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Avoiding Bias in Calculations of Relative Growth Rate
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In classical growth analysis, relative growth rate (RGR) is calculated as RGR = (ln W2 ± ln W1)/(t2 ± t1), where
W1 and W2 are plant dry weights at times t1 and t2. Since RGR is usually calculated using destructive harvests
of several individuals, an obvious approach is to substitute W1 and W2 with sample means W1 and W2. Here we
demonstrate that this approach yields a biased estimate of RGR whenever the variance of the natural logarithm-
transformed plant weight changes through time. This bias increases with an increase in the variance in RGR, in
the length of the interval between harvests, or in sample size. The bias can be avoided by using the formula
RGR � ln W2 ÿ ln W1

ÿ �
= t2 ÿ t1� �, where ln W1 and ln W2 are the means of the natural logarithm-transformed

plant weights. ã 2002 Annals of Botany Company
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INTRODUCTION

Growth analysis is a widely used analytical tool for
characterizing plant growth. Of the parameters typically
calculated, the most important is relative growth rate
(RGR), de®ned as the parameter r in the equation:

W2 � W1er�t2ÿt1� �1�

where W1 and W2 are plant dry weights at times t1 and t2.
Rearrangement of terms yields the equation used to
calculate RGR in what is called the classical approach
(Hunt, 1982):

r � ln W2� � ÿ ln W1� �
t2 ÿ t1

�2�

Since eqn (1) describes the growth of a single individual,
eqn (2) provides a formula for calculating the RGR of a
single individual. Destructive harvesting is required to
determine plant dry weight, so in practice RGR is calculated
from samples of individuals from the same cohort at two
points in time (Evans, 1972). While eqn (2) is widely
presented in studies utilizing classical growth analysis, it
has generally been overlooked that this formula does not
provide an unequivocal interpretation of how RGR should
be calculated. Several possible interpretations of eqn (2)
arise when calculating RGR from samples of individuals.
The ®rst, and most obvious, approach is to simply substitute
W1 and W2 with sample means W1 and W2, estimating RGR
as:

Ãr1 �
ln W2

ÿ �ÿ ln W1

ÿ �
t2 ÿ t1

�3�

Hereafter, we will refer to this as estimator 1.
Alternatively, RGR can be calculated from the mean

natural logarithm-transformed plant weights:

Ãr2 � ln W2� � ÿ ln W1� �
t2 ÿ t1

�4�

where ln �W�t is the mean of the ln-transformed plant
weights at time t. We will refer to this as estimator 2. In the
®rst estimator, plant weights are averaged before ln-
transforming, whereas in the second estimator, the weights
are ln-transformed before averaging. These estimators
almost always yield different values due to the fact that
ln �W� is not equal to ln �W� if there is variation in plant
weight among individuals (Aitchison and Brown, 1976).

Additionally, RGR can be calculated using the pairing
method or the functional approach. In the pairing method
(Evans, 1972), plants are grouped into pairs of similarly
sized individuals before the ®rst harvest. One plant of each
pair is harvested on the ®rst harvest date, and the other plant
is harvested on the second date. RGR is then calculated for
each pair, and the values averaged over all pairs. We show
in the Appendix that the estimate provided by this approach
is identical to that of estimator 2. Alternatively, in the
functional approach, a curve is ®t to the ln-transformed plant
weights through time and RGR at a particular time is
calculated as the slope of the curve. When applied to
harvests made at only two points in time, the results are
identical to estimator 2. While these two methods offer the
advantage of providing estimates of the variance in RGR,
we do not consider either of these further because the
estimates of RGR do not differ from estimator 2.

As far as we know, little attention has been given to the
fact that two interpretations of eqn (2) do exist, and that they
might yield different estimates of RGR. As a consequence,
recommendations vary among authors as to which estimator* For correspondence. Fax 00 55 61 347 5458, e-mail hoffmann@unb.br
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should be used. For example, McGraw and Garbutt (1990)
recommend the ®rst approach, Venus and Causton (1979)
and Causton and Venus (1981) recommend the second, and
Radford (1967) and Evans (1972) suggest the pairing
method. Other texts offer no insight as to which form to use
(Hunt, 1982, 1990; Chiariello et al., 1991).

