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Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought:
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We review the photosynthetic responses to drought in ®eld-grown grapevines and other species. As in other
plant species, the relationship between photosynthesis and leaf water potential and/or relative water content in
®eld-grown grapevines depends on conditions during plant growth and measurements. However, when
light-saturated stomatal conductance was used as the reference parameter to re¯ect drought intensity, a common
response pattern was observed that was much less dependent on the species and conditions. Many photosynthetic
parameters (e.g. electron transport rate, carboxylation ef®ciency, intrinsic water-use ef®ciency, respiration rate in
the light, etc.) were also more strongly correlated with stomatal conductance than with water status itself.
Moreover, steady-state chlorophyll ¯uorescence also showed a high dependency on stomatal conductance. This
is discussed in terms of an integrated down-regulation of the whole photosynthetic process by CO2 availability
in the mesophyll. A study with six Mediterranean shrubs revealed that, in spite of some marked interspeci®c dif-
ferences, all followed the same pattern of dependence of photosynthetic processes on stomatal conductance, and
this pattern was quite similar to that of grapevines. Further analysis of the available literature suggests that the
above-mentioned pattern is general for C3 plants. Even though the patterns described do not necessarily imply a
cause and effect relationship, they can help our understanding of the apparent contradictions concerning stomatal
vs. non-stomatal limitations to photosynthesis under drought. The signi®cance of these ®ndings for the improve-
ment of water-use ef®ciency of crops is discussed. ã 2002 Annals of Botany Company
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INTRODUCTION

The debate as to whether drought mainly limits photosyn-
thesis through stomatal closure or through metabolic
impairment has been running since the earliest reports on
the effects of drought on photosynthesis (Jones, 1973;
Boyer, 1976; Quick et al., 1992; Lawlor and Uprety, 1993;
Cornic, 1994; Lawlor, 1995; Tezara et al., 1999; Cornic,
2000; Flexas and Medrano, 2002a, b). During the last
decade, stomatal closure was generally accepted to be the
main determinant for decreased photosynthesis under mild
to moderate drought (Sharkey, 1990; Chaves, 1991; Ort
et al., 1994; Cornic and Massacci, 1996). Previously
described non-stomatal effects were mostly attributed to
the presence of non-homogeneous stomatal closure during
drought (Downton et al., 1988; Terashima et al., 1988).
However, evidence has been accumulating that shows that
photophosphorylation (Havaux et al., 1987; Meyer and de
Kouchkovsky, 1992), RuBP regeneration (GimeÂnez et al.,
1992; Gunasekera and Berkowitz, 1993) and Rubisco
activity (Castrillo and Calcagno, 1989; Medrano et al.,
1997) are impaired under drought. More recently, Lawlor
and co-workers (Tezara et al., 1999) pointed out that
impaired photophosphorylation and ATP synthesis was the
main factor limiting photosynthesis in sun¯ower, even
under mild drought. Thus, the old controversy has surfaced

again (Cornic, 2000; Flexas and Medrano, 2002a, b), and
was discussed at the SEB Meeting in Canterbury, UK, in
April 2001 (Cornic and Fresneau, 2002; Lawlor, 2002; Tang
et al., 2002).

Comparing results from different authors is complex due
to interspeci®c differences in the response of stomatal
conductance and photosynthesis to leaf water potential and/
or relative water content, the parameters most often used to
assess the degree of drought (Lawlor, 1995; Cornic and
Massacci, 1996). It is clear that stomata close progressively
as drought progresses, followed by parallel decreases of net
photosynthesis. However, stomatal conductance is not
controlled by soil water availability alone, but by a complex
interaction of factors internal and external to the leaf.

It is certainly recognized that leaf water status interacts
with stomatal conductance and transpiration and, under
water stress, a good correlation is often observed between
leaf water potential and stomatal conductance. However, the
precise relationship is dependent, among other factors, on
the species studied, the drought history of the individuals
studied, the size of pots in which the plants are rooted or the
environmental conditions during drought (Schulze and Hall,
1982; Tardieu and Simonneau, 1998; Flexas et al., 1999a;
Tyree, 1999). Even within a given species, comparing
results from different studies may be dif®cult. For instance,
we have observed that the photosynthetic response to pre-
dawn leaf water potential differs among grapevines, and* For correspondence. Fax +34 971 173184, e-mail dbajfs4@ps.uib.es
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depends on conditions during plant growth and measure-
ments, as well as on the cultivar examined (Flexas et al.,
1998, 1999a, b; Escalona et al., 1999; Bota et al., 2001).

