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Walking in circles: a modelling approach

Horst-Moritz Maus† and Andre Seyfarth

Lauflabor Locomotion Laboratory, Institute for Sport Science, Technical University Darmstadt, Magdalenenstr. 27,
64289 Darmstadt, Germany

Blindfolded or disoriented people have the tendency to walk in circles rather than

on a straight line even if they wanted to. Here, we use a minimalistic walking

model to examine this phenomenon. The bipedal spring-loaded inverted pendu-

lum exhibits asymptotically stable gaits with centre of mass (CoM) dynamics and

ground reaction forces similar to human walking in the sagittal plane. We extend

this model into three dimensions, and show that stable walking patterns persist if

the leg is aligned with respect to the body (here: CoM velocity) instead of a world

reference frame. Further, we demonstrate that asymmetric leg configurations,

which are common in humans, will typically lead to walking in circles. The diam-

eter of these circles depends strongly on parameter configuration, but is in line

with empirical data from human walkers. Simulation results suggest that walk-

ing radius and especially direction of rotation are highly dependent on leg

configuration and walking velocity, which explains inconsistent veering behav-

iour in repeated trials in human data. Finally, we discuss the relation between

findings in the model and implications for human walking.

1. Introduction
In human walking, the body is alternately supported by the left and right leg, with a

double support phase during the load transfer from one leg to the other. The bipedal

spring-loaded inverted pendulum (BSLIP) model [1] is a mimimalisic gait template

[2] which mimics key features of human walking: besides the alternating body sup-

port, each leg shows an M-shaped ground reaction force similar to what is observed

in humans. Owing to its simplicity, it fails to reproduce other characteristics of

human walking, such as typical contact times or force amplitudes, especially for

very slow and fast walking [3]. However, we decided to use this model for our pre-

sent modelling study, as it provides a good compromise between similarity to

human data and simplicity. An important idea that comes with simplicity is the

hope that results derived from a simple template still persist in more elaborate

models, and thus might provide insights into fundamental biomechanical relations.

The BSLIP model originally focuses only on the sagittal plane, whereas human

walking happens in three dimensions. This is especially apparent when we change

walking direction. But we do not only turn voluntarily. When we are blindfolded or

have no orientation cues, we walk rather in circles than in straight lines even if we

wanted to [4–6]. Interestingly, whether or not the turning direction is a function of

differences in leg lengths has been debated for decades [4,5,7–9].

In this study, we extend BSLIP to three dimensions. We are interested if stab-

ility persists, and how differences in the legs lead to walking in circles. We transfer

the three reference patterns (A,B,C) from the original manuscript [1] into a three-

dimensional gait by adding an azimuthal angle to the leg. These three points

correspond to three different kinds of periodic solutions of BSLIP. Solutions of

type A show a symmetric M-shaped force profile, whereas solutions of type B

have an asymmetric M, with the first force hump having larger amplitude. Type

C solutions show a comparatively shallow force profile, typically accompanied

with low force magnitude, long double support phases and high cadence.
2. Methods
2.1. Model description
The model (figure 1) consists of a point mass on top of two massless springs. The

motion alternates between single and double support phases. Double support
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Figure 1. Schematic drawing of the three-dimensional BSLIP model (here:
BO-model) which consists of a point mass on top of two massless springs.
During swing, the leg is oriented with respect to the current sagittal plane
spanned by the velocity and gravity vectors. a and b denote the polar
angle and azimuthal angle, respectively. z denotes the azimuthal angle
between sagittal plane and stance leg. l0 and l denote the legs’ rest
length and current length, respectively.
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starts when during single support the swing leg touches ground.

Single support occurs when during double support the trailing

leg’s force becomes zero. Then, the trailing leg becomes the

swing leg. Note that in contrast to similar BSLIP definitions

[1,10,11], flight phases cannot occur in this model definition.

