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Our brain often needs to estimate unknown variables
from imperfect information. Our knowledge about the
statistical distributions of quantities in our environment
(called priors) and currently available information from
sensory inputs (called likelihood) are the basis of all
Bayesian models of perception and action. While we
know that priors are learned, most studies of prior-
likelihood integration simply assume that subjects know
about the likelihood. However, as the quality of sensory
inputs change over time, we also need to learn about
new likelihoods. Here, we show that human subjects
readily learn the distribution of visual cues (likelihood
function) in a way that can be predicted by models of
statistically optimal learning. Using a likelihood that
depended on color context, we found that a learned
likelihood generalized to new priors. Thus, we conclude
that subjects learn about likelihood.

Introduction

To make accurate estimates regarding relevant
variables in our environment, we need to combine
sensory evidence with our prior knowledge. For
example, if we try to catch a fish, the fish location may
be blurred because of waves in the water. If we know
that the fish is likely to stay close to rocks, we can
increase our chance of catching the fish by aiming
somewhere near a rock in addition to relying on the
blurred fish image. In the fish-catching task, the location
of the fish is a quantity that is estimated using the
blurred visual input. Bayesian inference enables us to
optimally combine observations with prior knowledge.
Bayesian models of the brain have been studied
extensively in many fields of neuroscience, such as vision
(Kersten, Mamassian, & Yuille, 2004), multisensory
perception (Trommershauser, Kording, & Landy, 2011),
and sensorimotor integration (Berniker & Kording,

2011). How the brain accomplishes this statistical
computation is an important question in neuroscience.

A Bayesian model of the fish-catching task can be
formulated as follows. Let us denote the fish location as
x and the blurred visual input as y. Using Bayes’
theorem, the posterior probability distribution of x
after observing y can be written as P(xjy) � P(yjx)P(x).
Here, P(x) characterizes our prior knowledge about the
statistics of the task-relevant quantity x, and represents
information about x before observing y. Another factor
P(yjx) (called the likelihood function) represents how
likely each x causes y; essentially, it represents the
information about x that is obtained from observation.
By combining the prior and the likelihood, we can
optimally decide how much we should trust observa-
tions versus prior knowledge. Note that once the target
variable and the observed variable are defined, we can
clearly define the likelihood and the prior for the task.
These functions are not arbitrarily set, as is often seen
in applied statistics literature.

A likelihood function is derived from the conditional
probability P(yjx), which formulates how an observed
quantity can deviate from the true value. In the
example above, waves and streams blur the visual
image and thus impose uncertainty on the visual
information, resulting in a wider likelihood function.
Other factors, like the refraction of light in the water,
could cause a shift in the visual image. In this paper, for
clarity and simplicity, we focus on the aspect of
likelihood as representing uncertainty in sensory input.
Highly uncertain sensory input indicates that we cannot
place a high degree of trust in observation, thus
likelihood also represents sensory reliability.

Our nervous systems adapt to changes in the world,
and a central problem in behavioral neuroscience is the
dynamics of this adaptation process. Many studies
have shown that priors are learned from past experi-
ence (Berniker, Voss, & Kording, 2010; Jazayeri &
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Shadlen, 2010; Körding & Wolpert, 2004; Miyazaki,
Nozaki, & Nakajima, 2005). In those studies, it was
assumed that the subjects knew the likelihood. It is
known that sensory reliability (likelihood) plays an
important role in the adaptation of sensory (Burge,
Girshick, & Banks, 2010) and motor systems (Burge,
Ernst, & Banks, 2008; Wei & Körding, 2010). The
quality of sensory information changes over time
because of injury, aging, and other internal and
external factors. Our brain thus has to constantly
evaluate the reliability of our sensory information.
However, there is little experimental data that explains
how likelihood itself is learned.

There are two factors that contribute to the
interpretation of incoming sensory data. The first is the
physical precision of our senses, which can be affected
by many factors, such as retinal properties or noise in
neuronal pathways. This precision might change, e.g.,
with light levels. Second, even precise sensory abilities
might not lead to a complete set of information about a
relevant variable of interest. In the fish catching task,
visual information about the fish’s location is blurred
and uncertain even if one’s retinal image is highly
precise. The reliability of the visual image depends on
factors in the environment, such as wave height, flow
speed, and the contours of the water surface. In this
and many other situations, we have to learn about the
reliability of visual information. Although the first
factor is usually referred to as ‘‘sensory uncertainty,’’
both of these two factors, precision of sensory systems
and reliability of sensory input define the likelihood
function of the relevant quantity about the object. In
this paper, we focus on the latter factor. While sensory
precision itself varies over time, the reliability of
sensory input can vary widely across tasks, and the
brain has to efficiently address such variations.

Here, we used a sensorimotor task in which we
manipulated the uncertainty represented in the likeli-
hood to examine whether and how human subjects
learned about the likelihood. First, we found that the
subjects readily learned the likelihood, especially when
they were told the likelihood would change. We
compared the experimental data to three models and
found that the optimal Bayesian learning model best
described the observed behavior. Next, we confirmed
that the subjects actually learned the likelihood, and
not just the relative weight put on observation, by
showing that the subjects learned multiple color-cued
likelihoods and generalized the learned likelihoods to a
new prior.