Moreover, stomata often close in response to drought
before any change in leaf water potential and/or leaf
water content is detectable (Gollan et al., 1985; SocõÂas
et al., 1997). It is now well established that there is a
drought-induced root-to-leaf signalling, promoted by soil
drying and reaching the leaves through the transpiration
stream, which induces closure of stomata. This chemical
signal has been shown to be abscisic acid (ABA), which
is synthesized in the roots in response to soil drying
(Davies and Zhang, 1991). However, its role is not
simple, and a direct correlation between xylem ABA
content and stomatal conductance has been shown only
in some cases (Correia et al., 1995; SocõÂas et al., 1997).
Leaf water potential (Tardieu and Davies, 1992; SocõÂas
et al., 1997; Tardieu and Simmoneau, 1998), plant
nutritional status (Schurr et al., 1992), xylem sap pH
(Davies, 2002), farnesyltransferase activity (Pei et al.,
1998) and other factors seem to modulate stomatal
sensitivity to ABA. Xylem hydraulic conductivity, which
is sometimes decreased under drought, has been shown
to modulate stomatal closure directly (Salleo et al.,
2000; Hubbard et al., 2001). Finally, stomata also close
as leaf-to-air vapour pressure de®cit (VPD) increases
(Raschke, 1979; Dai et al., 1992; Oren et al., 1999),
irrespective of soil water availability.

In summary, this complex regulation of stomatal
conductance is related to important differences among
species and genotypes in the response of stomata to leaf
water potential, relative water content, ABA and other
parameters, making it dif®cult to de®ne a pattern of
photosynthetic responses to drought. An interesting case
is represented by species like grapevine that show
isohydric behaviour (ChoneÂ et al., 2001). These species
can show substantial photosynthetic limitations without
any detectable change in their leaf water potential or
relative water content (Tardieu and Simmoneau, 1998),
thus raising questions as to the suitability of these
parameters as a basis for comparison when studying the
effects of drought on photosynthesis.

Nevertheless, it must be emphasized that a high
degree of co-regulation of stomatal conductance (gs) and
photosynthesis is usually found (Wong et al., 1979;
Farquhar et al., 2001). Since gs is responsive to all the
external (soil water availability, VPD) and internal
(ABA, xylem conductivity, leaf water status) factors
related to drought, it represents a more integrative basis
for the overall effects of drought than leaf water
potential and relative water content. Therefore, in
searching for a common pattern of photosynthetic
response to drought, we have used gs as an integrative
parameter re¯ecting the water stress experienced by the
plant. However, stomatal movements are very dynamic
due to complex regulation by multiple factors. For this
reason, mid-morning, light-saturated stomatal conduc-
tance (which is usually correlated with the average daily
mean conductance) was taken as a representative value
of gs. This was preferred to midday gs because, as

drought becomes progressively more intense, the daily
peak conductance drops and is displaced from around
midday towards the early morning hours (Vadell et al.,
1995; Flexas et al., 1999a).

The present report reviews a series of studies of the
response of grapevines and other species to progressive
drought. In these studies we relate every photo-
synthetic parameter (measured at steady state and light
saturation) to the maximum light-saturated stomatal
conductance observed for that plant at the moment of
measuring.