We say that a stride begins with the onset of single support of

leg 1, that is, the take-off event of leg 2.

Each leg exerts force Fi(i [ {1, 2}) only along its direction from

tip to the centre of mass (CoM). The magnitude is ki(l0i � li(t)), with

ki, l0i and li(t) denoting the ith leg’s stiffness, rest length and

momentary length, respectively. Here, the rest length l0 is 1 m.

We restrict the leg force to positive values (pushing), that is, if

the magnitude of the leading leg’s force becomes less than 0

during stance, it is set to 0. A negative force of the trailing leg trig-

gers its transition to swing. This prevents flight phases with two

legs in swing phase, and enforces an alternating touchdown

sequence of the legs. During swing, the leg does not exert force.

The equations of motion for the CoM are

m€x ¼ Fx,1 þ Fx,2

m€y ¼ Fy,1 þ Fy,2 �mg
m€z ¼ Fz,1 þ Fz,2

(2:1)

with g denoting gravity (9.81 ms21) and m denoting body mass.

The values for k, l0 are selected according to Geyer et al. [1].

In this study, we apply two different leg placement policies.

Primarily, and if not stated otherwise, we use a body-oriented

(BO) leg orientation scheme: during swing, the leg is aligned

with respect to the current sagittal plane which is spanned by

the current CoM velocity vector and gravity. The leg’s orientation

with respect to the current sagittal plane is given by the polar

angle a and the azimuthal angle b (figure 1). The values for a

and b are kept constant for every stride, but can differ between

legs. By construction, this model is invariant to rotations in

the horizontal plane, because it does not refer to any external

direction except gravity. We refer to this model as the BO-model.

For comparison, we use a world-oriented (WO) leg placement

policy. Here, the only difference is that the sagittal plane which is

used for leg alignment is spanned by time-invariant coordinate

axes of a world frame, and thus is itself time-invariant. This

model is not invariant to rotations of the horizontal plane, as a

rotation of the horizontal plane would affect the sagittal plane

and thus the swing leg orientation. We refer to this model as the

WO-model.
We compare the stability of periodic straight walking sol-

utions which share the same motion and differ only in the leg

placement policy.

2.2. Relative periodic coordinates
Right steps typically accelerate the CoM to the left, whereas left

steps do the opposite. To return to an initial lateral position

and velocity, we thus need to perform two steps. Here, a stride

consists of a right step followed by a left step. More precisely,

in our model, we are seeking two-step relative periodic solutions,

that is, solutions that have the same state after two steps up to a

symmetry operation (here: translation and rotation in the hori-

zontal plane). In our case, a solution is relative periodic if

the reduced state xc, defined as xc ¼ [y, _y, jvj, l1, z]T , is periodic.

l1 denotes the stance leg’s current length, jvj denotes the magni-

tude of the velocity and z denotes the azimuthal angle between

instantaneous sagittal plane and the stance leg (figure 1).

Given xc, the state in Euclidean coordinates is determinable up

to the model’s orientation and position in the horizontal plane. This

implies that rotations of the model in the horizontal plane do not

alter the relative periodic coordinates. The one missing dimension

of the five-dimensional relative periodic coordinates, compared

with the six-dimensional coordinates of the full state, corresponds

exactly to the invariance of the model with respect to rotations in

the horizontal plane. As a consequence of this state definition,

strides whose final state (measured with respect to the foot contact

point) are identical to the initial state up to a rotation in the horizon-

tal plane have the same periodic coordinates at the beginning

and the end. This allows us to search for relative periodic solutions

as fixpoints of return maps in relative periodic coordinates.

2.3. Finding relative periodic solutions
We select the model parameters to be m ¼ 80 kg, E ¼ 816 J and

l01,2 ¼ 1 m, following the original paper of Geyer et al. [1]. We

then transfer the three highlighted periodic gaits from Geyer

et al. to the three-dimensional walking model: configuration A:

k1,2 ¼ 14 kN m21, a1,2 ¼ 698, B: k1,2 ¼ 14 kN m21, a1,2 ¼ 72.58
and C: k1,2 ¼ 20 kN m21, a1,2 ¼ 76.58. Note that we slightly altered

the polar angles a for B and C to obtain more robust solutions.

