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Determining asymptotically large
population sizes in insect swarms
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Social animals commonly form aggregates that exhibit emergent collective

behaviour, with group dynamics that are distinct from the behaviour of indi-

viduals. Simple models can qualitatively reproduce such behaviour, but only

with large numbers of individuals. But how rapidly do the collective properties

of animal aggregations in nature emerge with group size? Here, we study

swarms of Chironomus riparius midges and measure how their statistical prop-

erties change as a function of the number of participating individuals. Once the

swarms contain order 10 individuals, we find that all statistics saturate and

the swarms enter an asymptotic regime. The influence of environmental cues

on the swarm morphology decays on a similar scale. Our results provide

a strong constraint on how rapidly swarm models must produce collective

states. But our findings support the feasibility of using swarms as a design tem-

plate for multi-agent systems, because self-organized states are possible even

with few agents.
1. Introduction
It is extremely common in nature for groups of social animals to behave collec-

tively, in flocks, schools, herds, crowds or swarms. This collective behaviour is

thought to arise so frequently because it balances the pressures of competition

and cooperation [1–3]. But, beyond its clear importance for ecology, collective

animal behaviour has attracted attention from a broad range of other disciplines

owing to its ubiquity as an example of non-equilibrium self-organization and its

potential utility as a design principle for engineered systems [4–6]. It has thus

been the subject of a significant modelling effort over many decades [7–9].

Although individual models vary, most share a set of key assumptions. Chief

among these is the notion that the group-level dynamics emerge spontaneously

as a consequence of the low-level interactions between individuals [2]. The

behaviour of the group can then be viewed as a ‘thermodynamic’ property

that arises as the large-number limit of the interactions between individuals,

and is expected to be (statistically) universal across different aggregation events.

Animal aggregations in the wild come in many different sizes, ranging from

just a few individuals up to potentially millions [10,11]. When the group is very

large, the idea that the group behaviour represents some kind of universal state

is reasonable, as is the assumption that all the individuals in the group can be

treated as interchangeable, uniform agents. But for small groups, these assump-

tions become more suspect [12], and the group may behave differently [13,14].

One must ask, then, how large an animal aggregation must be before the

asymptotic state is reached and the addition of more individuals does not

change the dynamics. The answer to this question impacts the modelling of

collective animal behaviour by providing a condition on how the model

should perform in the low-number limit. But it also has implications for bioin-

spired engineered systems based on collective animal behaviour, by setting a

lower bound on the number of independent agents that must be included

before the desired group behaviour will be exhibited.

To explore the small-number limit of collective behaviour, we studied the

dynamics of swarms of the non-biting midge Chironomus riparius in the labora-

tory. We collected data for 344 swarming events, with participating populations

ranging from 1 (i.e. single flying midges) to 60. Mating swarms such as these

show no overall group ordering [15,16], so we cannot define a relevant
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Figure 1. Example trajectories of single midges from three different swarming events, with (a) kNl ¼ 1, (b) kNl ¼ 5 and (c) kNl ¼ 60. All three trajectories are
6.5 s long. The x- and y-directions are in the horizontal plane, and gravity points in the 2z-direction. (Online version in colour.)
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macroscopic-order parameter to determine whether an aggre-

gation is a swarm or not. Instead, we measured the statistical

properties of the swarms as a function of the number of indi-

viduals. Although even the smallest groups show complex

behaviour, the statistics do change as the number of individ-

uals in the swarms increases. Surprisingly, however, these

statistical changes saturate for small numbers: our results

indicate that by order 10 individuals, midge swarms are in

the asymptotic, ‘thermodynamic’ limit.
2. Experimental methods
2.1. Insects
We studied the swarming behaviour of C. riparius midges in

