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Collembola, also known as springtails, are soil-dwelling arthropods that

typically respire through the cuticle. To avoid suffocating in wet conditions,

Collembola have evolved a complex, hierarchically nanostructured, cuticle

surface that repels water with remarkable efficiency. In order to gain a

more profound understanding of the cuticle characteristics, the chemical

composition and architecture of the cuticle of Tetrodontophora bielanensis
was studied. A stepwise removal of the different cuticle layers enabled

controlled access to each layer that could be analysed separately by chemi-

cal spectrometry methods and electron microscopy. We found a cuticle

composition that consisted of three characteristic layers, namely, a chitin-

rich lamellar base structure overlaid by protein-rich nanostructures, and a

lipid-rich envelope. The specific functions, composition and biological

characteristics of each cuticle layer are discussed with respect to adaptations

of Collembola to their soil habitat. It was found that the non-wetting charac-

teristics base on a rather typical arthropod cuticle surface chemistry which

confirms the decisive role of the cuticle topography.
1. Introduction
Liquid-repellent, non-fouling and self-cleaning characteristics of natural sur-

faces receive particular attention in biomimicry research. Unravelling the

chemical and morphological origin of the surface properties is crucial to

reproduce and translate these characteristics into engineered surfaces [1,2].

The non-wetting and self-cleaning properties of plant surfaces were intensively

studied [3–5] over the last 20 years. Plant surfaces are typically decorated by

wax crystals, which are rather fragile but regenerate after mechanical destruc-

tion [6,7]. Mimicking the needle-like or platelet-shaped crystal structures into

artificial surface coatings was widely studied [8–10]; however, the inherent fra-

gility of such micro- and nanostructures limits their durability [11]. Recent

studies on the functional morphology of the cuticles of Collembola (springtails)

revealed surfaces with higher stability against wear and friction, and outstand-

ing resistance against wetting, even with low-surface-tension liquids [12,13].

While structural features of Collembola cuticles were investigated in detail

[14], the impact of the molecular composition on the cuticle characteristics

required further elucidation.

Representing more than 8000 species [15], Collembola are the most abun-

dant and widespread arthropods and an important part of the community of

soil-dwelling animals [16]. To enable cutaneous respiration [17,18], the cuticle

surface needs to be kept clean and dry in the presence of soil microorganisms

and water that is often contaminated by surfactants originating from decaying

organic matter [19]. Consequently, the collembolan cuticle is adapted to the soil

habitat by a robust and repellent surface consisting of nanoscopic, comb-like

structures (figure 1a) [14,20]. Polymer replication methods were applied to

demonstrate that the particular structures enable a robust non-wetting state,

even with low-surface-tension liquids, and, thus, protect the animals against

suffocation, even when immersed [21,22].
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Figure 1. (a) SEM studies of the cuticular morphology of T. bielanensis. SEM images showing papillose microstructures (secondary granules), covered by a rhombic
comb-like mesh exhibiting nanoscopic tubercles ( primary granules). (b) TEM sections of the cuticle, revealing the layered structure to consist of (I) the lamellar
procuticle ( pro), covered by (II) the epicuticle (epi) and (III) a thin envelope (env) as the topmost layer. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140619

2

While the unique surface morphology of collembolan

cuticle was recently intensively studied, its chemical compo-

sition was not yet comprehensively analysed. A thorough

analysis of both structure and composition of the cuticle is,

however, needed for reconstituting the non-wetting and

non-fouling surface characteristics in the development of

bioinspired materials. Earlier studies found the collembolan

cuticle to exhibit a layered structure commonly observed for

arthropods [23]. Based upon electron micrographs, the

authors classified several layers (from inside to outside): an

endocuticle, an exocuticle and an epicuticle. The epicuticle

was further divided into an internal, a cuticulin, a wax and

a cement layer [24–26]. The waxy-like surface coating was

suggested to support hydrophobicity under wet conditions

and to prevent desiccation under arid conditions [27,28].

As a detailed chemical analysis of each cuticle layer was not

yet available, we chose to investigate the cuticle of Tetrodonto-
phora bielanensis with respect to the composition of each layer.