To find a relative periodic solution for given parameters in the

BO-model, we seek an initial state xc which results in the identical

state after two steps of the model. We formulate a difference function

D by D(xc)¼ xc 2 S(xc), with S(xc) denoting the model’s state after

two steps starting from xc. Zeros of this difference function D now

correspond to relative periodic solutions. We use the Newton–

Raphson algorithm to find zeros of D. Because we look for periodic

solutions of a given energy, we allow variations in initial conditions

that leave only the system energy unchanged. We do so by removing

jvj from xc for the Newton–Raphson algorithm, and computing jvj
prior to every simulation run from the remaining states of xc, the

model parameters and the required energy.

For periodic solutions of each symmetric configurations in

the BO-model, we compute a corresponding solution in the

WO-model. This is achieved by rotating the BO-model’s initial

conditions in the horizontal plane such that after one stride,

the lateral (z) coordinate of the BO-model’s CoM remains

unchanged. We use the same initial conditions, but we have to

adapt the angle b, because, at touchdown, the sagittal plane

now points into another direction. For the WO-model, the corre-

sponding azimuthal angle b for the swing leg orientation is

computed as the sum of the BO-model’s azimuthal angle and

the angle between CoM velocity and xy-plane at touchdown of

the BO-model’s stride. This policy yields the same ground con-

tact points (foot locations) in both models. We successfully

verified the periodicity of these solutions in the WO-model

and the equivalence of the trajectories to the corresponding

trajectories of the corresponding motion of the BO-model.
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Figure 2. Sketch of a top view on the horizontal plane. The walking radius is
the radius of the circle which connects all CoM positions at the beginning of a
stride. Here, after the stride, the walking direction has turned by g. Dashed
and solid parts of the CoM path correspond to single and double support
phases, respectively.
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2.4. Stability analysis
In this study, we refer to stability as asymptotic stability. We

apply a Poincaré map [12] analysis to compute stability. The

Poincaré map was computed using small disturbances of the

initial conditions, to obtain the derivative of the final state with

respect to the initial conditions (the Jacobian). If all eigenvalues

of the Jacobian have magnitude less than one, then the model

is locally asymptotically stable.

The BO-model’s and WO-model’s full states each have six

dimensions, thus their Jacobians of the full state have six eigen-

values. The location of the model’s CoM is measured with

respect to the current (single) stance leg’s contact point. We

expect the following properties of the Jacobian: (i) there is one

direction that corresponds to a perturbation along the trajectory.

Such perturbations do not affect the final state at all, which corre-

sponds to an eigenvalue of zero. (ii) As the model cannot change its

energy, we expect that energy changes owing to perturbations stay

exactly the same after one stride. This corresponds to an eigenvalue

of 1. (iii) The BO-model is invariant with respect to rotations in

the horizontal plane; after a stride, the rotation will be exactly pre-

served. This ‘neutrality to walking direction’ corresponds to

another eigenvalue of 1.

We use the six-dimensional return map only to compare the

BO-model with the WO-model. Further, we deviate from text-

book stringency and say a solution is asymptotically stable if

all but two eigenvalues have magnitude less than one, and two

eigenvalues equal 1.

In the BO-model, we can alternatively use the five-dimensional

relative periodic coordinates xc to compute the return map, which

take neutrality to rotations in the horizontal plane into account.