Related research

Perhaps most similar in spirit to this study are recent
studies of cue combination. Some of these reports

found that subjects can estimate the right cue weights
directly without learning (Alais & Burr, 2004; Ernst &
Banks, 2002). In those studies, the reliability of each
cue is embedded (thus can be estimated) in the stimulus
itself, and they are combined optimally. In other
studies, experience changed the weights given to cues
(Ernst, Banks, & Bülthoff, 2000; Jacobs & Fine, 1999;
Seydell, Knill, & Trommershäuser, 2010; Van Beers,
van Mierlo, Smeets, & Brenner, 2011). In those studies,
the reliability of each cue was controlled externally by
variations of procedures, and the subjects adaptively
updated the weights. As we will describe in the
Methods section, in our experiment, the reliability of
the observation is not embedded in the stimulus but is
controlled over trials, thus our paradigm is similar to
the latter kind of experiments. Sensory representations
can also shift after repeated exposure to conflicted
stimuli (Wozny & Shams, 2011). The observed time-
scale of learning in one report (van Beers et al., 2011)
was similar to that we report here. However, cue
combination and prior-likelihood integration experi-
ments are quite different. Cue combination refers to the
instantaneous integration of observed multiple inputs
while prior-likelihood integration is the integration of a
current observation with prior knowledge stored in the
memory. These two types of experimental paradigms
provide different insights into the information pro-
cessing mechanisms in the brain.

While these experiments have revealed important
implicit insights into likelihood learning, they deal with
a different kind of situation and leave a lot of
important questions open which we address here.

Implicit signs of cue reliability learning have also
been found in sensorimotor integration experiments.
In one study, subjects were required to estimate the
random-walking discrepancy between their hand and
a cursor from noisy observation of the cursor
(Baddeley, Ingram, & Miall, 2003). Their relatively
constant performance among difference noise levels
could be attributed to learning of the noise parameter.
In another study, time-dependent variability was
imposed to the visual feedback of a target in a fast-
reaching task, and the subjects optimally combined
the cue reliability and their motor variability to
determine the best timing to start moving (Battaglia &
Schrater, 2007). In their analysis, additional internal
noise parameters were fitted to behavioral data while
assuming the true noise parameter was known to
subjects, thus it is not directly clear whether and how
well the subjects estimated the noise parameter. Those
studies did not show how the noise parameters, and
thus likelihood, were learned. While the learning of
likelihood has been implied by these studies, it is
important to precisely understand its learning dy-
namics.
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Several theoretical studies have also suggested that
some types of sensory adaptation can be interpreted as
the learning of likelihood (Sato & Aihara, 2011; Sato,
Toyoizumi, & Aihara, 2007; Stocker & Simoncelli,
2006). However, there is little direct evidence that
human subjects actually learn the quality of sensory
input (likelihood) over trials and combine it with the
prior, which is an essential factor in the Bayesian
paradigm that enables us to flexibly make use of
learned information about the world.

Here we investigate likelihood learning in the context
of prior/likelihood integration using a radically sim-
plified setting. Using switches in likelihood width, we
characterize the learning process in great detail. We
analyze the role of instructions for the subjects. We also
use generalization tests to provide solid evidence for the
learning of likelihoods.

Materials and methods

All experimental protocols were approved by the
Northwestern University Institutional Review Board,
were in accordance with Northwestern University’s
policy statement on the use of humans in experiments,
and conformed to the Declaration of Helsinki. All
participants were naive to the goals of the experiment,
provided signed consent forms, and received monetary
compensation for their participation.

Experiment 1

In this experiment, we investigated whether and how
subjects learned about likelihood by manipulating the
width of a likelihood function several times during an
experiment. We used a coin location estimation task
(Berniker et al., 2010; Tassinari, Hudson, & Landy,
2006). Slow prior learning has been reported in a
similar task setting (Berniker et al., 2010), which can
obstruct our main focus of likelihood learning. Thus, in
our experiments, we visually displayed a Gaussian prior
representing the distribution of target coins.

Sixteen subjects (12 males and four females, aged 20–
37 years) participated in Experiment 1. The subjects
were seated 50 cm from a vertical computer monitor
(13.3-in. diagonally). They were instructed to view the
screen as a surface of water and to locate an unseen
coin that a person had dropped into the water. We used
an arbitrary unit to define the horizontal location of the
left and right edges of the screen as �0.5 and 0.5
respectively, and all length values given in this paper
relate to these coordinates. We used a program in
Matlab to control the stimulus presentation and record
the subject responses. At the beginning of each trial, a

blue circle (diameter¼ 0.006), which represented a
splash caused by a coin dropped into the water,
appeared on a graded monochrome background, which
represented the prior probability distribution of the
coin (Figure 1A). The subjects used a computer mouse
to move a vertical blue bar (width¼ 0.01) horizontally
on the screen, and clicked the button on the mouse to
indicate their estimation of the coin location. After the
subjects made a response, the location of the coin was
presented as a yellow circle (diameter¼ 0.006) on the
screen for 1 s. The absolute distance (·100) between
the subject’s response and the coin location in the last
trial was displayed on the right upper corner of the
screen as a score, in addition to the average score for all
completed trials and the current trial number. The
subjects were instructed to keep the average distance as
low as possible. All coins and splashes were displayed
on the vertical center of the screen, thus only their
horizontal locations were important.

The location of the coin was drawn randomly from a
Gaussian distribution with a mean of 0 and a standard
deviation of 0.1. This probability distribution defined
the prior of the coin and was explicitly shown to the
subjects. The location of the splash was drawn from a

Figure 1. Overview of the task and its simple Bayesian model.