Morphological characteristics were analysed using electron

microscopy, and chemical analyses were performed by time of

flight secondary ion mass spectrometry (TOF-SIMS), thin layer

chromatography (TLC) and gas chromatography mass spectro-

metry (GC-MS). Additionally, hydrolysed cuticle samples were

analysed by high-performance liquid chromatography (HPLC)

and electrospray ionization mass spectrometry (ESI-MS). The

combined results of these analyses allowed for establishing a

detailed compositional model of the Collembola cuticle.
2. Results
The hierarchical structure of the cuticle of T. bielanensis is

displayed in figure 1a. The scanning electron microscopy
(SEM) images show papillose microstructures (designated

as secondary granules) covered by a rhombic, comb-like

pattern featuring nanoscopic tubercles (designated as pri-

mary granules) at the points of intersection. These

structures completely cover the cuticle of T. bielanensis and

were previously shown to prevent wetting and enable skin

respiration under humid conditions [11,12]. Transmission

electron microscopy (TEM) studies revealed a layer compo-

sition of the cuticle cross-section (figure 1b). Referring to

recent studies of arthropod cuticles [28,29], three chara-

cteristic layers can be distinguished: the inner procuticle

(combination of exo- and endocuticle) forms the basis of

the exoskeleton and exhibits a characteristic lamellar struc-

ture (I). The 5–20 mm thick procuticle is overlaid by the

non-lamellar 100 nm thick epicuticle layer, which includes

nanoscopic surface features (II). The surface structures are

covered by a thin 10 nm thick envelope (III). This outer-

most layer is stained by osmium tetroxide indicating a high

unsaturated lipid content [30].

A stepwise removal of the cuticle layers was performed

for a selective analysis of their chemical composition. As

cuticle analyses on complete animals is challenging, moulted

cuticles were analysed in comparison. During the moulting

process, the entire cuticle is dorsally ruptured and shed,

whereas the new cuticle is already present underneath

(figure 2).

Information about the composition of the topmost cuticle

layer of T. bielanensis was obtained by TOF-SIMS measure-

ments, which analyses a few molecular monolayers. Surface

mapping revealed a chemically homogeneous distribution of

aliphatic hydrocarbons covering the entire surface (figure 3a).

Contaminations (sodium ions and polysiloxanes) were assu-

med to be caused by the sample storage. The spectral data
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Figure 2. An individual of T. bielanensis during the moulting process. The
images show the dorsal rupture and shedding of the old cuticle with its
entire morphology, while the newly formed cuticle is present underneath.
(Online version in colour.)
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of the measurements (figure 3b) showed lipids, such as fatty

acids (m/z ¼ 255; 279; 281; 283) and higher molecular weight

aliphatic compounds (m/z ¼ 489; 561; 575; 603; 631).

Hexane/dichloromethane extracts of the examined animal

sample were applied to glass surfaces and also analysed by

TOF-SIMS. The resulting data (electronic supplementary

material, figure S1) were similar to those of the untreated

cuticle surface, demonstrating the relevance of the extracted

sample. As TOF-SIMS only allows for the detection of frag-

ments, TLC was also performed to obtain further insights

into the cuticle lipid composition using a standard lipid mix-

ture of phospholipids, steroids, triglycerides, fatty acids, fatty

esters and steryl esters as a reference. With the exception

of phospholipids, all lipid classes were detected in the

extracts of the moulted cuticles and the complete animals

(figure 3c). In addition, terpenes, which are not included

into the standard lipid mixture, were detected (electronic sup-

plementary material, figure S2). The intensity of the TLC

spots revealed that fatty acids, esters and terpenes dominated

the extracts of both sources. The extract of the complete ani-

mals contained a higher amount of steroids, fatty acids and

esters. This might be due to lower amounts of lipids retained

in the moulted cuticle extract.

GC-MS analysis was performed to identify the lipids

as detected by TLC (electronic supplementary material,

figures S3–S9). For the moulted cuticle extract, steroids,

fatty acids and one terpene were detected. The detected

steroids were identified as cholesterol and desmosterol, the

fatty acids as palmitic and stearic acid and the terpene as

lycopaen (table 1). In case of the complete animal extract,

steroids, fatty acids, esters and terpenes could be detected,

which was in accordance with the TLC measurements. The

steroids again were identified as cholesterol and desmosterol,

in addition the fatty acids palmitic acid, stearic acid, oleic acid
and linoleic acid. The esters were identified as linolenyl myr-

istate and linoleyl palmitate, which are common wax esters.