a self-sustaining laboratory colony. The C. riparius larvae are

cultivated in nine tanks containing a thin layer of cellulose

sediment and 7 l of water that is dechlorinated and continually

oxygenated. Twice a week, the water is replaced, and the larvae

are fed 5 g of commercial rabbit food. The development tanks

are kept in a cubical enclosure measuring 91 cm on a side that is

maintained at a constant 238C and 50% humidity. After

approximately 14 days, the larvae emerge from the water as

adults and live for another 2–3 days. The enclosure is illumi-

nated with 16 h of light and 8 h of darkness per day. At each

‘dawn’ and ‘dusk’, male midges gather above a swarm

marker and begin to swarm. Note that all swarms begin with

a only a few flying males; more males may join the swarm

over time, and it can take as long as 20 min for the average

number of participating individuals to stabilize. The swarming

males are epigamic, attracting females and leading to mating

and oviposition [10,17,18].

2.2. Imaging and measurement
The midges swarm over a black matt marker placed in the

centre of the enclosure. The marker is thought to provide a

visual cue to initiate the swarm [19]. We image the swarm

using three hardware-synchronized cameras (Flea3, Point

Grey), recording 1 megapixel images at a rate of 100 Hz. Using

an array of near-infrared LEDs, the swarms are illuminated at

a wavelength that is visible to the cameras but not to the

midges, so that their behaviour is not disturbed. Each swarming

event is filmed for approximately 1 min.

We reconstruct the three-dimensional trajectories for all

individuals in the swarm using techniques originally designed

for tracking particles in turbulent fluid flows [20]. In each two-

dimensional camera frame, midges are located by segmenting

the image; their centres are found using an intensity-weighted

centroid. Using these two-dimensional positions as found

from each camera and the relative coordinates of the cameras
(found by calibration using Tsai’s model [21]), we construct

an epipolar line of sight for each midge image on each

camera. Near intersections, within a small tolerance, of triplets

of these epipolar lines give the location of the midges in three-

dimensional space. We then link these three-dimensional

positions in time using a multi-frame predictive tracking algor-

ithm [20]; short track segments are spliced together by

retracking them in a six-dimensional position–velocity space

[22]. Once the time-resolved trajectories are known, we com-

pute velocities and accelerations by convolving the trajectories

with a Gaussian smoothing and differentiating kernel [23,24].

Derivatives computed using this convolution method are less

noisy than what would be obtained from a simple finite-

difference scheme. For the data presented here, the convolution

kernel was chosen to have a standard deviation of two frames,

and the position information from 12 frames was used to

calculate each derivative.
3. Results
We recorded midge trajectories and kinematics for 344 swarm-

ing events with varying numbers of participating individuals

N, ranging from 1 to 60. In general, because individual

midges were free to join or leave swarms, N can change with

time; we report here the mean value kNl observed over the

entire recording time. Movies for which N changed significantly

were not included in our analysis. Swarms were largest at dawn

and dusk, but we sometimes observed small swarms consisting

of only a few individuals during the middle of the day. On

occasion, we were also able to record ‘swarms’ consisting of

only a single midge. We note that such single-individual

‘swarms’ can also sometimes be observed in nature [10].

In all cases, the trajectories followed by the midges are

complex. Indeed, as shown in figure 1, they are qualitatively

indistinguishable for different swarm sizes. Even midges in

‘swarms’ of N ¼ 1 follow paths that are similar to those taken

by midges in large swarms. Qualitative considerations are

clearly thus not sufficient to determine how the swarm dyna-

mics change as a function of the number of participating

individuals. To understand the emergence of asymptotic

swarm behaviour, and to test whether such a state even exists,

we measured many different statistical properties of the swarms,

as reported below, and looked for saturation as the number

of individuals increased.
3.1. Spatial arrangement
Unlike flocks of birds or schools of fish that show net motion

and overall velocity polarization, insect mating swarms tend

to be stationary and possess no net velocity ordering. The
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Figure 2. Volume per individual (i.e. the total swarm volume divided by the
number of participating individuals) as a function of number of individuals in
the swarm. Error bars here and throughout show the standard error of the
mean calculated over all measured swarms of the same size. The dashed
line is an exponential fit with a characteristic scale (see the main text) of
N0 ¼ 3.1+ 0.8. (Online version in colour.)
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Figure 3. Average distance from a given midge to its nearest neighbour as a
function of the number of individuals in the swarm. The dashed line is again
an exponential fit with N0 ¼ 8.6+ 2.0. (Online version in colour.)
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collective nature of the swarm state is manifest instead in its

spatial localization: the insects explore only a compact region

of space while they are swarming. As a simple first analysis

of the bulk swarm properties, then, we can measure how the

insects arrange themselves in space.