Further, we take into account that the model preserves the total

energy, by allowing only initial conditions for return map compu-

tation that correspond to the same energy. This is accomplished

by computing the coordinate jvj of the relative periodic coordinates

from the other coordinates, system parameters and desired system

energy. We now vary only the four remaining dimensions of the rela-

tive periodic coordinates xc to compute the return map, which yields

afour-dimensional map that does not account for variations of system

energy or rotations in the horizontal plane. In other words, the two

neutral directions that we expect in the full state return map—one

related to changes of energy, the other related to orientation in

the horizontal plane—are removed from this map. Note that the

BO-model itself is still neutral to energy perturbations and rotations

in the horizontal plane. Using this reduced return map, we call a per-

iodic solution asymptotically stable if and only if all eigenvalues of

this four-dimensional map have magnitude strictly less than one.

Eigenvalues tell us how quickly small perturbations decay.

They contain no information about the magnitude of pertur-

bations that can be mitigated, that is, the size of the basin of

attraction. In the two-dimensional model, Rummel et al. [11]

showed that the stability, indicated by the magnitude of the lar-

gest eigenvalue of the return map, is not correlated to the

robustness as indicated by the size of the basin of attraction.

Computing the robustness is beyond the scope of this study.
2.5. Influence of leg parameters
The BO-model’s walking motion, projected to the horizontal

plane, does not exactly follow a circle (figures 2 and 4). Still,

we can define and compute a radius of the circular walking

motion. For this, we take the angle g by which the CoM trajectory

has turned after one stride, and the distance covered d (figure 2).

The walking radius r then is obtained by elementary geometry:

r ¼ d

2

1

sin (g=2)
:

Note that this radius depends on the choice of the Poincaré sec-

tion which separates strides. If the Poincaré section corresponds
to more outer or more inner points, the radius will increase or

decrease accordingly.

To study the BO-model’s parameter dependence, we intro-

duce the difference parameters Dk, Da, Db and Dl0, which

denote the differences between both legs in the corresponding

leg parameters. The actual model parameters are then computed

by k1,2 ¼ k0+1/2Dk, etc. Here, k1,2 denotes the stiffness for leg 1

or 2, respectively, and k0 denotes the reference parameter

from solution A, B or C. The new parameter b0 is antisymmetric,

that is, b2,0 ¼2b1,0. We further varied the total system energy E
for selected solutions, to investigate the effect of energy changes

on the periodic motions.

We compute the influence of leg parameters on the walking

radius twofold: first, we compute the corresponding relative

periodic solutions for A, B and C with symmetric leg parameters

(Dk ¼ Da ¼ Db ¼ Dl0 ¼ 0) as described above. For symmetry

reasons, the corresponding motions show a straight walking

motion. Starting from these symmetric solutions, we compute the

derivative of the walking curvature (which is the reciprocal of the

walking radius) with respect to difference parameters. We choose

the walking curvature, because the walking radius is infinite at

the reference solution. For every variation in the difference par-

ameters, we compute the corresponding relative periodic solution

of the BO-model and calculate its walking curvature.

Additionally, we provide a map of the walking radius and the

largest eigenvalue for a subset of different leg parameters in

the BO-model, namely with varying Dk and Da. Starting with

the straight walking patterns A, B and C, we set b1,2 ¼+0.05

rad or b1,2 ¼+0.1 rad, vary Da in steps of 0.18, and vary Dk in

steps of 50 Nm21. We then search a stable periodic solution, start-

ing from the nearest periodic solution found until then. When no

stable relative periodic solution is found, we increase Da and

repeat the variation of Dk. This mapping yields a qualitative and

quantitative dependency of the walking radius from variations

in leg parameters. However, this mapping technique does not

probably discover every stable periodic solution that exists.
3. Results
We found stable relative periodic solutions in the BO-model

when configurations A, B and C were modified with a leg



Table 1. The Jacobian of the walking curvature in the BO-model with respect to difference parameters for the motions A, B and C. The numbers in parentheses
denote the parameter b0 in radiant. For convenience, the curvature is given in km21. As an example, a curvature of 4 km21 corresponds to a walking radius
of 250 m. Italicized entries are further used in figure 3.