The terpenes were in line with the results from [29] identified

as lycopan, lycopaen and lycopadien (table 1). The extract of

moulted cuticles contained fewer substances, which might be

due to lower amounts of lipids retained.

Extraction of the outermost lipid layer of freshly shed

cuticles left the epicuticle and the procuticle behind for further

analysis. The epicuticle was subsequently dissolved in a 2.5 M

KOH solution for hydrolysis of proteins (figure 4). Figure 4b
depicts the destruction of the comb-like structure after 0.5 h

incubation time. After 24 h, the protein-rich epicuticle was

completely dissolved. In order to verify the proteinaceous

nature of the nanoscopic surface features, the solution was

further analysed by HPLC. Table 2 summarizes the amino

acid composition and the particular concentrations of the

moulted cuticle extract. Glycine represents more than 50% of

the detected amino acids. Furthermore, the sample showed a

high amount of tyrosine and serine residues. For comparison,

the amino acid compositions of structural proteins, such as

fibroin (Bombyx mori), collagen (Periplaneta americana) and

resilin (Schistocerca gregaria) [30–32] are included in table 2.

A common feature of structural proteins, glycine was the dom-

inating amino acid in all proteins. Therefore, the epicuticular

structures of the collembolan cuticle are concluded to also con-

sist of structural proteins. Additionally, decellularized (TritonX

treated) animals were analysed by amino acid analysis. The

results clearly differed (the glycine amount was reduced to

35%, the amounts of alanine and serine increased) determining

the decellularization of animals by TritonX to be unsuitable in

identifying cuticle proteins.

For protein identification, the epicuticular structures were

exposed to 8 M urea, 6 M guanidine hydrochloride, guanidi-

nium thiocyanate (TriFast) and 20% sodium dodecyl sulfate

(SDS) for at least one week at 608C. However, these treat-

ments did not alter the epicuticular pattern (figure 4a),

indicating a robust protein structure. Interestingly, the

common covalent cross-links, such as disulfide bonds or

dityrosine amino acids residues, were not observed in the

samples by UV–Vis spectroscopy (electronic supplementary

material, figure S10), suggesting a non-covalent association.

After KOH hydrolysis, the remaining procuticle skeletons

(figure 4c) were further hydrolysed by 6 M HCl and analysed

by ESI-MS (electronic supplementary material, figure S11) that

confirmed the presence of chitin. Additionally, SEM (figure 4c)

and Cryo-SEM (figure 5) studies revealed a regular distri-

bution of pore channels within the chitin skeleton. The pore

channels showed different sizes and morphologies. Most chan-

nels were small with a diameter of about 200 nm and vertically

interpenetrated the entire procuticle. Some pore channels

appeared to be thicker (diameter of about 2 mm) but branched

into smaller channels close to the epicuticle.

In summary, the chemical analyses revealed a multi-

layered cuticle structure, consisting of a topmost lipid-rich

envelope, a protein-rich epicuticle and a chitin-rich procuticle

(figure 6). The homogeneous lipid-rich layer, covering the

entire surface, encompassed aliphatic hydrocarbons such as

steroids, triglycerides, fatty acids, wax esters and terpenes.

The characteristic morphological surface features of the

cuticle consisted of a protein-rich layer, dominated by a

glycine-rich structural protein. The inner cuticle layer con-

sisted of a lamellar chitin skeleton that was interpenetrated

by numerous pore channels.
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Figure 3. Analysis of the topmost lipid layer by TOF-SIMS and TLC. (a) TOF-SIMS imaging of the cuticle surface shows a homogeneous distribution of an aliphatic
(lipid) layer. (b) TOF-SIMS data indicating aliphatic hydrocarbon layers covering the collembolan cuticle (left, positive secondary ion spectra; right, negative secondary
ion spectra). (c) TLC of moulted cuticle (cuticle) and complete animal (animal) hexane/dichloromethane extracts. Standard lipid mixture containing phospholipids
( phosphatidylcholine; PC), steroids (cholesterol; CH), triglycerides (glyceryltrioleate; GT), fatty acids ( palmitic acid; PA), fatty esters (stearyl palmitate; SP) and steryl
esters (cholesteryl palmitate; CP). TLC of both extracts revealed steroids (1), triglycerides (2), fatty acids (3), esters (4) and terpenes (5).
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3. Discussion
Our presented study revealed that the cuticle of T. bielanensis,

showing the characteristic collembolan ornamentations, con-

sisted of a cross-sectional layer structure known from

arthropods, namely, a chitin-rich procuticle, a chitin-free but

protein-rich epicuticle and an envelope composed of a lipid

mixture. The reported results confirm earlier investigations
on basic features of the collembolan cuticle [24–26] and on

cuticle differentiation [33].