Because the insects in our swarms are flying, collisions are

disadvantageous and the sharp manoeuvres required to avoid

a collision when two individuals come close together are ener-

getically costly. Thus, the midges tend to arrange themselves to

maintain some empty space in their local neighbourhood, and

rarely come closer together than about a wingspan distance

[16]. In figure 2, we show the average volume occupied by

each individual as a function of the number of midges in the

swarms. To calculate this quantity, we first compute the overall

swarm volume V by measuring rCM, the mean distance of the

midges from the time-averaged centre of mass of the swarm,

and defining V ¼ (4=3)pr3
CM. The volume per individual is

then given by dividing V by kNl, and is thus well defined

even in the limit of a single individual. Here and throughout,

we compute statistics by first calculating the quantity of interest

(the volume per individual, in this case) for each time instant in

a given swarm and then averaging over time. Time averages

from different swarms of the same size are then averaged

together, producing the values reported in the figures; error

bars show the standard error of these mean values.

For kNl . 10, the volume per individual plotted in

figure 2 appears to become independent of kNl; this result

is consistent with our earlier finding that the swarm

number density is independent of swarm size [15]. But for

small kNl, each midge on average occupies more space. To

quantify the approach to saturation, we fitted the data in

figure 2 with a decaying exponential function of the form

Vind ¼ A exp � kNl
N0

� �
þ B, (3:1)

where Vind is the volume per individual. The constant B gives

the asymptotic value for the volume per individual (in the

large-swarm limit), whereas A determines the overall scale

of the variation with kNl. More interesting, though, is the
decay constant N0 that quantifies the rate of approach to sat-

uration with increasing swarm size. Thus, although we do

not have an a priori theoretical reason to expect exponential

decay, an exponential fit is convenient because it allows us

to quantify objectively how the volume per individual

approaches its asymptotic value. We refer to N0 as the charac-

teristic scale of the approach to this asymptotic limit: by the

time the swarm size has reached N0, the volume per individual

will be 1 2 e21 � 63% of the way to its large-swarm-size value.

Fitting equation (3.1) to the averaged data points shown

as circles in figure 2 using a robust nonlinear least-squares

algorithm, we find N0 ¼ 3.1+0.8.

A related, though distinct, measure for how the midges

arrange themselves in space is the average distance from an

individual to its nearest neighbour. As opposed to the

volume per individual, the nearest-neighbour distance may

be more sensitive to any pairwise interactions present in the

swarm (but note that the distance to a neighbour is not defined

in the limit of a single individual). Figure 3 shows the average

nearest-neighbour distance as a function of kNl. Like the

volume per individual, the nearest-neighbour distance falls

off rapidly with swarm size for small swarms, but eventually

saturates. We again fitted the data with an exponential of the

same form as equation (3.1), and find a characteristic scale of

N0 ¼ 8.6+2.0, larger than for the volume per individual but

still relatively small.
3.2. Kinematics
Because we measure not only the spatial structure of the

swarms but also the kinematics of each individual, we can

study how these kinematic properties change with kNl. The

simplest such property is the mean speed of the individuals,

which we show in figure 4. Although there is a trend that

midges in very small swarms (with kNl � 2) tend to move

faster than midges in larger swarms, the data are noisy and

the approach to saturation is very rapid. Again fitting an

exponential, we find N0 ¼ 1.2+ 1.0.