RELATING THE ELECTRON TRANSPORT
RATE TO LIGHT-SATURATED STOMATAL

CONDUCTANCE GENERALIZES ITS
RESPONSES TO DROUGHT IN GRAPEVINES

Early studies of chlorophyll ¯uorescence in irrigated and
non-irrigated grapevines growing in the ®eld during
summer (Flexas et al., 1998) showed that permanent
photoinhibition, as determined by pre-dawn photochemi-
cal ef®ciency (Fv/Fm), was rare even under severe
drought. The rate of light-saturated electron transport
(ETR), measured at midday, sometimes decreased in
non-irrigated plants, but decreased to a lesser extent
than net CO2 assimilation (An). This was understood as
indicative of a relative increase in photorespiration,
which has been known to occur under drought since the
early studies by Lawlor and co-workers (Lawlor and
Fock, 1975, 1977a, b; Lawlor, 1976a, b; Lawlor and
Pearlman, 1981) and is now well accepted (Wingler
et al., 1999, 2000). We have recently demonstrated that
O2 uptake increases signi®cantly in water-stressed
grapevines, presumably due mainly to photorespiration
and only due in minor part to an increase in the Mehler
reaction (Flexas et al., 1999b, 2002a). At the time of
the ®rst study (Flexas et al., 1998), we assumed that
photorespiration might be an important photoprotective
mechanism in ®eld-grown grapevines, as suggested for
other species (Heber et al., 1996; Kozaki and Takeba,
1996), since ETR remained relatively high even under
severe stress. Moreover, although there was a certain
tendency for ETR to decrease with decreasing pre-dawn
leaf water potential (Y), a non-signi®cant relationship
was observed between these two parameters (Fig. 1A).
These results contrasted with the highly signi®cant linear
relationship that was observed recently between ETR
and Y in 2-year-old grapevines of the same cultivar
(Tempranillo), maintained in large pots and grown under
®eld conditions (Flexas et al., 1999a, see Fig. 1A).
Figure 1B shows that the response of stomatal
conductance to Y was also different in ®eld-grown
and potted grapevines, possibly due to differences in the
root system, osmotic adjustment and/or stomatal sensi-
tivity to drought. Interestingly, when ETR was plotted
against gs, a single hyperbolic function satisfactorily
®tted data from both ®eld-grown and potted plants
(Flexas et al., 2002a) (Fig. 1C). From gs values of 400
down to about 150 mmol H2O m±2 s±1, ETR is little
affected. Lower gs values lead to steep reductions of
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ETR. A study with 22 different grapevine cultivars,
rooted in pots and grown under ®eld conditions (Bota
et al., 2001), also revealed that ETR correlated better
with gs than with either leaf relative water content
(RWC) or Y (Flexas et al., 2002a).

The primary correlation between An and gs was
already known to exist for both ®eld- and pot-grown
plants (Escalona et al., 1999; Flexas et al., 2002a). The
most surprising of these new results was that the use of
gs also generalized the response of a parameter that, in
principle, was not directly related to stomatal closure.
That is, a secondary strong relationship was also found
between ETR and gs.

LIGHT-SATURATED STOMATAL
CONDUCTANCE GENERALIZES THE

RESPONSES OF MANY PHOTOSYNTHETIC
PARAMETERS TO DROUGHT IN

GRAPEVINES

Apart from ETR, pre-dawn Fv/Fm and the sub-stomatal CO2

concentration (Ci) have also been shown in previous studies
to be more dependent on gs than on Y (Flexas et al., 1998;
Escalona et al., 1999). On the basis of these observations,
as well as on theoretical considerations given in the
Introduction, we hypothesized that the use of gs as an
integrative parameter re¯ecting the water stress condition of
the plant would help to generalize a pattern of response of
different photosynthetic processes to drought. To test this
hypothesis, we related different photosynthetic parameters,
studied in both ®eld- and pot-grown grapevines between
1994 and 2000, to the corresponding light-saturated gs

(Flexas et al., 2002a). These parameters included An, Ci, the
estimated gross photosynthesis (Ag), ETR, the ratios ETR/
An and ETR/Ag, leaf dark respiration (RD), pre-dawn Fv/Fm,
non-photochemical quenching of chlorophyll ¯uorescence
at midday (NPQ) and parameters derived from analyses of
An±Ci curves, such as the apparent carboxylation ef®ciency
(e), leaf light respiration (RL), CO2 compensation point (G)
and the CO2-saturated rate of photosynthesis (Asat). All
parameters were found to be highly signi®cantly correlated
to gs, and accurately ®tted data from both ®eld-grown and
potted plants, as well as data from 23 different cultivars
(Flexas et al., 2002a).

Drought usually leads to erroneous calculation of Ci due
to patchy stomatal closure (Downton et al., 1988; Terashima
et al., 1988) and different cuticular conductance to water
vapour and CO2 (Boyer et al., 1997). These limitations were
taken into account and estimated, and the true Ci was re-
calculated accordingly (Osmond et al., 1997a; Escalona
et al., 1999; Flexas et al., 2002a). Therefore, the Ci data
used in the present paper should be free of errors, except for
the low accuracy of gas-exchange determinations at very
low gs.