In most research reports there has been a similar lack of
attention to this issue. Examining issues of Annals of Botany
from 1993 to 2001, we identi®ed 28 papers applying
classical growth analysis. Of these, one utilized estimator 1,
®ve used estimator 2 and in the remaining 22 studies it was
not possible to infer which equation was used. Clearly, this
is an aspect that has not received enough attention.
Therefore, in this paper, we analyse the performance of
these two estimators to permit well-founded recommenda-
tions for the correct choice of estimator.

MATERIALS AND METHODS

To determine if these two estimators yield unbiased
estimates of RGR, i.e. that their expected values are
identical to the true mean RGR, we attempted to derive
analytically the expected values of the two estimators.
While this analytical approach was possible for the second
estimator, for the ®rst it was necessary to resort to a second-
order approximation of the expected value.

Since we were unable to ®nd an exact form for the
expected value of both equations, we relied on simulations
to substantiate the differences between these estimators and
to con®rm the generality of the results. In the ®rst set of
simulations we generated data corresponding to a typical
experiment in which ten individuals were harvested on each
of two dates. Since plant weight is commonly lognormally
distributed (Poorter and Garnier, 1996), we used this
distribution in our simulations. To generate an individual
plant weight, the algorithm of Press et al. (1989) was used to
generate a ln W value from a normal distribution. This value
was then transformed with the exponential function to arrive
at W. The variance of the underlying normal distribution is
s2

ln W , which is the variance of the ln-transformed plant
weights.

Since it is variation in plant weight that causes the two
estimators to yield different estimates of RGR, we examined
the effect of the variances s2

ln W1
, s2

ln W2
as well as RGR on

possible bias in the RGR estimates. Using an initial true
mean weight (W1) of 1 g and a harvest interval of 50 d, we
generated cases in which we varied s2

ln W1
, s2

ln W2
and the

true mean RGR independently of each other. We used a
fully factorial array of cases using six levels of RGR (0´05,
0´10, 0´15, 0´20, 0´25, 0´30 g g±1 d±1) and eight levels each of
sln W1

and sln W2
(0´1, 0´2, 0´3, 0´4, 0´5, 0´6, 0´7, 0´8). For

each combination of parameters, 10 000 simulations were
run. For each simulation, RGR was calculated from the
generated data using both estimators and results were
compared with the true mean RGR.

In a second set of simulations, we examined the effects of
increasing variance in RGR, time between harvests and
sample size on the performance of these two estimators. In
these simulations, plant weights (W1) for the initial harvest
were randomly generated from a lognormal distribution.

Plant weights for the second harvest were generated as
W2 � W 01ert, where r was generated from a normal distri-
bution with a mean of 0´05 g g±1 d1. For these latter weights,
W 01 was generated from the same probability distribution as
the W1 of the ®rst harvest. Here we distinguish between W1

and W 01 to simulate a realistic case in which different
individuals are sampled on the two harvest dates. The term
W1 denotes the weight at time 1 of individuals that were
harvested at time 1, whereas W 01 is the weight at time 1 of
individuals that were harvested at time 2. Cases were run for
a range of values of sRGR from 0 to 0´03, a range of harvest
intervals from 5 to 200 d, and a range of sample sizes from
one to 40 individuals per harvest. For each set of conditions
tested, 10 000 simulations were run.

In the above simulations, we assumed that plant weight is
lognormally distributed and that RGR is normally distrib-
uted, so we ran a third set of simulations to test whether the
performance of the two estimators depends on the prob-
ability distributions used to generate plant weight and RGR.
It is not feasible to examine all possible probability
distributions, so we limited our study to the normal,
lognormal and exponential distributions. Normal and expo-
nential distributions were chosen to provide cases that are
either unskewed or more strongly right-skewed than the
lognormal distribution. Probability distributions were gen-
erated using the algorithms of Press et al. (1989).