The chitin-rich procuticle forms the basis of the exoskeleton

and provides rigidity and mechanical protection to the body

[23]. The numerous nanostructured pore channels enable

material transport [25,34]. Moreover, these channels may indi-

cate a preliminary stage of a tracheal system that particularly



Table 1. Lipid components of the moulted cuticle and complete animal hexane/dichloromethane extract as detected by TLC and GC-MS.

TLC GC-MS

detected lipid
classes moulted cuticle complete animal

detected
components moulted cuticle complete animal

steroids þ þ cholesterol þ þ
desmosterol þ þ

triglycerides þ þ 2 2

fatty acids þ þ palmitic acid þ þ
stearic acid þ þ
oleic acid 2 þ
linoleic acid 2 þ

esters þ þ linolenyl myristate 2 þ
linoleyl palmitate 2 þ

terpenes þ þ lycopan 2 þ
lycopaen þ þ
lycopadien 2 þ

{

{
{

{
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allows T. bielanensis, the European giant springtail, to respire by

gaseous diffusion through the cuticle surface. Nevertheless, the

channels do not interpenetrate the entire cuticle, which can

be considered a physiological advantage in preventing high

transpirations rates and penetration of microorganisms.

The protein-rich epicuticle covers the chitin layer. The epi-

cuticle contains the distinctive surface features of Collembola

in displaying a comb-like mesh covering the entire body.

Cavities inside the epicuticular mesh allow for respiration

[12,13]. The nanoscopic tubercles at the intersections of the

mesh structure prevent liquids wetting these cavities facilitat-

ing respiration under wet conditions and preventing

suffocation in temporarily rain-flooded habitats. In a recent

study, the durability of these epicuticular structures was

demonstrated by sand blast experiments [12]. We found

that proteins with high amounts of glycine, tyrosine and

serine formed the epicuticular structures. The composition

of the amino acid mixture resembled that of known structural

proteins such as fibroin, collagen or resilin [30–32], which

often combine stiffness and toughness [35]. Thus, it can be

reasonably assumed that the durability of patterned epicuti-

cle of T. bielanensis to withstand wear in soil habitats results

from epicuticular protein structures.

As the outermost layer, a lipid mixture of fatty acids, wax

esters and terpenes envelopes the epicuticular structures,

forming the first protective barrier of the animal. Wax

esters support the non-wetting properties due to their hydro-

phobic characteristics [6]. The thin lipid layer enables gas

exchange, but hardly protects against transpiration and desic-

cation [36]. Therefore, Collembola, with some exceptions,

depend on humid surroundings as given in soil habitats.

Furthermore, the collembolan cuticle is exposed to microor-

ganisms. Some of the lipids detected, such as fatty acids

and terpenes, can be assumed to afford the non-fouling

characteristics of the cuticle surface due to their intrinsic anti-

bacterial effect. Free fatty acids, for example, were reported to

interact with the cell membrane of bacteria causing growth
inhibition or direct killing [37–39]. Furthermore, it was

shown that free fatty acids with medium or short chain

lengths can inhibit fungal development [40]. Likewise, ter-

penes are considered defence substances of plants and

insects, and can therefore be expected to protect the cuticle

surface against parasitic or pathogenic microorganisms [41].

The unique hierarchical topography of the layered cuticle

reflects the adaptation of Collembola to their soil habitats,

enabling the permeability to gases, minimizing liquid wett-

ability and fouling by microorganisms and resisting abrasion.

Those remarkable cuticle characteristics were found to be

achieved by a rather typical arthropod cuticle surface chemistry.