Irrespective of the origin of the data (year, season,
irrigation treatment, ®eld- or pot-grown plants), signi®cant
regression patterns were observed between each parameter
and gs. Three regions could be differentiated on these
regressions along a gradient of gs during the development of
drought. Decreases in gs from 0´4 to 0´15 mol H2O m±2 s±1

(corresponding to a mild water stress) were paralleled by a
decline in An and a progressive decline in the sub-stomatal
CO2 concentration. This suggested that stomatal limitations
to photosynthesis were dominant. The ratio ETR/An

increased, mirroring the decline in Ci, which suggested an
increased rate of photorespiration. At lower values of gs

(0´15±0´05 mol H2O m±2 s±1), Ci still decreased, but the
electron transport rate and the carboxylation ef®ciency
started to decline. At this stage, both stomatal and non-
stomatal limitations were therefore important. Further
reductions of gs (< 0´05 mol H2O m±2 s±1) led to steeper
reductions of An, ETR and e, and to steep increases in Ci,
indicating that non-stomatal limitations to photosynthesis
became dominant. Under these conditions pre-dawn Fv/Fm

F I G . 1. Relationships between photosynthetic electron transport rate
(ETR) and pre-dawn leaf water potential (Y)(A), and stomatal
conductance and pre-dawn leaf water potential (B) in ®eld-grown (solid
lines) and potted (broken lines) grapevines. Only the regression ®ts are
shown, indicating their correlation coef®cient and signi®cance (data from
Flexas et al., 1999a). When ETR was plotted against stomatal
conductance (C), a single hyperbolic correlation was observed including

®eld and potted plants (data from Flexas et al., 2002a).
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occasionally decreased. Although the ratio ETR/An and G
increased exponentially with decreases in gs, the ratio ETR/
Ag remained almost constant through the entire range of gs,
suggesting that the Mehler reaction did not increase
substantially as stress progressed.

In summary, these results show that in addition to An and
ETR, other important photosynthetic parameters were
correlated to gs in a simple manner, whereas their correl-
ation to Y and RWC was dependent on experimental
conditions.

DO THESE RELATIONSHIPS GIVE INSIGHTS
INTO THE PROCESSES LIMITING

PHOTOSYNTHESIS UNDER DROUGHT IN
GRAPEVINES?

The curves of best ®t between four parameters (An, ETR,
Asat and e) and gs are shown in Fig. 2. These parameters
were selected because they represent very important
components of photosynthesis: An is the actual rate of
photosynthesis, ETR re¯ects the capacity for energy and
reductant synthesis, Asat may be related to the potential
photosynthetic capacity and e re¯ects, to some extent, the
activity and activation state of Rubisco.

Once these general relationships are established, one can
evaluate the relative importance of each process in
photosynthetic limitation at any given degree of water
stress, represented by a value of gs (Fig. 3). As drought
progresses, the proportional decrease in the parameters
studied was much less than the decline in stomatal
conductance for any given interval of the latter. For
instance, when gs was halved, An decreased by only 30 %.
Therefore, during that interval, Ci decreased, whereas the
intrinsic water use ef®ciency (An/gs) and the rate of
photorespiration increased (not shown). At the same time,
Asat decreased by 20 % and ETR and e decreased by less
than 10 %. Therefore, over that range of gs (i.e. mild
drought), stomatal closure seems to be the main cause of
decreased photosynthesis. This does not mean that non-
stomatal limitations are absent, but simply that they are not
the dominant factor limiting photosynthesis. For instance,
decreasing Asat suggests that the capacity for RuBP
regeneration is adjusted progressively since early stomata
closure.

Further reduction of gs leads to more important reductions
of all the parameters studied. When gs is 100 mmol H2O m±2

s±1, An decreases by 50 %, Asat by 35 %, and ETR and e by
25±30 %. When gs equals 50 mmol H2O m±2 s±1, An

decreases by 70 %, Asat and e by 50 %, and ETR by 40 %.
Below this threshold of gs, Ci increases (not shown),
suggesting the predominance of non-stomatal limitations to
photosynthesis.