RESULTS AND DISCUSSION

In agreement with Causton and Venus (1981), we demon-
strate that estimator 2 is unbiased; i.e. the expected value of
this estimator (Ãr2) is equal to the true mean RGR. In
contrast, estimator 1 is biased. As shown in the Appendix,
when plant weight is lognormally distributed, the bias is
approximately equal to:

Ãr1 ÿ r � 1

2�t2 ÿ t1� s2
ln W2
ÿ s2

ln W1
ÿ e

s2
ln W2 ÿ e

s2
ln W1

n

 !
�5�

where n is the number of individuals sampled per harvest
date and r is the true mean RGR. A lognormal distribution
in plant weight develops naturally when RGR or germin-
ation time is normally distributed (Poorter and Garnier,
1996), so the assumption of lognormality is probably
appropriate in most applications.

In the ®rst set of simulations, where s2
ln W1

, s2
ln W2

and
mean RGR were varied independently of each other, we
con®rm that the ®rst estimator is biased but the second is not
(Fig. 1). The size of the bias depends on the values of plant
variability. If s2

ln W remains constant through time, the bias
is nil, but the larger the difference between s2

ln W1
and s2

ln W2
,

the larger the error. Consequently, the relationship between
�s2

ln W2
± s2

ln W1
� and the bias is well described by a single

curve, regardless of the value of RGR. The approximate
bias, as estimated by eqn (5), closely ®ts the simulated
values (Fig. 1).

A change in s2
ln W through time can occur only if there is

some variation in RGR among individuals, so it is useful to
examine how variation in RGR affects the bias of the ®rst
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estimator (Ãr2). By applying rules for variances of linear
combinations of variables to eqn (1), it can be shown that
when RGR and W1 are independent of each other then

s2
ln W2
ÿ s2

ln W1
� �t2 ÿ t1�2 s2

RGR �6�

Therefore, the bias of the ®rst estimator is expected to
increase in response to increased time between harvests or
increased variance in RGR, as con®rmed by the second set
of simulations (Fig. 2A and B). These simulations also
demonstrate that the bias increases with increasing sample
size, as to be expected from eqn (5) (Fig. 2C).

In general, if there is any variation in RGR among
individual plants, s2

ln W2
will be larger than s2

ln W1
, and

estimator 1 will have a positive bias, provided that RGR and
W1 are independent variables. In reality, RGR and W1 need
not be independent of each other. We might expect a
negative covariance between RGR and W1 due to the
frequently observed decline in RGR through plant devel-
opment. If larger plants at t1 are those individuals that have
reached a more advanced stage of development, they may
subsequently exhibit lower growth rates than smaller
individuals. Such a decline could be due to developmental
changes in allocation or photosynthesis, or could arise from
an increasingly limiting nutrient supply. Similarly, there is
often a negative correlation between seed size and RGR, at
least among species (Swanborough and Westoby, 1996). If a
similar relationship occurs within a species, a negative
covariance between W1 and RGR could emerge. In any case,
a negative correlation between W1 and RGR would reduce
the tendency of s2

ln W to increase through time and thereby
reduce the bias of estimator 1. If this negative covariance is

F I G . 1. Relationship between the difference in variance at two harvest
times and simulated bias of the two RGR estimators. Results are from a
fully factorial array of simulations using six levels of RGR (0´05, 0´10,
0´15, 0´20, 0´25, 0´30 g g±1 d±1) and eight levels each of and (0´1, 0´2,
0´3, 0´4, 0´5, 0´6, 0´7, 0´8). Each point represents the mean of 10 000
simulations with a sample size of ten individuals in each harvest. The

continuous line shows the bias as estimated by eqn (5).

F I G . 2. Simulation results demonstrating the effect of variation in RGR
(A), time between harvests (B) and sample size (C) on the bias of the
two RGR estimators. In A, RGR was ®xed at 0´05, with a harvest
interval of 50 d and a harvest size of ten individuals. In B, RGR was
®xed at 0´05 with a standard deviation of 0´01 and a sample size of ten
individuals. In C, RGR was ®xed at 0´05 with a standard deviation of
0´02 and harvest interval of 100 d. For each set of parameters, 10 000

simulations were run.