(A) An example of the screen. Subjects were asked to locate an

unseen target coin (yellow circle) after observing a splash (blue

circle) caused by the coin. The coin location was displayed as

feedback after the subjects made a response. Subjects moved

the blue line horizontally and estimated the location of the coin.

The graded background shows the prior over the coin position.

Circles and texts are enlarged for better visibility. (B) Bayesian

model of the task. The estimated coin location is the mean of

posterior obtained by combining the prior at the center of the

screen and the likelihood centered at the splash.
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Gaussian distribution centered at the coin, and this
distribution defined the likelihood of the coin. Its
standard deviation was either 0.05 (narrow condition)
or 0.2 (wide condition) and the condition switched
every 70–100 trials. The switching intervals were
sampled from a uniform distribution within that range
and the initial condition was chosen randomly. Each
subject performed 1,000 trials, resulting in 40–60 min of
participation, depending on the subject’s response
speed. The subjects were permitted to take a break
every three switches (approximately every 10 min).

The subjects were told that the height at which the
coins had been dropped determined the spread of the
splashes, i.e., the width of the likelihood. The subjects
were divided into two groups: those in the with-
instruction group (N¼ 9) received information about
how the height was determined, while those in the
without-instruction group (N ¼ 7) did not.

The task instructions were as follows: ‘‘Assume that
the screen is a surface of water. In each trial, it will
appear as if someone has dropped a coin from above,
and you will not see the coin nor the person but only
one splash caused by the coin. Coins and splashes will
always be displayed on the vertical middle line, so the
horizontal location is important. That person deter-
mines the horizontal location of the coins according to
the graded background randomly from trial to trial.
The person tends to drop the coins from brighter
locations. The width of the splash distribution is
determined by the height at which the person drops the
coin. The person is not seeing your responses, and your
responses do not affect their behavior. Your task is to
move the blue line to estimate the location of the coin.
Keep the average distance between your response and
the coin location as low as possible.’’ For those in the
with-instructions group, we added additional instruc-
tions: ‘‘The person dropping the coins chooses the
height from two options, high and low, and sometimes
switches between these options. The person drops the
coins from the same height for maybe tens of trials, and
then switches to the other height.’’ For those in the
without-instructions group, we either said, ‘‘I will tell
you nothing about how the person determines the
height,’’ or said nothing about how the person
dropping the coins determines height.

Experiment 2

Experiment 2 was similar to Experiment 1 except
that multiple likelihoods of coin location were cued by
the splash color and learned simultaneously. The prior
variance of coin location was changed during the
experiment to test whether subjects could generalize a
learned likelihood to a new prior.

Fifteen subjects (10 males and five females, aged 20–
37 years) participated in Experiment 2. We excluded
one subject whose score was greater than two times the
standard deviation of the mean score across all subjects
and who, upon postexperiment questioning, had not
understood the instructions. We used Matlab with the
Psychtoolbox-3 extension (Brainard, 1997; Kleiner,
Brainard, & Pelli, 2007; Pelli, 1997) to generate the
stimuli and record the subject responses. The experi-
ment lasted 40–60 min depending on the subject’s
response speed. The subjects were encouraged to take a
break every 250 trials.

The prior over the coin location was a Gaussian
distribution with a mean of 0 (center of the screen) and
a standard deviation of either 0.06 or 0.18, as described
below. The prior was always represented by the density
of white one-pixel dots on black in the background of
the screen, rather than as intensity. The probability of
the background dots appearing in any horizontal
location was linear to that of the prior at that location,
and normalized to a maximum of 0.95 to prevent an
impression of probability saturation. Each splash was
represented by a green or red circle (diameter¼ 0.01)
with a horizontal location drawn from a Gaussian
distribution centered at the coin location with a
standard deviation of either 0.06 or 0.18, depending on
the color. The correspondence between the colors and
the standard deviations was counter-balanced across
subjects.

Each subject performed 750 trials divided into three
phases: initial likelihood learning (trials 1–400), new
prior learning (trials 401–550), and generalization test
(trials 551–750). During the initial likelihood learning
phase, the standard deviation of the coin prior was
either 0.06 or 0.18 (counterbalanced across subjects).
The color of each splash was randomly chosen every
trial from green and red with equal probabilities. After
the subject made a response, the location of the coin
was presented as a yellow circle (diameter¼ 0.01) for
1 s. In subsequent phases, the prior standard deviation
was switched to the other value. In the new prior
learning phase, subjects saw only one splash color and
thus only one likelihood condition (counter-balanced
across subjects). Feedback about the actual coin
location was given as in Experiment 1. In the
generalization test phase, both splash colors were used
with equal probabilities but subjects did not receive
feedback about coin locations and scores. Thus, in the
new prior learning phase, subjects learned the new prior
in only one context (color) of likelihood. The general-
ization of this likelihood to the other context was tested
in the generalization test phase.

In addition to the instructions received by both
groups in Experiment 1, subjects were instructed as
follows: ‘‘In each trial, one of two people will drop a
coin. The color of the splash specifies which person
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dropped the coin. The two people will drop the coins
from different heights and they will each maintain the
same height throughout the experiment. The density of
the dots in the background shows the overall distribu-
tion of coin location. The people tend to drop the coins
to locations with more dots, and they randomly choose
coin locations from trial to trial. Both people produce
the same overall coin distribution. This distribution can
change, but the height at which the coins are dropped
does not change. At some point in the session, the
location of the coins will no longer be displayed, but
your score will be calculated in the background. So try
to minimize the average distance.’’