These results in ®eld-grown grapevines reveal a pattern of
gradual response of photosynthesis to water stress, similar to
that proposed by Lawlor (1995). After an early effect of
drought resulting in partial stomatal closure, a metabolic
adjustment takes place through limited RuBP-regeneration
(possibly due to impaired ATP synthesis, see below).
Further reductions of gs as drought progresses lead to
reduced photochemistry and carboxylation ef®ciency.

Photoinhibition eventually occurs under conditions of very
severe drought and almost complete stomatal closure.

WHAT ABOUT OTHER SPECIES?

To further test the generality of the relationships between
different photosynthetic parameters and light-saturated gs,
six Mediterranean sclerophyllous trees and shrubs were
subjected to progressive soil drying (GulõÂas et al., 2002).

F I G . 2. Relationships between stomatal conductance (gs) and: net CO2

assimilation (An) (A), photosynthetic electron transport rate (ETR) (B),
light- and CO2-saturated net CO2 assimilation (Asat) (C), and apparent
carboxylation ef®ciency, estimated as the initial slope of An±Ci curves (e)
(D). Data correspond to ®eld-grown grapevines, and only the best-®tting
correlation curves are shown, all of them being hyperbolic and highly
signi®cant. Leaf temperatures ranged from 28´5 to 39´3 °C (data from

Flexas, 2000).
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We had previously shown that in one of these species,
Pistacia lentiscus L., drought induced a cascade of
photosynthetic regulations qualitatively similar to that of
grapevines, ®rst involving stomatal closure and, later, non-
stomatal regulation (GulõÂas et al., 2002). Three of these
species (Quercus ilex, Rhamnus alaternus and R. ludovici-
salvatoris) showed proportional decreases of gs and RWC in
response to soil drying. In contrast, the other three (Quercus
pubescens, Pistacia lentiscus and P. terebinthus) showed
similar decreases of gs but their RWC remained almost
constant (Flexas, GulõÂas, AbadõÂa and Medrano, unpubl.
res.). In spite of this distinct behaviour, all six species
showed a similar pattern of dependency of different
photosynthetic parameters on gs. We have superimposed
results obtained for these six species over the relationships
obtained for grapevines (Fig. 4), and also added to the ®gure
results from other authors to increase the genetic and
environmental variability. All the data points added are
similar to the relationship for grapevine in respect to An,
ETR and e. This was surprising given that the species
studied represent a substantial variety of life forms and
photosynthetic characteristics. The data that ®tted least well
were those for Asat for the six sclerophyllous species (Fig.
4C). The fact that these species share with grapevines a
common relationship between An and gs, while displaying
such a divergence in their relationship between Asat and gs,
could re¯ect a higher mesophyll resistance in the sclero-
phyllous species. It has been shown that sclerophyllous
and woody species generally have a substantially higher
mesophyll resistance than more mesophytic species (Lloyd
et al., 1992; Epron et al., 1995; Evans and von Caemmerer,
1996). Additionally, the data from other authors were not
dissimilar to the relationships found in grapevines. The non-
origin intercept of the data from Martin and Ruiz-Torres
(1992) was probably due to the fact that the relationships
were not obtained from the original data, but rather from a

combination of the best-®t relationships given by the
authors for the plots of gs, Asat and e vs. Y.

From the present data it is concluded that, although there
is wide variability among species and genotypes in the
maximum values of photosynthesis and stomatal conduct-
ance, as well as in the variations of leaf Y and RWC

F I G . 4. This is the same as Fig. 2, after adding some data from the
literature on other species to achieve a broad range of species and plant
types. In all plots (A±D), data from GulõÂas et al. (2002) on six different
Mediterranean sclerophyllous shrubs (®lled circles) have been added. In
A and B, data from other authors and species have been added (open
circles). These include data on three different tropical understorey plants
(from Ishida et al., 1999), on the evergreen sclerophyllous shrub,
Pistacia lentiscus (from Flexas et al., 2001), and on alfalfa (Medicago
sativa) plants (AntolõÂn and SaÂnchez-DõÂaz, 1993). In C and D, curves of
best ®t (dotted lines) between the plotted parameters obtained by Martin

and Ruiz-Torres (1992) in wheat (Triticum aestivum) are shown.