Hoffmann and Poorter Ð Estimating Relative Growth Rate 39



large enough, it could result in a decline in s2
ln W through

time, causing a negative bias, as appears in Fig. 1.
In contrast, there could be a positive correlation between

W1 and RGR due to genetic variation in RGR, whereby
plants attaining higher W1 due to higher RGR continue
growing at a greater RGR. Alternatively, in experimental
situations permitting competition among individuals, larger
individuals may gain a competitive advantage and therefore
maintain higher RGR than competitively suppressed indi-
viduals. Either of these situations could result in a positive
covariance between W1 and RGR, thereby accentuating the
quantity s2

ln W2
± s2

ln W1
and consequently the bias of

estimator 1.
How important is the bias in RGR when using the wrong

estimator? We used experimental data to demonstrate that
the bias can be large enough to be of concern. In a study
involving 18 tree and shrub species from the cerrado
savannas of Brazil (W.A. Hoffmann, unpubl. res.), mean
sample variance, s2

ln W , increased from 0´17 at 50 d to 0´18 at
100 d and to 0´27 at 150 d. We estimated the bias of the
calculated RGR for each species using eqn (5). On average,
the bias was estimated to be +1 % and +13 % for the ®rst and
second intervals, respectively, demonstrating that the bias is
substantial.

With experimental data, we cannot know the true bias
since we must rely on s2

ln W , which is an estimate of the true
s2

ln W based on ®nite samples. Similarly, we must depend on
a second-order approximation of the bias. The simulations
indicate that this approximation provides a reliable estimate
of bias, at least for reasonable values of s2

ln W1
and s2

ln W2
.

Another uncertainty with experimental data is that plant
weight may not be lognormally distributed. However, the
third set of simulations indicates that this bias is not limited
to lognormally distributed data. Regardless of the probabil-
ity distribution used to generate plant weight and RGR,
estimator 1 was biased whereas estimator 2 was not
(Table 1).

In conclusion, estimator 1 presented in eqn (3) is biased
and should therefore be avoided in RGR calculations. We

suggest the use of estimator 2, as given in eqn (4),
exclusively, as this equation yields an unbiased estimate
of RGR under all conditions.
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TABLE 1 . Simulation results using different probability distributions for initial weight and variance of RGR

Initial weight
distribution

Initial plant weight
(g) (mean + s.d.)

RGR
distribution

RGR (g g±1 d±1)
(mean + s.d.)

Bias of
estimator 1
(g g±1 d±1)

Bias of
estimator 2
(g g±1 d±1)

Normal 1 (0´2) Normal 0´05 (0´01) 0´0043 0´0000
Normal 1 (0´2) Lognormal 0´05 (0´01) 0´0024 0´0000
Normal 1 (0´2) Exponential 0´05 (0´05) 0´0753 0´0000
Lognormal 1 (0´2) Normal 0´05 (0´01) 0´0022 0´0000
Lognormal 1 (0´2) Lognormal 0´05 (0´01) 0´0024 0´0000
Lognormal 1 (0´2) Exponential 0´05 (0´05) 0´0583 0´0001
Exponential 1 (1) Normal 0´05 (0´01) 0´0038 0´0000
Exponential 1 (1) Lognormal 0´05 (0´01) 0´0023 0´0002
Exponential 1 (1) Exponential 0´05 (0´05) 0´0708 0´0007

Simulations were run for 100 d, with mean initial weight of 1 g and mean RGR of 0´050 g g±1 d±1.
Note that for an exponential distribution, the standard deviation is constrained to be equal to the mean, so when this distribution is used, it was not

possible to utilize the same standard deviation as was used for the others.
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APPENDIX

Proof that the pairing method is equivalent to estimator 2

Here we demonstrate that the pairing method (Evans, 1972)
is equivalent to the second estimator [eqn (4)]. In the pairing
method, plants are grouped into pairs of similarly sized
plants. One plant of each pair is harvested at time t1, and the
other at time t2. RGR is then calculated for each pair j, and
then these values are subsequently averaged over all pairs.
RGR is therefore estimated as:

Ãr3 � 1

n

X
j

ln W2j ÿ ln W1j

t2 ÿ t1

� �

where n is the number of pairs and Wij is the dry weight of
individual j of harvest i.