Thus, our data highlight the importance of topographical

features of the cuticle for its functional characteristics.
4. Material and methods
4.1. Animals
Tetrodontophora bielanensis species were collected in the wooded

mountains of Saxony near Dresden, southeastern Germany.

The animals were kept as laboratory colonies in large Petri

dishes using soil, litter, decaying wood and moss from their orig-

inal habitat as substrate and food source. The substrate was

wetted regularly to maintain humid conditions. Tetrodontophora
bielanensis species survived up to six months in captivity, prefer-

ably at 12–148C, which was maintained by storage in wine cooler

board. During this time, animals were collected regularly for

experiments. Additionally, moulted cuticles of the animals

were collected from the Petri dishes and used as cuticle samples.

Moulting occurred at three to four week intervals.

4.2. Electron imaging
SEM studies were performed using a XL30 ESEM-FEG micro-

scope (Philips) in the usual HighVac mode at voltages of 5 kV.

Cryo-SEM studies were performed by a Zeiss Supra 40VP with

an Emitech K1250� cryo transfer device in the usual HighVac

mode at voltages of 5 kV. The animals were prepared by freezing
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Figure 4. Separation and analysis of the procuticle and epicuticle. (a) Cuticle
treated with 8 M urea, 6 M guanidine hydrochloride, 20% SDS and guanidinium
thiocyanate for one week at 608C without changes in the epicuticular structures.
(b) Cuticle samples treated with 2.5 M KOH solution for 0.5 h for dissolving the
cuticle structures. The KOH solution was used for HPLC analysis. (c) Further treat-
ment of the cuticle with 2.5 M KOH led to complete dissolution of the
epicuticular proteins uncovering the chitin skeleton. (Online version in colour.)
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Figure 5. Cryo-SEM image of the cuticle with visible pore channels.
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and subsequent air-drying without any fixation. Samples were

coated with a 15 nm gold layer (BALZERS SCD 050 Sputter

Coater) to avoid surface charging effects. TEM studies were car-

ried out using an EM 912 Omega (Carl Zeiss SMT). The samples

were fixed, stained and subsequently sliced into ultrathin

sections as described in detail by Helbig et al. [12].
4.3. Sample preparation for chemical analysis
4.3.1. Lipid layer analysis
Moulted cuticles (30–40 specimens) were collected, washed in

distilled water, air-dried and subsequently extracted in a

hexane/dichloromethane (1 : 1) solvent mixture for 30 min at

608C. The extract was concentrated by solvent evaporation.

Complete animals (20 specimens) were shock frozen, air-dried

for 24 h at room temperature (RT) and extracted under the
same conditions. The hexane/dichloromethane extracts were

used for TLC and GC-MS analysis.

4.3.2. Amino acid analysis
Extracted moulted cuticles were treated directly with 2.5 M

KOH solution for 0.5–24 h at RT [42]. Extracted animal samples

were decellularized to remove cellular proteins by placing

animals in 0.5% TritonX (Sigma-Aldrich) solution for one week.

Afterwards, the decellularized animals were washed in distilled

water several times to remove TritonX. The decellularized

animals were treated with 2.5 M KOH solution for 0.5–24 h at

RT. The KOH solution with the hydrolysed cuticle proteins

were used for HPLC analysis.

4.3.3. Chitin analysis
Remaining cuticle samples treated with 2.5 M KOH were further

hydrolysed in 6 M HCl for 4 days at 808C. The obtained samples

were filtered with 0.4-mm filter and freeze dried. The solid

remnant was dissolved in methanol for ESI-MS analysis.

4.4. Time of flight secondary ion mass spectrometry
For TOF-SIMS analysis, animals were shock frozen and air-dried for

24 h at RT. For extract analysis, animal samples were prepared as

described in §4.3.1. The extract was coated on glass surfaces and

analysed. Measurements were performed using an ION TOF

TOF-SIMS V instrument equipped with a Bi liquid metal ion gun.