F I G . 3. Schematic pattern of response of photosynthesis in grapevines to
drought, using gs as a reference parameter. Three main regions are
distinguished, and the down-regulation of different photosynthetic

parameters is indicated for every region.
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(Schulze and Hall, 1982; Vadell and Medrano, 1992; Bota
et al., 2001), the photosynthesis to conductance ratio is
largely maintained (see also Farquhar et al., 1987; Lloyd
et al., 1992; Bota et al., 2001). Even when relationships
between different photosynthetic parameters and gs are
in¯uenced by the species (Fig. 4; see Schulze and Hall,
1982; Farquhar et al., 1987), the species-effect seems to be
much less than that on photosynthesis and RWC or Y.

DO GAS-EXCHANGE DATA MATCH THE
BIOCHEMICAL EVIDENCE?

The present results support a quite generalized pattern of
down-regulation of different photosynthetic parameters in
response to drought when using light-saturated gs as a
reference parameter. Such a pattern can be used to analyse
the relative importance of every process at any given degree
of stress. Nevertheless, all the evidence presented to date
derives from in vivo measurements of gas exchange and
chlorophyll ¯uorescence, and the interpretation of the
results ultimately lies in the model of Farquhar and co-
workers (Farquhar, 1980; von Caemmerer and Farquhar,
1981) and its derivatives. The validation of this model still
needs to be extended, especially in respect to long-term
responses (Farquhar et al., 2001).

To test the validity of this gas-exchange model for the
estimation of drought-depressed rates of certain biochem-
ical reactions, the results presented here are compared with
those of other authors in which destructive, biochemical
determinations were made in control and water-stressed
plants at the same time as gas-exchange measurements. In
particular, two important assumptions of the gas-exchange
model require validation. First, in the model, control of
RuBP regeneration is ascribed to ETR but, as recognized by
Farquhar et al. (2001), it could also be limited by other
components of the photosynthetic carbon reduction cycle.
Secondly, the apparent carboxylation ef®ciency (e) was
thought to be controlled by Rubisco activity, but other
mesophyll limitations to photosynthesis may also exert
control over e. It is important to address both aspects for the
study of photosynthetic responses to drought.

Decreased capacity for RuBP regeneration should come
from decreased ATP synthesis under moderate water stress

Decreased capacity for RuBP regeneration, as determined
by the CO2-saturated rate of photosynthesis, has been shown
many times to be an early response to drought, decreasing
much earlier than e (von Caemmerer and Farquhar, 1984;
Martin and Ruiz-Torres, 1992; Escalona et al., 1999; see
Figs 3 and 4). Determination of RuBP content of leaves
from water-stressed plants seems to con®rm that decreased
capacity for RuBP regeneration is an early response to
drought (GimeÂnez et al., 1992; Gunasekera and Berkowitz,
1993). Farquhar's model of photosynthesis assumes that this
may be due to decreased ETR. However, the introduction of
chlorophyll ¯uorescence techniques has shown that under
mild drought Asat is usually reduced to a much greater extent
than ETR (Figs 3 and 4). Tezara et al. (1999) have suggested
that decreased ATP synthesis through ATPase impairment

would lead to reduced RuBP regeneration. Whether
impaired ATPase would also affect ETR or not depends
on the precise mechanism of impairment, which is still not
well understood, and other possible unknown metabolic
adjustments. In spite of these uncertainties, there seems to
be an agreement between gas exchange and biochemical
literature. Clearly, both limited RuBP regeneration and
impaired ATP synthesis still occur at high light-saturated gs

(over 150 mmol H2O m±2 s±1), i.e. in early phases of drought
development (Younis et al., 1979; Turner et al., 1985;
Havaux et al., 1987; Meyer and de Kouchkovsky, 1992;
Tezara et al., 1999). To our knowledge, there is only one
report (Ortiz-LoÂpez et al., 1991) of no inhibition of ATPase
even at lower gs. The causes for reduced ATP synthesis
under mild drought remain to be determined.

