern-fitting methods and

this additional information is used by our approach in ordering

the genes.

3.3. Robustness of the circadian clock gene expression
modules

We also applied this method to additional datasets. We

chose a second dataset for Arabidopsis and additional

datasets for Z. mays, and O. sativa, all generated using the

same entraining and free-running conditions [19–21]. By

repeating the discussed workflow, we found that the pattern

of eigentrends was highly preserved in another dataset for

Arabidopsis and in other species (figure 4). In all cases,

there were two dominant eigentrends which were cyclic in

nature with a periodicity close to 24 h. These same circa-

diantrends were identified using both ICA and PCA, and

this finding suggests that the two orthogonal eigentrends

found in the circadian data in the first Arabidopsis sample

are conserved throughout a range of plants, encompassing

both the monocots and dicots, further suggestive of an

underlying biological significance that is also conserved.
Strikingly, the position of key circadian orthologues was

also preserved in projection scatter plots (data not shown).

This is consistent with previous analysis which has shown

that circadian orthologues correlate very well between

different plant species and are, thus, expressed at

approximately the same phase [22].

We also confirmed conservation of the wider patterns

themselves across species using a comparative mathematical

framework. Orthologues were found between O. sativa and

Arabidopsis. Altogether, 2209 orthologues were found for

O. sativa. Cross-species microarray comparisons are compli-

cated by noise, assignment of homology, probe quality,

platform variations, laboratory effects, genetic background,

dynamic environments and the status of the plant. However,

we used the correlation coefficient as a measure to infer that

the transcriptional behaviour of circadian genes is highly con-

served across species. This metric assumes that, whereas the

overall raw expression values may vary between studies,

the intergene correlations will be more invariant [14]. We

followed the method suggested by Doherty & Kay [9]. For

all Arabidopsis circadian genes (GSE8365 dataset) with a circa-

dian orthologue in rice, the correlation of each gene with its

orthologue was determined, then a frequency distribution

of these correlations was plotted (figure 5). The distribution

of correlation values for all circadian probes shows that

orthologous genes have a much higher correlation than a

negative control representing correlation between ortholo-

gous genes when data points for each gene were randomly

shuffled (figure 5). In the test data, 365 genes had corCor .

0.1; in the negative control no gene had corCor . 0.08. This

clearly suggests that when we look at the data globally,

taking the entire transcriptome into consideration, a large

proportion of circadian orthologues are expressed in a con-

served way.

The fact that individual gene patterns are conserved in

addition to the conservation of the eigentrends suggests

that the overall architecture of our circadian four ‘modules’

is also preserved. That further opened novel avenues for
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research into the evolution of circadian networks. The signifi-

cance of this modularity was assessed across species datasets

using the Jaccard similarity score [15]. The Jaccard coefficient

measures similarity between sample sets (modules). It

assesses the number of common members of two sets as a

proportion of the total number of members in the two sets.

This was used to score the overlap between two equivalent

module compositions across Arabidopsis and rice. Addition-

ally, randomizations were used to define the significance of

each specific score. This produced a normalized similarity

score for each module, expressed as the number of standard

deviations from the mean of the distribution of Jaccard simi-

larity scores for equivalent randomized module structures

(electronic supplementary material, table S3). For the four

phase module classes, the number of standard deviations

from the mean was between 35 and 61, indicating an extre-

mely significant conservation of the members of these four

phase modules.
3.4. Identification of circadian promoter element
combinations using Random Forest

We then sought to make use of this novel dataset to extend

our characterization of the circadian system by looking for

cis elements which could explain patterns of expression in

the Arabidopsis data. For this, we also applied a novel

approach. Building on recent research suggesting that mul-

tiple elements, in fact, act coordinately to generate a specific

circadian pattern, we used a method which would identify

such coordinately acting groups [8]. For effective utilization

of the large number of cis elements likely to be involved in

such multi-variate responses, the RF methodology was used

to predict important motifs. One-kilobase-pair lengths of pro-

moter sequence were analysed and all possible 5–8-mer

sequences were considered. Of these, the 21 sequences show-

ing the highest enrichment as isolated elements in the

circadian dataset were chosen for the combinatorial analysis

(electronic supplementary material, table S1). RF seeks to

assign new samples to specific groups or classes based on fea-

tures in common with other members of that class—in this

case, cis elements. It uses a decision tree system of classifying,

that is, it asks whether one feature at a time is present or not,

thus producing two branches. These branches then branch

further as additional features are considered. Ultimately,
these decisions about the features of a sample lead to its