Models of human behavior

There are several possible ways the brain could deal
with changes in likelihood width. (a) No adaptive
learning. The brain does not adaptively estimate the
reliability of the sensory information following a
likelihood change. Instead, it utilizes a static strategy to
estimate the coin location. (b) Adaptive but suboptimal
learning. The brain simply learns the likelihood of the
coin location from recent experience. This simple
computation is easy to implement and less computa-
tionally demanding, but is statistically suboptimal. (c)
Bayesian inference with likelihood learning. The brain
adaptively learns the likelihood and maintains optimal
inferences accordingly. We tested these hypotheses to
elucidate the mechanisms underlying likelihood learn-
ing and assess the applicability of Bayesian models in
explaining estimation behaviors.

We compared three models of human behavior that
correspond to the three possibilities above: static
nonlinear mapping from splash to coin, computing the
slope from recent trials, and a fully Bayesian optimal
model.

Static mapping model

In this model, in a given trial, the mapping from the
splash location to the coin location is learned by fitting
a continuous piece-wise linear function to the observed
data up to the trial in a least squared error manner. We
divided the screen into 10 sections horizontally, each
separated by 11 points (two edges and nine intermedi-
ate points) and fitted the mapping in each piece with a
linear function

fiðyÞ ¼ bi þ ciðy� aiÞ ði ¼ 1; . . . ; 10Þ;
where y is the splash location, fi is the mapped
(estimated) coin location when the splash location is in
the i-th piece, ai is the left edge of the i-th piece, and bi
and ci are parameters.

We can remove ci from the constraint of continuity
fi(aiþ1)¼ biþ1. We modeled learning as the act of finding
the remaining b1, . . . , b11 values by minimizing the cost
function

X10

i¼1

Xmi

j¼1

ðfi;j � xi;jÞ2 þ
k
2

X10

i¼1

ðbi � biþ1Þ2;

where mi is the number of data points in the i-th piece
and fi,j and xi,j are the estimated coin location and the
actual coin location corresponding to j-th splash in the
i-th piece. We added the second normalization term for
a smooth mapping function to avoid initial instability.
After each trial, the model learns the piecewise linear
function up to the trial. The only free parameter of this
mapping model is the coefficient k of the normalization
factor.

Recent slope learning model

In this model, in every trial, a linear regressed line is
calculated from recent n trials by linearly regressing
feedback about coin locations from the splash
locations. In each trial, the observer simply predicts
the coin location based on the observed splash
location using the regressed line. There is only free
parameter, n.

Bayesian learning model

In this model, previous observations affect the
current estimation via estimation of the likelihood
width. A generative model of the task is depicted in
Figure 5A, where ht is one of the two possible heights (1
or 2), r1 and r2 are the likelihood widths for each
possible height, and rt

l is the likelihood width in trial t.
The height at the beginning of an experiment is defined
as h1¼ 1. In trial t, the optimal observer’s task after
observing yt is to compute the mean value of the
posterior probability distribution P(xtjx1:t�1, y1:t),
where y1:t denotes all ys from time 1 up to time t.
Assuming the probabilistic structure of the generative
model of the task, after some calculation, this posterior
can be written as

Pðxtjx1:t�1; y1:tÞ
�
X

ht¼1;2

R
Pðytjxt;rt

l ¼ rhtÞ

PðxtÞPðht;rht jx1:t�1; y1:t�1Þdrht :

We choose the estimated value of xt, x̂t, by
calculating the mean value of this posterior. To
compute this posterior of xt, the observer needs to
predict ht, r1, and r2 (the last term). After observing xt

and yt, the prediction can be updated as
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Pðhtþ1;r1; r2jx1:t; y1:tÞ
�
X

ht¼1;2

Pðhtþ1jhtÞPðytjxt;rt
l ¼ rhtÞ

Pðht; r1;r2jx1:t�1; y1:t�1Þ:
this updated prediction can be used to estimate xtþ1 in
the next trial. The initial priors of r1 and r2 are
assumed to be inversely proportional to their values
(Jeffreys priors). The likelihood functions are assumed
to be Gaussian.

The model cannot know when switches will take
place. As such, it needs to consider all possibilities for
when these switches could occur. In this model, for
simplicity, the transition probability P(htþ1jht) is
assumed to be constant over time: P(htþ1jht) ¼ 1� a if
htþ1¼ ht, and a otherwise. Here, a is the switching
probability and is the only free parameter in this
learning model. In the implementation of the model,
the likelihood function is estimated at every time step
and updated, taking into account both the possibility of
there being no switch and the possibility of a switch,
each weighed by their respective probability.

Numerically, this model is implemented by discre-
tizing the probability distributions. Distributions over
x were discretized in the range [–1.5, 1.5] with steps of
0.01 (301 points), and distributions over rs were
discretized in the range [e�5, e] with steps of 0.01 in
power (601 points). We approximated the integrals by
summing up the discretized probability distributions
with appropriate weights and normalizing them after-
wards.

Results

We characterized likelihood learning in a coin
location estimation task in which subjects estimated the
position of a hidden coin from a cue ‘‘splash’’ (Figure
1A). The splash was drawn from a Gaussian distribu-
tion centered on the target, and by changing the
variance of this distribution, we were able to vary how
informative the splash was (and thus change the width
of the likelihood function). In the first experiment, the
likelihood function changed over time while the prior
stayed constant. In the second experiment, the color of
the cue splash indicated the width of the likelihood
function and the prior was switched during the
experiment to probe generalization. For each trial, we
used the coin location estimate to infer how much the
subjects trusted the prior versus the likelihood. This
relative reliance then enabled us to indirectly charac-
terize the subject’s estimate of the likelihood in each
trial.