The mean speed, however, is relatively insensitive to the

dynamics of the swarms, particularly because the midges

tend to be weakly coupled [16]. Kinematic measures that

are sensitive to the tails of distributions are more likely to

give useful information. We previously reported that the
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Figure 4. Mean speed of the individual midges as a function of the
number of individuals in the swarm. The dashed line is an exponential fit
with N0 ¼ 1.2+ 1.0. (Online version in colour.)
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Figure 5. Excess kurtosis of the velocity components (i.e. the difference
between the normalized fourth moment of the midge velocity distributions
and 3, the kurtosis of a Gaussian distribution), averaged over all three com-
ponents, as a function of the number of individuals in the swarm. The dashed
line is an exponential fit with N0 ¼ 5.8+ 1.9. (Online version in colour.)
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Figure 6. Mean free path between high-curvature events as a function of the
number of individuals in the swarm. The dashed line is an exponential fit
with N0 ¼ 5.8+ 2.2. (Online version in colour.)
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velocity distributions are nearly Gaussian for small swarms, as

had been seen in prior work [25], but develop heavy tails for

larger swarms [15]—a feature that we argued was indicative

of cooperative motion. To quantify how these tails develop as

a function of kNl, we calculated the kurtosis (i.e. the normalized

fourth moment, also known as the flatness) of the velocity com-

ponents. In figure 5, we plot the excess kurtosis, defined to be

the difference between the measured velocity kurtosis and the

Gaussian value of 3. As with the other quantities we have

showed, the excess kurtosis changes rapidly for small kNl
before approximately saturating. In this case, we find that the

excess kurtosis grows with kNl, as expected; the velocity distri-

butions for very small kNl have slightly sub-Gaussian tails,

whereas those for large kNl are super-Gaussian. Fitting the

excess kurtosis with an exponential, we find N0 ¼ 5.8+1.9.

3.3. Free paths
As can be seen in figure 1, the motion of even an isolated

midge is complex. The midge trajectories are typically charac-

terized by smoothly varying sections punctuated by sharp

turns and reorientations. Many of these rapid manoeuvres

are likely to be random, but some may be due to interactions

with other insects—and thus may occur more frequently in

larger swarms. We locate these ‘scattering’ events by measur-

ing the trajectory curvature [16], defined as k ¼ jv � aj/jvj3,

where v is the velocity and a is the acceleration. Because cur-

vature has a very high dynamic range [26,27], high-curvature

events are straightforward to pick out from the background

signal by simple peak-finding; here, all local maxima of the

curvature larger than 1/30 mm21 are identified as high-

curvature events. We define the trajectory segments between

these events as free paths, and measure their statistics to

compute a mean free path for each swarm.

We show the evolution of the mean free path with kNl in

figure 6. As anticipated, the mean free path becomes smaller

as kNl increases, an effect that may be partly due to more

interaction between individuals but that is also consistent

with the increase in number density for small swarms seen

in figure 2. We also note that, for small swarms, the mean

free path is nearly as large as the swarm itself, suggesting

that the midges behave nearly as free particles. As with all

the data we have shown, the mean free path saturates to a
constant value as kNl grows; fitting an exponential to the

data in figure 6, we find N0 ¼ 5.8+2.2.

3.4. Environmental cues
As mentioned above, swarms tend to form in the wild over

objects or regions that are visually distinct from their surround-

ings [28]. In our experiments, we use a piece of black felt as a

swarm marker; without such a marker, swarms will not form

[19]. It has been suggested that the swarm marker provides

an effective confinement for swarming individuals, so that

insect swarms are really just a collection of independent indi-

viduals rather than a self-organized collective [10], although

this viewpoint has recently been disputed [29].