assignment to a specific class. In an RF, an ensemble of

decision trees is created. Each individual tree is grown from

a randomly sampled subspace of input features (cis elements

from among the 21 highest enriched individual elements) and

final classification is made by combining results from trees

via voting. It is a machine-learning approach which, there-

fore, makes use of subsets of data to capture these features

of interest. The learning element of this approach comes

from the way in which these decision trees are initially cre-

ated using two-thirds the dataset. The decision tree is then

re-created using the remaining subset of the data to assess

whether the same classifiers can correctly assign the members

of this subset. If not, a new decision tree is created. Figure 6

depicts the top 10 individual cis element motifs identified by

RF, ordered by VIMP (the relative contribution of that vari-

able or motif to the classification of the genes) for each of

the four phase modules. The results here are combinatorial

in that the data represent a group of cis elements which, in

the context of other elements, are predicted to faithfully

determine the phase of the genes within each phase

module. Notably, several of the detected cis sequences

giving the highest VIMP in combinatorial analysis form

part of the elements previously described in the literature;

for example, AATATC, part of the evening element, involved

in regulation of a number of circadian genes in Arabidopsis
[23]; GATAA, part of the I-box, involved in response to

light [24]; and CAAAA, part of the CAB2 DET1-associated

factor 1 binding site (CDA-1) in the dark response element,

involved in response to darkness [25]. Some elements

which might have been expected based on previous phase

grouping analyses were not identified; notably, the G-box

(CACGTG), the telo-box (AAACCCT) or the starch box

(AGCCC) [26]. It should be stressed that these were not

among the 21 highest enriched individual elements used

for our combinatorial analysis. However, this was not unex-

pected as our initial overrepresentation analysis was carried

out using the full set of rhythmic genes rather than the

phase-specific sets used by Michael et al. [26].

The overall performance of RF can more objectively be

assessed using ROC curves. An ROC curve shows the false-

positive rate (the number of false-positive predictions, as a

proportion of the total number of negative predictions)

along the x-axis and the true-positive rate (the number of cor-

rectly predicted positive predictions, as a proportion of the

total number of positive predictions) along the y-axis. A per-

fect ROC curve would be a horizontal line y ¼ 1. A common

metric for assessment of performance is the area under the

curve (AUC) value. Electronic supplementary material,

figure S2, portrays ROC curves for the ability of the identified

cis elements to correctly predict the four phase modules. The

AUC values for the four classes are 0.9420, 0.9429, 0.9567and

0.9449. A very high AUC in all cases indicates that the ident-

ified combinations of promoter elements can be considered

meaningful with a high degree of confidence.
3.5. Progressive combinations of elements predict phase
In order to test our hypothesis that progressive combinations

of individual cis elements acting in concert could be respon-

sible for the range of possible phases of Arabidopsis
circadian output genes, we compared the elements associated

with each phase module. We did this by aligning the
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elements common to more than one phase classifier, along

with the previously highlighted elements of interest, in a

simple presence/absence table. We observed that individual

elements making up the group associated with each phase

changed progressively from one phase module to the next
(table 1). Moving from one phase to the next through the day

sees the gradual addition and/or removal of elements in a

sequence. For example, addition of GATAA to the dawn-

phased element combination, and removal of AAAAG,

AATGT and AATTTA, shifts the timing of genes from the

dawn to noon. In order to confirm the significance of the

element groups described here, we identified the four groups

of our circadian genes containing the element groups described

in table 1 and analysed their mean phase. The mean position

of each group of genes, when projected onto the two key circa-

dian eigentrends defined by ICA, is represented in figure 7. For

each group of genes, the mean phase is very close to the com-

ponent axis representing the expected phase based on their

element combinations.
4. Discussion
We set out to test the hypothesis that the full range of phases

of circadian output genes in Arabidopsis could be realized via

the progressive variation of cis element combinations. Pre-

vious research looking for phase-specific promoter elements

has focused on the identification of overrepresented individ-

ual elements explaining a single phase of expression [23,26],

but the expression patterns of a large proportion of clock

output genes remains unexplained. To test our hypothesis,

we took a combinatorial approach to identify potential pro-

moter elements acting in concert to define the time of

expression of phase groups of circadian genes as a whole.