Analysis was carried out as described in detail by Nygren et al.
[43]. All image analyses were performed within the ION-TOF ION

image software (v. 3.1, Ion-Tof, GmbH, Münster, Germany).
4.5. Thin layer chromatography
Hexane/dichloromethane extracts of moulted cuticles and complete

animals were prepared as described in §4.3.1. A mixture of 30 mg

lipids in 2 ml of dichloromethane was used as a lipid standard,

containing phosphatidylcholine, cholesterol, glyceryltrioleate, pal-

mitic acid, stearyl palmitate and cholesteryl palmitate. TLC was

performed using TLC sheets with a 0.2 mm silica gel layer (ALU-

GRAM, Machery-Nagel). Three solvent systems were used

stepwise on one TLC plate for lipid separation (adapted from [44]):

(1) methanol : chloroform : acetic acid (50 : 30 : 16),

(2) hexane : diethyl ether : acetic acid (70 : 2 : 0.2) and

(3) hexane.
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Figure 6. Model of the multi-layered cuticle of Collembola. (Online version in colour.)

Table 2. Detected amino acids by HPLC of the moulted cuticle KOH hydrolysate and from decellularized animals. Amino acid analyses of fibroin (B. mori),
collagen (P. americana) and resilin (S. gregaria) are included for comparison.

amino acids
moulted
cuticle

decellularized
animal

fibroin [32]
B. mori

collagen [33]
P. americana

resilin [34]
S. gregaria

ASP aspartic acid 5.25 3.76 1.30 5.00 12.50

GLU glutamic acid 5.49 3.93 1.00 9.10 6.20

SER* Serine 7.79 17.04 12.10 3.90 8.00

HIS histidine 0.14 0.09 0.20 0.40 1.70

GLY* glycine 56.02 35.49 44.50 32.00 26.90

THR threonine 1.01 3.49 0.90 2.40 3.70

ARG arginine 0.46 0.94 0.50 4.50 6.50

ALA alanine 5.82 15.62 29.30 7.80 9.45

TYR* tyrosine 7.00 4.40 5.20 — 4.00

MET methionine 0.06 0.33 0.10 — —

VAL valine 0.47 1.07 2.20 2.20 3.10

PHE phenylalanine 1.77 2.54 0.60 1.30 4.40

ILE isoleucine 0.50 1.07 0.70 1.60 1.90

LEU leucine 5.07 6.77 0.50 3.50 2.60

LYS lysine 0.55 0.27 0.30 2.00 0.85

CYS cysteine — — 0.20 — —

PRO proline 1.61 2.00 0.30 12.00 8.20

HYP hydroxyproline — — — 10.70 —

HYL hydroxylysine — — — 1.60 —
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System (1) ran until the solvent line migrated to the first third of

the plate. Subsequently, the plate was dried and placed in the sol-

vent system (2) until the solvent line migrated to the second third

of the plate. Solvent system (3) ran the complete plate until 1 cm

above the end of the plate. All solvents were purchased by

Sigma-Aldrich. Subsequent staining of the lipids was carried

out with amido black staining (Sigma-Aldrich) [45].

4.6. Gas chromatography mass spectrometry
Hexane/dichloromethane extracts of moulted cuticles and

complete animals were prepared as described in §4.3.1. Measure-

ments were performed using an Agilent Technologies 6890 N
GC System equipped with a 5973 Mass Selective Detector. GC sep-

aration was conducted with a temperature programme from 1108C
(1 min) to 3408C (30 min) at a rate of 108C min21, respectively. One

microlitre of the sample was injected for analysis. The mass spec-

trometer was operated in the electron impact ionization mode

with ionization energy of 70 eV. Data evaluation was performed

using LIPID MAPS Lipidomics Gateway database.

4.7. High-performance liquid chromatography
KOH hydrolysates of extracted moulted cuticles and extracted

animals were prepared as described in §4.3.2 and used for

amino acid analysis. HPLC analysis was performed by amino
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acid sample derivatization using o-phthalaldehyde for primary

amino acids and 9-fluorenylmethyl chloroformate for secondary

amino acids [46]. Measurements were performed by analytical

HPLC Zorbax Eclipse-AAA column (4.6 � 150 mm, 3.5 mm,

Agilent Technologies, USA) for 40 min and a flow rate of

0.8 ml min21 for the analytical column. A linear gradient of

0.1 M phosphate buffer (pH7.8) and acetonitrile/methanol/

water 45/45/10 was used as the mobile phase. A two-pump

system (Agilent Technologies 1100 Series, USA) equipped with

a UV/Vis detector/spectrophotometer in line with fluorescence

detector both having a 1 cm path length cell was used for

analysis of the amino acid composition.
 J
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