Decreased carboxylation capacity does not re¯ect only
decreased Rubisco activity

The wide use of An±Ci curves has led to several reports
showing a decrease in the apparent carboxylation ef®ciency
(and thus, presumably, Rubisco activity) even at mild to
moderate water stress in a number of species (Figs 3 and 4;
see Martin and Ruiz-Torres, 1992; AntolõÂn and SaÂnchez-
DõÂaz, 1993; Faver et al., 1996; Escalona et al., 1999).
However, assays of Rubisco activity from water-stressed
leaves have generally led to the conclusion that both its
activity and activation state remain unaffected until the
stress is severe (Jones, 1973; Beadle and Jarvis, 1977;
Sharkey and Seemann, 1989; Plaut and Federman, 1991;
Parry et al., 1993; Lal et al., 1996; Tezara et al., 1999;
Wingler et al., 1999; Parry et al., 2002). Inhibition of
Rubisco activity at mild to moderate water de®cits has been
reported only occasionally (Castrillo and Calcagno, 1989;
Holaday et al., 1992; Medrano et al., 1997).

Therefore, for the particular case of Rubisco activity, it
seems that the photosynthetic model of Farquhar et al.
(1980) does not match the biochemical determinations. This
is illustrated in Fig. 5, which shows the relationship between
gs and both e measured in grapevines and Rubisco activity
determined in vitro for different species, including grape-
vines, by different authors. The results are expressed as a
percentage of the control (unstressed) values to facilitate
comparison of different units used by different authors, as
well as to compare e with Rubisco activity. Again, gs proves
to be a solid reference parameter, since it generalizes the
response of Rubisco activity to drought among a wide range
of species and conditions. It is clear that two different
relationships are obtained, the differences initially increas-
ing with decreasing gs. When gs is between 50 and 150
mmol H2O m±2 s±1, e is about 20±30 % lower than the
measured Rubisco activity.

A possible explanation arises given that e is underesti-
mated whenever Ci is proportionally overestimated.
Although we took into account patchy stomatal closure
and cuticular conductance when calculating Ci (see previous
sections), a different problem, namely varying mesophyll
resistance, would lead to large and variable differences
between Ci and the actual CO2 concentration at the
carboxylation site (Cc), so e would no longer be represen-
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tative of the actual carboxylation ef®ciency. Increased
mesophyll resistance, due either to changes in leaf internal
anatomy or impaired carbonic anhydrase, has been sug-
gested to occur under water stress (Beadle and Jarvis, 1977;
Cornic et al., 1989; Renou et al., 1990; Lal et al., 1996;
Roupsard et al., 1996). To test this possibility, we estimated
Cc from combined gas-exchange and chlorophyll ¯uores-
cence measurements, according to a current model (Epron
et al., 1995; Valentini et al., 1995), and assuming that all the
reducing power generated by the electron transport chain is
used for photosynthesis and photorespiration, with only a
negligible proportion being consumed by the Mehler
reaction and other processes. The data obtained suggested
that mesophyll conductance was decreasing as gs declined
(Flexas et al., 2002a). Thereafter, we converted An±Ci

curves to An±Cc curves, and recalculated e on this new basis.
Figure 6 shows the relationship obtained between e and
light-saturated gs using this new approach and should be
compared with Fig. 2D showing the relationship based on
the typical An±Ci approach. Clearly, the new relationship is
much more similar to that between Rubisco activity and
light-saturated gs obtained from the literature (Fig. 5).

These ®ndings seem to con®rm an early study by Beadle
and Jarvis (1977), who showed a decreased mesophyll
conductance in Picea sitchensis as drought progressed
without any inactivation of Rubisco as determined in vitro.
It is suggested that drought-induced down-regulation of
mesophyll conductance to CO2 is much more important than
previously thought. Nevertheless, these results are simply
based on a model that requires many assumptions to be

made, so they are not conclusive. A more extensive analysis
of the effects of drought on mesophyll resistance is therefore
needed.

IMPLICATIONS OF THE PRESENT RESULTS
AND PRACTICAL APPLICATIONS

We have shown that in general the drought-regulation of a
wide range of parameters related to photosynthesis seems
more dependent on stomatal conductance than on typical
parameters re¯ecting leaf water status. As these relation-
ships are similar for different plant species and different
circumstances, one inherent implication could be that under
drought, down-regulation of different photosynthetic pro-
cesses depends more on CO2 availability in the mesophyll
(i.e. on stomatal closure) than on leaf water potential or leaf
water content, as suggested previously (Sharkey, 1990).
This could be understood as a direct adjustment of
photosynthetic metabolism to CO2 availability, which is
well known to act as a regulator of Rubisco (Perchorowicz
and Jensen, 1983; Meyer and Genty, 1999), nitrate reductase
(Kaiser and FoÈrster, 1989) and sucrose phosphate synthase
(Vassey et al., 1991). Low CO2 also promotes increased
trans-thylakoid DpH, which induces increased NPQ.
Nevertheless, these suggestions are merely based on stat-
istical correlative evidence, and further studies are required
to prove them. In particular, it remains to be determined if
low CO2 availability, or the pH changes resulting from it,
are capable of promoting down-regulation of other import-
ant photosynthetic steps such as ATP synthesis.