4.1. Independent component analysis as a method of
identifying circadian genes in short time-course
microarray data

Identification of meaningful phase-specific groups of circadian

genes is an essential prerequisite to analysis of promoter

elements. Previously used algorithms have included robust

periodicity testing, Bayesian mixture models, regression-

based matching to model functions, Fisher’s G testing, the

Lomb–Scargle periodogram, Fourier transformation and the

Laplace periodogram among others employed [9]. Concep-

tually, the methods encompass two primary categories:

pattern matching in the time domain, or signal decomposition

or filtering in the frequency domain. In the case of pattern-

matching approaches, the patterns are predetermined and,

therefore, biased. As such they may not truly reflect the domi-

nant expression patterns among the oscillating genes produced

by the action of the driving transcription factors. Signal

decomposition methods look for frequencies of approximately

24 h in an unbiased manner but their accuracy is strongly

linked to the duration of the time-course data available. For

short time courses of 2 days, which are commonly used for

circadian microarray experiments, these methods have limited

power to identify circadian genes with certainty. These

methods to identify circadian genes also suffer from the draw-

back that they do not naturally sort genes into phase groups;

instead, phase groups for subsequent analysis are usually

imposed artificially. Such approaches to the identification of

circadian genes in microarray data have yielded quite different

sets of genes and, as such, there is no gold standard set of

circadian genes in Arabidopsis [9].

Here, we have identified an additional approach which is

suited to our aim of sorting genes into phase groupings based



Table 1. Comparison of cis elements classifying phase of expression. Cis elements contributing to more than one phase of expression or forming part of
previously recognized light or circadian elements are shown for each of the four phase modules based on projection onto circadian ICA components. Phases are
double plotted to highlight the progressive cyclic pattern of element contribution.

AATATC ATATC GATAA ATTTA(A) ATATG ATGTA ATTTTA AAAAG AATGT AATTTA CAAAA

midnight 3 3 3 3 3 3 3 3

dawn 3 3 3 3 3 3 3

noon 3 3 3 3 3

dusk 3 3 3 3 3

midnight 3 3 3 3 3 3 3 3

dawn 3 3 3 3 3 3 3

noon 3 3 3 3 3

dusk 3 3 3 3 3

midnight

dawn elements
dusk elements
midnight elements
noon elements

noon

dusk

dawn
0.8

1.0

0.6

0.4

0.2

Figure 7. Mean phase of genes possessing progressive cis element combi-
nations identified by RF. The tips of the arrows represent the mean dot
product projection of each of the four groups of genes possessing the distinct
cis element combinations identified in table 1 onto the first (x-axis) and
second ( y-axis) circadian ICA components.
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upon inherent patters in the data. We identified a novel,

unbiased method for the identification of genes showing

circadian expression in short time-course, relatively low-

resolution microarray data using a method of ICA to identify

components in global gene expression. We followed this by

projection of individual gene expression patterns onto these

components. Significantly, ICA identified two orthogonal

components which accounted for the majority of variance

in the gene expression data. Projection of individual gene

expression data onto these components showed that known

circadian clock-regulated genes showed a circular distri-

bution around the edge of the scatter plot, correlating well

with one or both of the components. When we compared

our approach with that of Covington et al. [16], which used

the regression-based COSOPT method [18], we observed

that, although we identified a similar total number of
circadian genes (2948 compared with the 2885 identified by

Covington et al.), our method identified only 1164 genes in

common with the COSOPT method. We do not propose that

those genes identified as circadian by other methods are incor-

rectly labelled. Many genes identified as circadian show

relatively low amplitude, meaning that their identification is

particularly sensitive to the method used. It is, however,

encouraging that our method identifies all 109 distinct circa-

dian genes identified in the same dataset when we applied

the very stringent Lomb–Scargle periodogram approach [9]

(electronic supplementary material, table S2). Our method

naturally sorts circadian genes into phase groups according

to closeness to one of the inherent orthogonal components

that we identified. It is, thus, mathematically distinct from

other methods and would, therefore, be expected to select dif-

ferently, particularly among low-amplitude cycling genes. Our

aim was to produce a method that was unbiased and, therefore,

reflected patterns inherent in the data for the purpose of sorting

genes.