Measuring the brain’s estimation of the
likelihood

To understand how the likelihood is learned, we
need to have a way of measuring the brain’s estimation
of the likelihood. Although there is no direct way to
measure the estimated likelihood, it can be estimated
indirectly. When the likelihood function is wide,
observation cannot be trusted and subjects are more
likely to achieve a higher score if they rely strongly on
the prior. When the likelihood function is narrow, the
opposite is true. A simple Bayesian model of prior-
likelihood integration (Figure 1B) allowed us to
calculate how strongly subjects should rely on the prior.
This derivation relies on the assumption that the prior-
likelihood combination is actually a good approxima-
tion of a Bayesian model, an issue that has been tested
in a good number of previous studies (Körding &
Wolpert, 2004; Miyazaki et al., 2005; Tassinari et al.,
2006). The weight put on the visual cue position when
estimating the target position can be expressed as

x̂ ¼
r2
p

r2
p þ r2

l

y;

where x̂ is the best estimate, y is the cue position, r2
p

and r2
l are the variance of the prior and the likelihood,

respectively, and the prior mean is 0. The coefficient
provides a measure of how strongly the observer relies
on the observation and, assuming that the prior
variance is already known, it reflects the observer’s
estimation of the likelihood variance. If the coefficient
changes when the likelihood width is changed while the
prior variance is held constant, we can say that the
subject changed their reliance on observation versus
prior knowledge in response to the change in likeli-
hood. We thus have a measurable quantity that we can
use to track a subject’s estimate of likelihood width
over time.

To experimentally determine how strongly the
subject relies on the splash feedback when estimating
the coin position, we plotted the cue positions versus
the subject’s estimates over the trials and calculated the
regressed slope (Figure 2A). A slope close to 0 would
indicate that the subject’s estimated likelihood was
wide, and a slope close to 1 would indicate a narrow
estimated likelihood.

Experiment 1: Dynamics of likelihood learning
and its optimality

In Experiment 1 we investigated whether and how
likelihood was learned by alternating the true likeli-
hood width several times between two values. The prior
was held constant throughout the experiment.
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First, we checked whether the subjects had obtained
the correct prior mean by calculating the y-intercept of
the regressed line from the pooled data (See Figure 2A)
for each subject. If the subject had a prior mean other
than 0, we expected this to be reflected in the y-
intercept value. We found a small bias in the narrow
likelihood condition for the with-instructions group (t
test across subjects, p ¼ 0.01). However, the value of
this bias was much smaller (0.0025 6 0.0023 SD) than
the width of the vertical blue bar (0.01) used to indicate
response making, thus the bias was only marginal. We
found no significant y-intercept values for the other
conditions (wide likelihood condition for the with-
instructions group and both conditions for the without-
instructions group). Therefore, we can reasonably
assume that the subjects obtained a nearly correct prior
mean.

The subjects changed how strongly they relied on the
position of the cues based on the likelihood condition
(Figure 2A). This indicates that the subjects learned the
likelihood variance and adjusted their behavior ap-
propriately. To characterize the dynamics of this
likelihood learning, we quantified the changes in slope
in response to changes in likelihood width. As the prior
was held constant throughout the experiment, we can
reasonably assume that all the learning we observed
was due to the changes in the likelihood. A represen-
tative subject quickly learned the likelihood after each
switch (Figure 2B). This quick learning was also
apparent when averaged across subjects (Figure 3). The
learning occurred roughly within the first 20 trials after
each switch. We also found that the learning speed was
faster when switching from the narrow to wide
likelihood conditions. The experiment was designed
such that a simple Bayesian estimator with the correct

likelihood and prior would use slopes of 0.8 and 0.2 for
the narrow and wide conditions, respectively. However,
the learned slope was significantly different from those
values (t test for data from 30–70 trials after each
switch, p , 10�5 for all conditions). For the narrow
likelihood condition, both groups placed insufficient
weight on vision. While we found some weak biases,
subject data rapidly converged to near-optimal slopes.
We will discuss these deviations later in the Discussion.

To test how likelihoods are learned, we compared
our experimental results to a model-based analysis.
With this approach, we were able to analyze the
dynamics of human likelihood learning and ultimately
compare experimental data with model predictions.
One of the models to be compared was a Bayesian
learning model, which was derived from the generative
model of the task. To test the extent to which the
assumed generative model was affected by instructions,
one subject group was told that the likelihood would
switch throughout the trials (‘‘the person throws coins
from two heights’’) while the other group received no
information about likelihood change. We found the
instructions to have a clear influence on learning
behavior (Figure 3). On average, the acquired slope for
the two conditions was closer in the without-instruc-
tions group (two sample t test for data from 30–70
trials after switch, p , 10�5), indicating that less
learning occurred in the condition without instructions
about likelihood change. In the with-instructions
group, all of the subjects showed a clear difference
between the two conditions. However, in the without-
instructions group, some subjects showed a large
difference as in the with-instructions group, while other
subjects showed a minimal difference (data not shown).
Averaging the data from the two types of subjects in the

Figure 2. Data from a representative subject in the with-instruction group for Experiment 1. (A) The subject’s responses in all trials as

a function of the splash position. Steeper slopes indicate that the subject relied more strongly on the likelihood. We used the slope as

a measure of the subject’s estimate of likelihood width. For reference, the diagonal dashed line shows the prediction when the

subject relied only on the cue position and ignored the prior, and the horizontal dashed line shows the prediction when the subject

ignored the cue. (B) The time-course of the slope. The slope in each trial was calculated by regressing the following five trials. Dotted

lines are the expected slopes (0.2 and 0.8 for wide and narrow conditions, respectively) from the simple Bayesian model if the subject

learned the correct likelihood. The bar above represents the likelihood condition in each trial.
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without-instructions group resulted in a weaker overall
learning level for that group. Instructions thus appear
to be important for this type of learning task.