Irrespective of the uncertainties raised about the mech-
anistic reasons for the strong dependence of any photo-
synthetic parameter on gs, it reveals an integrated down-
regulation of the whole photosynthetic process as drought
progresses, in accordance with theories of integrated
`photosynthetic control' (Foyer et al., 1990). This integrated
regulation of photosynthesis is reinforced by this analysis

F I G . 6. Effect of changing mesophyll conductance in the calculation of
the apparent carboxylation (e). The graph shows e as a function of
stomatal conductance in ®eld-grown, drought-stressed grapevines,
calculated directly from An±Ci curves (broken line) or after calculating

Cc, from An±Cc curves (solid line). Data are from Flexas et al., 2002a).

F I G . 5. Relationship between apparent carboxylation ef®ciency (e) and
stomatal conductance (gs) in ®eld-grown grapevines (solid line). Only the
curve of best ®t is plotted. e is expressed as a % of the maximum
observed values. Data of initial and/or total Rubisco activity have been
added to the ®gure (®lled circles), expressed as a % of maximum values
for comparison. We selected data on Rubisco activity from the available
literature in which gs was given. These data are from the following
species and references: Helianthus annus (Pancovic et al., 1999; Tezara
et al., 1999), Hordeum vulgare (Lal et al., 1996; Wingler et al., 1999,
2000), Medicago sativa (AntolõÂn and SaÂnchez-DõÂaz, 1993), Trifolium
subterraneum (Medrano et al., 1997), Triticum aestivum (Holaday et al.,
1992), Vicia faba (Lal et al., 1996) and Vitis vinifera (Bota, unpubl. res.).

Broken line shows the curve of best ®t for Rubisco activity data.
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since a direct correlation was described between gs,
determined at a given light intensity, and a ¯uorescence
parameter which, in principle, may have little dependence
on stomatal conductance, the steady-state chlorophyll
¯uorescence (Fs) (Fig. 7; see Ounis et al., 2001; Flexas
et al., 2002b). Figure 8 shows a tentative scheme of such a
photosynthetic control under drought, which can be
summarized as follows. Under drought, stomata close in
proportion to the degree of stress, progressively limiting
CO2 availability in the chloroplast. CO2 assimilation is
reduced and the CO2 : O2 ratio drops, thereby increasing
photorespiration and/or the Mehler reaction. Since these
processes consume relatively less ATP than does photo-
synthesis, they should lead to a certain increase of trans-
thylakoid DpH (Schreiber and Neubauer, 1990; Osmond
et al., 1997b). Impaired ATPase and/or reduced ETR may
also interfere with the build-up of trans-thylakoid DpH. The
xanthophyll de-epoxidation that follows increased DpH
should lead to increased NPQ. Thermal dissipation in the
antenna becomes progressively more important and Fs is
consequently lowered.

The relationship between Fs and gs provides a method for
remote sensing of water stress. In grapevines, Fs/Fo declines
steeply when non-stomatal limitations become important
(when gs drops below 100±150 mmol H2O m±2 s±1, see
Figs 3, 4 and 7). Under moderate water de®cit, i.e. when
photosynthesis is mainly limited by stomatal conductance, a
complete recovery of the maximum An occurred just one
night after irrigation (Flexas et al., 1999a). However, if gs

reaches values as low as 50 mmol H2O m±2 s±1, photosyn-
thesis does not reverse after irrigation (Quick et al., 1992).
Thus, proper monitoring of Fs would be a useful tool for
deciding when irrigation must be applied to maintain plants
at a limit between severe water stress and luxurious water
consumption, thus rationalizing use of irrigation water. This
method is especially useful because it does not depend on
measuring ¯uorescence during saturating ¯ashes, even
during remote sensing (Moya et al., 1998; Flexas et al.,
2000, 2002b; Ounis et al., 2001).
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