A (0.05) A (0.10) B (0.05) B (0.10) C (0.05) C (0.10)

Dk [(1 km21) kN21] 7.554 14.955 5.536 11.182 2.475 4.869

Da [(1 km21) deg21] 27.953 215.095 27.837 215.311 25.615 210.908

Db [(1 km21) deg21] 43.028 41.122 31.292 30.184 23.343 22.496

Dl0 [(1 km21) mm21] 1.973 3.929 1.671 3.347 2.265 4.522
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orientation pointing into the lateral direction, as described

above (b1,2 [+0.05, +0.10 rad). This yielded walking pat-

terns with step widths between 2.3 and 8.5 cm, which is

less than the preferred step widths of human walking

(�13 cm [13]). For every configuration, we modified Dk, Da,

DL0 and Db until no solution could be found or instability

was detected. For each modulated parameter, we found

stable solutions for a certain range of parameter variation,

indicating structural stability of the model.

To compare the leg placement policies of the BO-model and

the WO-model, we transferred those stable straight walking

solutions of the BO-model to the WO-model (see Methods

section). We verified that the trajectories remained unchanged

when we transferred them from the BO-model to the

WO-model. Subsequently, we computed the six-dimensional

full state return map for these periodic solutions in the

WO-model, and found that none of these solutions remained

stable (at least one eigenvalue was strictly larger than 1) when

leg placement policy was exchanged. In fact, we did not observe

any stable-walking configuration in the WO-model.

The dependence of walking curvature from difference

parameters is given in table 1 for selected configurations in

the BO-model. Asymmetry in any single leg parameter

leads to walking in circles. This implies that asymmetry in

one leg parameter can be compensated for by asymmetry in

other parameters (figure 3).

The dependence of the walking radius and stability on the

difference parameters Da and Dk is displayed in figure 3.

The locally predicted relation between Da and Dk for straight

walking patterns from table 1 is in good agreement with simu-

lation results for larger parameter changes throughout all stable

solutions we found. We further see that stability is not necess-

arily reduced by asymmetric parameters but can strongly

increase. A similar observation in the two-dimensional model

was reported by Merker et al. [10].

For the highlighted configurations in figure 3, we com-

puted the dependence of the walking curvature from energy

in the BO-model. We found that for A2, A3, B1 and C1, an

energy increase was accompanied by an increase in walking

radius, indicating a more straight walking motion. Configur-

ation A1, which showed straight walking for E ¼ 816 J, did

not remain straight but started veering to the right for higher

energies, and veering to the left for lower energies.
4. Discussion
Our results show that BSLIP preserves stability properties

when it is extended to three dimensions, and a BO leg place-

ment policy is applied (BO-model). Further, we find that

asymmetries in the limbs typically lead to walking in circles,
as one would expect. Certain combinations of leg parameters

can result in straight walking, despite asymmetric leg confi-

gurations and resulting asymmetric gait pattern. For most

configurations, the BO-model predicts a walking radius

between about 10 and a few 100 m (figure 3). A comparison

with empirical data [6,8] shows that both range and magnitude

of predicted walking radius are comparable to data from

human walkers, which tend to walk slightly more straight.

We find that asymmetric gait patterns of the BO-model are

not inferior to symmetric ones in terms of stability. This is in line

with findings from Merker et al. [10], who showed for the

sagittal plane model that ‘considerable differences between

contralateral legs can be tolerated and may even provide

advantages to the robustness of the system dynamics’.