This reduces as follows:

Ãr3 � 1

n�t2 ÿ t1�
X

j

ln W2j ÿ ln W1j

ÿ �
� 1

t2 ÿ t1

P
j ln W2j

n
ÿ
P

j ln W1j

n

� �

� ln �W2� ÿ ln �W1�
t2 ÿ t1

This is therefore equivalent to eqn (4).

Proof that Ãr2 is an unbiased estimator of RGR

Here we demonstrate that

Ãr2 � ln �W2� ÿ ln �W1�
t2 ÿ t1

is an unbiased estimator of RGR. The weight at time 2 of an
individual i can be expressed as W2i � W1ie

riDt, where t2 ± t1
is replaced with Dt. The estimator can now be rewritten as

Ãr2 � ln �W 01erDt� ÿ ln �W1�
Dt

:

We distinguish between W1 and W 01 because different
individuals are sampled on the two harvest dates. The term
W1 denotes the weight at time 1 of individuals that were
harvested at time 1, whereas W 01 is the weight at time 1 of the
individuals that were harvested at time 2. We assume that
the individuals harvested at the two times are chosen
randomly from the same cohort, so W1 and W 01 are
identically distributed random variables.

Using theorems for linear combinations of random
variables (Rice, 1988; pp. 109±112), the expected value of
is:

E�Ãr2� � E�ln �W 01erDt�� ÿ E�1n �W1��
Dt

� E�ln �W 01� � ln �erDt�� ÿ E�1n �W1��
Dt

� E�ln �W 01�� � E�ln �erDt�� ÿ E�1n �W1��
Dt

Since W1 and W 01 are identically distributed random
variables, their expected values are identical. Therefore
E�Ãr2� � 1

Dt
E�ln �erDt�� � 1

Dt
E�rDt� � E�r� � r where r, is

the true mean RGR. Since the expected value of the
estimator Ãr2 is equal to the expected value of RGR, we can
conclude that Ãr2 is an unbiased estimator.

Proof that Ãr1 is a biased estimator of RGR

Here we demonstrate that Ãr1 � ln �W2�ÿln �W1�
t2ÿt1

is a biased
estimator of RGR. The expected value of this estimator is

E�Ãr1� � E�ln �W2� ÿ ln �W1�
Dt

�:

We were unable to derive an exact solution for this
estimator so we used the second-order approximation:

E�1n �W�� � ln �mw� ÿ
s2

W

2m2
W

(Rice, 1988; p. 143), where mw is the true population mean
plant dry weight and s 2

W
� s2

W
n is the true variance of the mean

of plant dry weight, based on some sample size n. If W is
lognormally distributed, we know that

mW � eln W�0:5 s2
ln W

and

s2
W � �eln W�0:5 s2

ln W �2 �es2
ln W ÿ 1�

(Aitchison and Brown, 1976), so

E�ln �W�� � ln W � 0:5s2
ln W ÿ

es2
ln W ÿ 1

2n

and
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E
ln �W2� ÿ ln �W1�

Dt

� �
� 1

Dt

�
E�ln �W2�� �

s2
ln W2

2
ÿ e

s2
ln W2 ÿ 1

2n
ÿ E�ln �W1�� ÿ

s2
ln W1

2
� e

s2
ln W1 ÿ 1

2n

�

� E�ln �W2�� ÿ E�ln �W1��
Dt

� 1

2Dt

�
s2

ln W2
ÿ s2

ln W1
ÿ

e
s2

ln W2 ÿ e
s2

ln W1

n

�

The ®rst term of the right-hand side of this equation is the
expected value of RGR, so the bias is approximately

1

2Dt

�
s2

ln W2
ÿ s2

ln W1
ÿ e

s2
ln W2 ÿ e

s2
ln W1

n

�
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