How do subjects combine information from past
trials into an estimate of the likelihood? We predicted
that trials would influence subsequent trials in a way
that decayed as a function of the number of interme-
diate trials. We found that increasing deviations
between the cue splash and target coin were associated
with decreased reliance on the visual splash in
subsequent trials (Figure 4A). Moreover, this effect
decreased as the number of intermediate trials in-
creased (Figure 4B). We also observed that this
likelihood learning was slower for the wide likelihood
function (Figure 4B, blue vs. red). Thus, there are clear

signs of trial-by-trial likelihood learning over the time
course of several subsequent trials.

Our results indicate signs of likelihood learning.
Thus, we set out to determine which models could
account for the observed learning effects. We compared
three models that corresponded to our three hypotheses
about likelihood learning (see Methods for mathemat-
ical details). (a) Static mapping: Because the overall
distribution of the deviation is wider in the wide
likelihood condition, a learned slope could differ
between conditions if the subjects learned deviation-

Figure 4. Effect of the deviation between splash and target coin

on subsequent trials. (A) Results for the narrow condition

averaged across subjects in the with-instructions group. The

horizontal axis represents the deviation between a subject’s

response and the coin location in a trial. The vertical axis

represents the slope calculated from the pool of trials Dt trials

after the trials with the corresponding deviation. (B) Decreasing

rate of the slope values in (A) for each Dt. The rate was obtained

by regressing the slope values as a function of the deviation in

(A). The error bars show the 95% confidence interval of the

regressed decreasing rate. The blue and red lines show the

results for the narrow and wide conditions, respectively.

Figure 3. Mean slope after each switch. (A) Results for the

subjects who received instructions regarding changes in

likelihood width. Blue and red lines show the results for the

narrow and wide conditions, respectively. The shaded area

indicates the standard error across subjects. Each slope was

calculated from pooled data for corresponding trials within

subjects, and then averaged across subjects. (B) Results for the

subjects who received no instructions regarding changes in

likelihood width.

Journal of Vision (2014) 14(13):13, 1–13 Sato & Kording 8



dependent slopes, even if their strategy was static with
no switching behavior. In this model, the observer
nonlinearly maps the splash position onto the coin
location estimations. This model learns the parameters
initially, but does not incorporate any additional
adaptive processes. (b) Recent slope learning: For this
simple and flexible learning model, we implemented a
system that learns the slope (and essentially likelihood)
from recent n trials. This model can adapt to changes in
likelihood. This strategy is less computationally de-
manding and easier to implement than the fully
Bayesian model below. (c) Bayesian learning: We used
a fully Bayesian optimal model that takes likelihood
switching into account. This model contains a gener-
ative model of the task (Figure 5A), which it uses to
make estimations about the coin location. At trial t, the
splash location yt is observed and the optimal observer
estimates the unknown coin location xt, and to do so, it
has to estimate the likelihood width rt

l .
Among the three models, the fully optimal model

was the closest match to human behavior (Figure 5B).
The optimal model replicated the slower learning
phenomenon seen in the wide-to-narrow switch condi-
tion compared with the narrow-to-wide switch condi-
tion, and the underestimation of slope in the narrow
condition. We compared the fitness of the three models
quantitatively in terms of Bayesian Information Crite-
rion (BIC), which is a criterion for comparing different
models (Figure 5C). We calculated BIC by fitting each
model to all trials for each subject, then averaged BIC
across subjects. We found that all models were
significantly different from one another, and the
optimal model was the best (one-way repeated mea-

sures ANOVA, p , 10�8, and posthoc Tukey-Kramer
test with 95% confidence interval). The estimated free
parameter, the switching probability, of the optimal
model (0.051 6 0.020 SE in the with-instruction
group), was a little higher than the actual average value
of the experimental setting, 1/85 ’ 0.012, but was not
significantly different (t test, p ¼ 0.09). The best-fitted
parameter n of the recent slope model was 22.1 6 2.6
SE. This best fit of the optimal model suggests that the
subjects learned the likelihood in a very efficient way.
The result for the without-instructions group was
similar, although the fitted parameter was much more
broadly distributed across subjects (0.26 6 0.12 SE).
We also checked the performance of the optimal model
taking the mode of the posterior distribution as the
estimation of the coin location (MAP estimate) instead
of the mean. Their performance was similar but the
model that takes the mean was significantly better
(Supplementary Figure S1).