We tested the effect of this external environmental cue on the

swarms by using three markers of different sizes and shapes: a

square of size 32� 32 cm, a rectangle of size 16 � 32 cm and

a smaller rectangle of size 12� 24 cm. In figure 7, we

show the qualitative effects of these three different markers on

the swarm morphology. For small swarms, the shape of the
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Figure 7. Heat maps showing the likelihood of finding a midge for (a,b) a 32�
32 cm swarm marker, (c,d ) a 16� 32 cm marker and (e,f ) a 12� 24 cm
marker, all as viewed from above, for swarms of (a) kNl ¼ 5, (b) kNl ¼ 20,
(c) kNl ¼ 5, (d ) kNl ¼ 20, (e) kNl ¼ 3 and ( f ) kNl ¼ 20. The markers
are shown as solid-colour rectangles. For small swarms (left column), the
swarm shape tracks the shape of the marker, but for larger swarms (right
column), the swarms are more isotropic. (Online version in colour.)
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swarm reflects that of the marker: higher aspect-ratio markers

produce higher aspect-ratio swarms. But as the swarm size

grows, and particularly as it grows larger than the marker, the

swarms tend to relax back to a nearly isotropic shape.

We can quantify these effects by measuring the swarm

aspect ratios as a function of kNl for each of the markers, as

shown in figure 8. For swarms over the square marker, we see

no appreciable change in swarm aspect ratio with kNl. But for

the two rectangular markers, swarms with small kNl are nota-

bly differently shaped. As kNl increases, however, the aspect

ratio of the swarms relaxes back to the value for the square

marker, with a characteristic scale of N0 ¼ 3.7+2.1 for the

small rectangle and 12.0+8.6 for the large rectangle. Thus,

we conclude that even though the swarm marker clearly

plays a role for small swarms, its effect becomes less and less

important as the swarm size grows. Midge swarms appear to

use a swarm marker for nucleation, but once they are large

enough the swarms behave as true self-organized states.
4. Discussion and conclusions
By measuring the trajectories of swarming midges for aggre-

gations of varying sizes, we have addressed here a simple

question: how large must an insect swarm be before it is
asymptotically large? We approached this question by measur-

ing various statistical properties of the swarms as a function of

the number of participating individuals kNl. In all cases, we

found that the statistics of the swarm change with kNl when

kNl is small, but that the statistics rapidly saturate to a constant

value as kNl becomes larger. The threshold for this asymptotic

behaviour is surprisingly small. To estimate it, we fitted all of

our data with exponential functions and measured the charac-

teristic scales, finding values that ranged from 1 (for the mean

speed of an individual) to 12 (for the effects of a large, anisotro-

pic marker). Thus, our data suggest that, once swarms are of

order 10 individuals, they are more or less asymptotically

large. In addition, our finding that the influence of the

swarm marker decays with kNl suggests that our larger

swarms are indeed in a real self-organized state [29] rather

than being simply a non-interacting collection of individuals

exploring the same region of space [10].

Our results have important implications for both modell-

ing and bioinspired design. Models of swarms must be able

to replicate the rapid onset of the asymptotic regime we

observe; if a model requires a very high number of individuals

(or, correspondingly, a high number density) to produce

swarming, it is unlikely to describe real swarms correctly.

But for engineered multi-agent systems where the desired out-

come is organized behaviour, our results are encouraging: only

a few agents are required to achieve this state, making this

potentially a practical strategy for bioinspired design.

This study also suggests several avenues for future work.

Although we observed saturation of all of the statistics we

investigated, our largest swarm contained only 60 individ-

uals; midge swarms in nature, however, can contain orders

of magnitude more individuals [28]. It would be interesting

to extend our analysis to larger swarms, such as those

measured in the wild [29]. It will also be interesting to

study the approach to asymptotic behaviour in more ordered

animal groups such as flocks and schools. Bird flocks must be

studied in the field, and so control of the number of individ-

uals in the flock is difficult; but schooling fish can be studied
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in the laboratory, and thus controlled studies of the schooling

behaviour as a function of number of individuals are possible

[13]. Recent work has shown that the number of fish in a

school affects their ability to avoid predators [30] or sense

their environment [31]; the simpler question of the evolution
of the group statistics as a function of number of fish would

also be interesting to study.
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