In our model, we primarily choose to align the leg with

respect to an instantaneous sagittal plane (BO-model), spanned

by gravity and the CoM velocity vector, instead of a world

frame oriented sagittal plane (WO-model). In the WO-model,

we could not expect that our model is neutral to its orientation

in the world frame, which however is a prerequisite for walking

in circles. Indeed, our simulations confirmed that the examined

straight walking solutions are stable only if the leg is aligned

with respect to velocity (i.e. in the BO-model) instead of a

world frame (i.e. in the WO-model). From very similar running

templates [14], we know that a fixed leg alignment with respect

to a world frame does not result in stable running in three

dimensions, but that leg orientation with respect to the current

velocity does [15]. In a previous modelling study examining

postural stability of the trunk in walking [16], we could also

show that positioning the leg with respect to the trunk instead

of the vertical axis might not only preserve but increase the stab-

ility of the model. These findings give us a consistent picture

stating that for stable locomotion, the body reference frame

could be a superior choice for leg positioning compared with

a world-based frame. This finding has potential applications

in control schemes for bipedal walking robots.

When humans have access only to body-related feed-

back, that is, in the absence of vision and possibly acoustic

guidance, they cannot maintain a straight walking path but

tend to walk in circles [4]. Boyadjian et al. [7] provide convin-

cing evidence that this can be attributed to asymmetries in

limb functionality instead of systematic bias in perceived

body orientation. However, there are some studies that

disagree [5,6,8]. In human walking, asymmetry is the norm

rather than the exception [9], and our model shows that

persistent functional asymmetry (i.e. in the BO-model, asym-

metry in parameters) goes along with veering. Despite the

simplicity of our model, all parameters have a physiological

interpretation. While this is apparent for leg orientation

angles a and b as well as for leg rest length l0, also leg

stiffness k can be interpreted as strength of the leg.
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There are further factors that influence veering, which

cannot be captured directly by the model. For example,

Kallie et al. [17] report that asymmetries in the motor noise

[18–21] can also lead to walking in circles. In addition, distrac-

tion [22], sex [23], drugs [24,25] and deviations in stepping

frequency [26] have been reported to have significant influence

on veering. Our model cannot account for these factors, as well

as for some physiological asymmetries such as different leg

masses or different feet lengths. Still, some of those factors

might be represented indirectly in the model, for example a

longer foot could correspond to an increased angle of attack

a, or the effect of a drug (e.g. pain medication for chronic

pain patients) could reduce differences in exposed functional

leg strength, represented by Dk, during walking.

Human walking is not exactly periodic but there is stride to

stride variability, with long-range correlations over multiple
strides [27]. This can be modelled as a time-varying bias in leg

parameters, resulting in a potential change of veering direction

over time as found in experimental data [6,28]. Further, slight vel-

ocity changes in repeated trials might result in changes of the

veering direction, as shown in our BO-model. This is especially

evident for solutions with little or no veering (e.g. A1 in figures

3 and 4). Only for persons with persistent gait asymmetries

such as some stroke survivors [29], we would expect an unique

veering direction, as reported by Turton et al. [30].

What can we learn from this modelling study for human

walking? Our model allows us to investigate the effects of

various influences to the walking pattern in terms of stability

and veering. We can derive predictions, such as (i) smaller

step width results in less veering, (ii) the veering direction

can change with changes in velocity, especially if little veering

was observed before. Besides analysing and understanding
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Figure 4. Visualization of the selected walking patterns from figure 3. (A1) Straight walking is possible with asymmetric legs. Here, the higher stiffness of leg 2 is
accompanied by larger peak forces. The originally symmetric M-shaped force profile becomes asymmetric, especially for leg 1. (A2, A3): the curvature of the CoM
path is clearly visible, but does not exactly follow a circle. (B1) Solutions of type ‘B’ feature asymmetric force profiles, even for symmetric parameter configurations.
(C1) A typical solution of type ‘C’ with low forces, shallow oscillations and pronounced double support phases.
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normal human walking, gait models such as the proposed

three-dimensional BSLIP might be used to derive rehabilita-

tion strategies when symmetric gait cannot be achieved by
providing suitable asymmetric reference patterns. We believe

that template models such as the proposed three-dimensional

BSLIP provide a valuable starting point for such models.
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