Experiment 2: Context dependent likelihood
learning, not slope learning

Although we reported that the subjects displayed
adaptive behavior in response to changes in likelihood,
one could argue that the subjects just learned the slope,
rather than the likelihood, and switched between
different learned slopes. This issue is deeply related to
how uncertainty is represented and how learning of
uncertainty occurs in the brain. To show that the
subjects actually learned the likelihood, we conducted
Experiment 2, in which we tested whether the learned

Figure 5. Description of the optimal model and fitted results. (A) Schematic diagram of the generative model of the task. This diagram

depicts the probabilistic structure of the variables in the task. At trial t, the fully Bayesian model makes use of this generative model

and infers the coin location xt from the observed splash yt and all past splashes and coin location feedback. (B) Fitted results of three

models for the with-instructions group. Blue and red lines show the results for the narrow and wide conditions, respectively. Dashed,

dotted, and dash-dot lines correspond to optimal, recent slope, and static mapping models, respectively. (C) For model comparison

we plotted the mean BIC of each model across subjects in the with-instructions group. The error bars show the standard error.
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likelihood was generalized to a new prior using a
context dependent learning paradigm.

Trials in this experiment were divided into three
phases: the likelihood learning phase, the new prior
learning phase, and the generalization test phase. In the
likelihood learning phase, the likelihood width was
indicated by the color (green or red) of the splash,
which was randomly chosen on a trial-by-trial basis.
The prior width was held constant. The subjects
received feedback about the correct coin location in the
first two phases. The representative subject successfully
learned two contextual likelihoods (Figure 6A). At the
beginning of the new prior learning phase, the prior
width changed to a different value (in Figure 6A,
narrow to wide prior), after which it remained fixed in
subsequent trials. Either one of the two likelihoods (one
color only) was used in this phase. The representative
subject came to rely more on observation, as predicted
theoretically. The change was almost instant because
we explicitly showed the prior on the screen. In the
generalization test phase, both likelihoods were used
but no feedback was given.

After the prior switch, subjects were not able to
directly learn the new slope for the color that was not
used during the second phase, because the subjects
never get feedback for that color in the latter two
phases. If slopes were learned instead of the likelihoods
then we would expect the slope to be unchanged.
According to Bayesian predictions, if likelihoods were
learned then this manipulation should affect the slope
for the untrained color.

We measured the generalization effect using the
difference between the slope before and after the prior
switch. The representative subject generalized the
learned likelihood (that had not been used with the new
prior) to the new prior (Figure 6A). The generalization
effect was significant when averaged across subjects
(Figure 6B, paired two sample t test, p ¼ 0.0002,
comparison between the slope calculated from the last
100 trials in the first phase and the slope from the first
100 trials in the last phase). Note that even though the
two lines during the last phase (Figure 6B) look close,
each subject is involved in either red or blue line, not
both. The slopes were significantly different when
analyzed for each subject (paired two sample t test, p¼
0.0004).

One argument poses that if the learned quantity was
slope, the learned slope for the color not used in the
new prior learning phase could have been gradually
forgotten during the phase, and then the slope was
attracted toward the newly learned slope for the other
color. This could explain the red line in Figure 6B, but
not the blue line. The generalization effect was
significant even when we analyzed only the data for the
blue line condition (paired two sample t test, p¼ 0.03).
Thus, even this extended model of slope learning

cannot explain the data. These results clearly show that
the subjects learned the likelihood, not the slope, in a
context-dependent way, and combined the learned
likelihood with the new prior.

Figure 6. Generalization of likelihood learning (Experiment 2).

(A) Data for a representative subject. Blue and red lines

correspond to the narrow and wide likelihood conditions,

respectively. The slope was calculated by dividing the trials into

10-trial bins and then categorizing the trials in each bin based

on condition. We then calculated the slope for each condition.

For this subject, the wide likelihood was used to learn the new

prior. The predicted slope values from the simple Bayesian

model were 0.1 (red) and 0.5 (blue) before the switch and 0.5

(red) and 0.9 (blue) after the switch. (B) Normalized slope for

the likelihood that was not used during new prior learning (e.g.,

the blue line for the subject in [A]) averaged across all subjects.

The slope was normalized in the sense that, for the subjects

whose initial prior was wider, the obtained slope value was

subtracted from 1 to flip the results vertically and compare

them directly across different initial prior conditions. Clearly,

training with one likelihood condition in the new prior learning

phase carried over to the other likelihood condition (dashed

arrows).

Journal of Vision (2014) 14(13):13, 1–13 Sato & Kording 10



Discussion

In this study, we changed the variance of sensory
observations and thus examined likelihood learning.
We found that subjects learned to rely more on reliable
visual cues. Indeed, this should follow naturally from
the Bayesian prior/likelihood combination. We con-
tinued with a quantification of the dynamics of
likelihood learning. Subjects integrated subsequent
trials into an estimate of likelihood, and this integration
process was affected by task instructions. Our human
behavioral data were well fit by a Bayesian model that
incorporated the process of likelihood switching during
the experiment. Using a generalization strategy, we
showed that the subjects learned the likelihood, and not
the direct slope, in a context dependent way, as the data
cannot be explained by simple error correcting algo-
rithms.

One could argue that, although the likelihood width
was the quantity to be learned in this experiment,
learning might have been achieved by acquiring a prior
over some hidden parameter that implicitly determined
the likelihood, making this a prior learning task. We
used the words likelihood and prior to refer to the
likelihood function for the task in each trial, i.e., the
likelihood of the coin location obtained from the splash
location, and the prior for the task, i.e., the overall
distribution of coins, in each trial. Thus, the likelihood
is essentially information about a task-relevant target
(coin location) obtained from current observations, and
the prior is information before the current observa-
tions. In this paper, we used a task in which the variable
to be estimated and the current observation were
clearly defined in each trial to investigate whether and
how human subjects learned how strongly they could
rely on observation versus the prior to perform the task
efficiently. We found evidence of learning about the
likelihood of the task, regardless of what the underlying
process is. How subjects identify the quantity to be
estimated when it appears to be arbitrary and how
subjects learn about more detailed stochastic structures
embedded in a likelihood and a prior are important
topics, although they are not the main focus of our
study.