It is tempting to speculate that the two orthogonal com-

ponents identified may be indicative of underlying biological

orthogonality inherent in the way that plant rhythms are gen-

erated. One can conjecture that each eigentrend represents a

regulatory phase pattern that is biologically interpretable. It

is important to stress that biological orthogonality does not

imply distinct oscillators. Components of distinct oscillators

could operate with non-orthogonal phases. Instead, we pro-

pose that the driving factors behind the module groups are

orthogonal in terms of phase.

The extent of conservation of our four modules across

species is striking in terms both of the patterns and of the con-

stituents of the modules. This adds further significance to the

observation. Orthologues of the vast majority of clock genes in

Arabidopsis have been isolated in a wide range of species, includ-

ing rice and maize, suggesting a common mechanism driving

rhythmicity. Capturing the module–module interactions also,

therefore, takes on a higher priority as it will probably allow

any findings to be applied across the plant kingdom.
4.2. Promoter element combinations determining phase
Grouping of genes into four phase modules according to

positive or negative correlation with the two components

was then used for a novel combinatorial search for promoter

elements responsible for the phase of expression of circadian
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genes in Arabidopsis. We used the ensemble machine-

learning approach RF. This decision tree method has the

advantage of being able to consider the combinatorial con-

tribution of multiple promoter cis elements to the overall

expression pattern of a gene. This is an important consider-

ation in the search for circadian cis elements in the light of

recent findings published elsewhere as to the nature of tran-

scriptional control of the pattern of circadian gene expression

in Arabidopsis [8]. The elements identified as most important

in combination with others included a number of entirely

novel elements but also some that are part of elements

previously identified as conferring phase information in

isolation, such as the evening element.

We showed that, for each module, combinations of these

promoter features could be identified as being able to provide

sufficient information to allow genes to be assigned to the

correct module with high precision. Projection of the four

groups of genes containing these element combinations

onto the two circadian eigentrends identified by ICA demon-

strated that these four groups did, indeed, show the mean

phase predicted by these element combinations. In further

support of the merit of our results, the previously highlighted

elements of interest occur in phase module groups consistent

with the known function of the elements of which they form

a part. AATATC, part of the evening element, occurred in the

‘dusk’ (class 2) phase group; GATAA, part of the I-box,

occurred in the ‘noon’ (class 3) and ‘dusk’ (class 2) phase

groups; and CAAAA, part of the CDA-1, occurred in the

‘midnight’ (class 4) phase group. Sequences of 5–8 base

pairs were chosen for the analysis as this range provided

the best results. Although some previously identified circa-

dian elements such as the evening element [23] are longer

in full, we found that increasing the length of the target

sequence did not further increase the precision.

4.3. Progressive interactions between promoter
elements associate with sequential phases

A number of elements were common to more than one phase

module group and we observed that these element groupings
changed in a progressive pattern from one phase group to the

next. Removal of certain elements or addition of others

was found to change the predicted phase of a gene in a con-

sistent manner. This finding suggests that the phase of a

gene is determined by the additive effect of multiple tran-

scription factors peaking at specific points throughout the

circadian day. Our hypothesis ordains that a gene upregu-

lated by a dawn-phased transcription factor would begin

to be transcribed just as that transcription factor accumu-

lates. Although the influence of that transcription factor will

begin to wane after dawn, if the target gene is also upregu-

lated by a noon-phased transcription factor it would see a

simultaneous increase in the influence of this noon-phased

transcription factor which would begin to accumulate just

following dawn. Assuming both transcription factors show

a sigmoidal pattern of fluctuation, their net maximum posi-

tive effect will occur at the midpoint between the peaks of

the two. Thus the target gene will possess a phase intermedi-

ate between the two. Such a system would allow a relatively

small number of drivers to achieve a large distribution of

phases. Equally, a precisely graduated range of phases

among target genes could be determined by the accumulated

weight of transcription factor influences. If a gene were upre-

gulated by two dawn-phased transcription factors and one

noon-phased transcription factor its net phase would be

expected to be nearer to dawn than to noon. Our analysis is

based upon division of the circadian gene set into four

phase groupings. It is likely that the true situation, a conti-

nuum of phases, is achieved by a gradual sliding scale of

presence of these progressive combinations of transcription

factor binding sites.
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