In terms of a Bayesian model of learning, prior
learning and likelihood learning take essentially the
same form. Here, we showed that they share the same
features. For example, it has been shown theoretically
(DeWeese & Zador, 1998) and experimentally (Ber-
niker et al., 2010; Miyazaki et al., 2005) that the
learning speed of the variance parameter of a prior is
faster when the distribution is changed from narrow to
wide, as opposed to the other way around, which we
observed. The computational similarity of prior and
likelihood learning raises the question of how similar
the two learning phenomena are.

In a recent study on prior learning, Berniker et al.
(2010) used a similar experimental paradigm to that in
this study. Despite a small number of differences
(instructions, screen background, parameters) it seems
meaningful to compare the results. There, prior
learning was also found to follow the predictions of a
Bayesian learning model. However, the initial learning
in that experiment required about 200 trials, which is
about ten times slower than the likelihood learning
observed in the current study. This might be partially
because both the prior and likelihood were unknown in
the study by Berniker et al. (2010). However, it is
implausible that this is the sole reason for the
difference. Another possibility is that, in their experi-
ment, learning of the prior mean slowed down the
learning process. Although subjects also had to learn
the center of the likelihood even in our experiment, one
possible argument is that it is probably more natural
for the subjects to guess that the splash location
matches the likelihood center in our experiment, than
to guess the screen center is the prior center in Berniker
et al.’s experiment. However, they showed that the
learning of the prior mean was very fast (roughly within
the first ten trials), so the need to learn the mean is
unlikely the reason of the much slower learning.
Computationally, the difference between the two
experiments suggests that the natural initial assump-
tions made about the likelihood function are more
vague than those made about the prior. This might also
suggest that learning about the prior and likelihood
involves different neural mechanisms, which is consis-
tent with a recent finding that prior and likelihood
uncertainty is represented in different regions in the
brain (Vilares, Howard, Fernandes, Gottfried, &
Kording, 2012).

Although the mean slope of the behavior and the
optimal model matched well, the standard deviation of
the slope was larger for the behavioral data
(Supplementary Figure S2). There could be several
possible reasons. First, even if it is a very simple task to
point to the middle point between two clearly visible
dots, the subjects’ responses certainly have some
variance. This variance might come from calculation
variability and motor variability. It is possible to
incorporate such additional variance parameters to the
model. However, we constructed the model with
minimum number of free parameters to show our main
point as clearly as possible. Second, not all subjects
seemed to do their best to minimize the distance
between their response and the coin on every trial.
Despite the instructions, some of them appeared to
make rapid responses to shorten the experiment. Such
subjects might still have made optimal responses on
average but with a greater variance.

We found that the subjects who were not given
instructions about the likelihood switch showed weaker
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learning on average than those who were given
instructions. It appears that the subjects in the without-
instructions group did not learn the likelihood effec-
tively, but this result was expected because the subjects
could adapt an arbitrary generative model as opposed to
the optimal model with the knowledge of likelihood
switching. Indeed, subjects who reported that they
noticed the switching of the likelihood function tended
to show stronger learning than subjects who did not
notice switching. It is possible that noticing the switching
of the likelihood function involved some kind of meta-
learning about the probabilistic structure of the task.
This issue may be an important topic for future research.

Context dependent learning enables us to flexibly
adapt to new environments and switch between them.
Many studies have shown that the brain can, at least
partially, achieve context dependent learning in the
visual (Seydell et al., 2010), tactile (Nagai, Suzuki,
Miyazaki, & Kitazawa, 2012), multisensory (Yama-
moto, Miyazaki, Iwano, & Kitazawa, 2012), and motor
(Osu, Hirai, Yoshioka, & Kawato, 2004) modalities,
among others. We showed that different likelihoods
can be learned simultaneously in different contexts
defined by color cues. Some studies have found color-
cued contextual adaptation (Addou, Krouchev, &
Kalaska, 2011; Osu et al., 2004; Wada et al., 2003),
while others have shown that color-cue alone cannot
induce contextual learning for multiple distributions
(Nagai et al., 2012; Seydell et al., 2010). Because the
tasks are quite different between these experiments and
that in the current study, we cannot reasonably discuss
the reason for this discrepancy. However, investiga-
tions of context enabled learning for multiple distri-
butions will produce insights about the mechanisms of
learning.

In our task, the correct feedback was always given to
the subject. In reality, a feedback is not always given. In
the fish-catching task example, there are different
possible ways that the likelihood is updated when the
catching fails. The catcher might use different sources
of information across space, time, and sensory modal-
ities providing the true fish location, or the catcher
might be able to learn the likelihood only from
successful trials. How the learning differs between in
our simplified paradigm and in more realistic situation
is an interesting future topic.

Here, we showed that human subjects could learn the
quality of sensory input represented in likelihood over
time and adjust their behavior in response to changes in
likelihood. Many internal and external factors affect
the precision and reliability of sensory information, and
we adapt to such changes to efficiently perceive and
interact with the world. How and where in the brain
likelihood is learned and combined with the prior is an
important topic for understanding human behavior.

Keywords: Bayesian models, likelihood learning,
sensorimotor integration, context-dependent learning
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