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Abstract

Pattern recognition of myoelectric signals for prosthesis control has been extensively studied in 

research settings and is close to clinical implementation. These systems are capable of intuitively 

controlling the next generation of dexterous prosthetic hands. However, pattern recognition 

systems perform poorly in the presence of electrode shift, defined as movement of surface 

electrodes with respect to the underlying muscles. This work focused on investigating the optimal 

interelectrode distance, channel configuration, and EMG feature sets for myoelectric pattern 

recognition in the presence of electrode shift. Increasing interelectrode distance from 2 cm to 4 cm 

improved pattern recognition system performance in terms of classification error and 

controllability (p<0.01). Additionally, for a constant number of channels, an electrode 

configuration that included electrodes oriented both longitudinally and perpendicularly with 

respect to muscle fibers improved robustness in the presence of electrode shift (p<0.05). We 

investigated the effect of the number of recording channels with and without electrode shift and 

found that four to six channels were sufficient for pattern recognition control. Finally, we 

investigated different feature sets for pattern recognition control using a LDA classifier and found 

that an autoregressive set significantly (p<0.01) reduced sensitivity to electrode shift compared to 

a traditional time-domain feature set.
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I. Introduction

UPPER limb amputation is a major cause of disability throughout the world. It affects 

approximately 25,000 people in the U.S. alone, almost 80% of whom choose to use a 

prosthesis on a daily basis [1]. Three types of prostheses are widely available for people 

with upper limb amputations: passive, body powered, and electrically powered. Passive 

prostheses are often employed for cosmetic purposes and have limited functionality. Body-

powered prostheses are used to restore basic tasks such as opening and closing a terminal 

device. These devices are often used because they are simple, robust, and relatively 

inexpensive. Electrically powered prostheses are advantageous because they require less 

user effort, as movement is actuated with DC motors. They can be controlled through a 

variety of means such as force sensors, linear potentiometers, and electromyographic (EMG) 

signals. Electrically powered prostheses restore some functionality to amputees, but control 

of these devices is typically limited to only one or two degrees of freedom (DOF) [2–4].

Pattern recognition-based myoelectric control has been studied for decades and has 

demonstrated the potential to control more DOFs than conventional control techniques [5]. 

This approach is based on the premise that amputees can voluntarily generate distinct, 

repeatable EMG signal patterns for each motion class [6]. These systems are most intuitive 

when the EMG patterns are mapped to physiologically appropriate DOFs in the prosthesis. 

After significant research initiatives at multiple academic institutions, pattern recognition is 

nearing clinical implementation [7], [8]. However, the clinical reliability of pattern 

recognition-based myoelectric control systems is still challenged by some issues including 

effects of socket loading and limb orientation [9], variations in muscle contraction effort 

[10], and changes in electrode position—termed electrode shift—during donning/doffing 

and daily use [11], [12].

This work is a continuation of a previous study [12] on mitigating the effects of electrode 

shift on pattern recognition systems through modification of the signal detection interface. 

The underlying hypothesis of this work was that pattern recognition classifiers trained with 

nonselective, global EMG recordings are less sensitive to electrode shift than classifiers 

trained with selective EMG recordings. Additional properties of the signal detection 

interface are considered here such as interelectrode distance, channel configuration, and the 

number of recording channels. Also, the effects of different feature sets extracted from the 

myoelectric signal are considered.

A primary factor affecting the signal selectivity of EMG recordings is the interelectrode 

distance, which is the distance between the two electrode poles that form a bipolar 

differential channel. A rough estimate of electrode detection volume is a sphere with radius 

equal to the interelectrode distance [13]. Most research studies have been conducted with 

interelectrode distances of approximately 2 cm, which yield relatively selective recordings. 

This spacing is based on SENIAM guidelines [14], which help to standardize EMG 

measurement among research labs. Larger interelectrode distances increase the likelihood of 

muscle signal crosstalk, but the relative magnitude of electrode shift relative to the electrode 

detection volume decreases, potentially reducing the effects of electrode shift. In this study, 
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we analyzed the effect of interelectrode distance on the performance of pattern recognition 

algorithms in the presence of electrode shift using both classification error and 

controllability of a virtual prosthesis as quantification metrics. A preliminary version of this 

work has appeared [15].

The effects of channel orientation on myoelectric pattern recognition were considered in a 

previous study [12]. The results of this study demonstrated that the same number of 

electrode poles, a combined classifier using both longitudinal and transverse channel 

orientations outperformed classifiers that used only one channel orientation. A limitation of 

this result was that the number of recording channels was not constant across conditions. In 

the present study, the number of channels was held constant and the best channel 

configuration was determined.

The number of channels used for classification of EMG signals differs between previous 

studies based on the classification problem and available recording equipment. Four 

channels have been previously used in myoelectric pattern recognition control studies with 

transradial amputees [16], [17]. One study [18] showed that four transverse channels 

provided sufficient information for myoelectric control of 10 motion classes using forearm 

muscles and that additional channels did not increase classification accuracy. Other studies 

have found a similar saturation effect on classification accuracy with increasing numbers of 

channels [19], [20]. In the present study, we examined how the number channels affected the 

robustness of the pattern recognition system in the presence of electrode shift.

A large number of research studies have investigated the representation and classification of 

myoelectric signals for pattern recognition control [6], [21–34]. Many combinations of 

feature sets and classifiers have been shown to effectively represent multichannel EMG 

signal patterns. In our previous study [12], we compared the performance of a linear and a 

non-linear classifier with and without electrode shift. Similarly to previous reports [18], we 

found that without electrode shift the classification accuracy of both classifiers was 

comparable; however, with electrode shift, the linear discriminant analysis classifier 

generalized better than the nonlinear multilayer perceptron classifier [12]. In this study, we 

also considered the signal representation step of myoelectric control by comparing different 

feature sets using linear discriminant analysis. Time-domain (TD) features classified by 

linear discriminant analysis have been shown to be efficient and effective in real-time 

control [28], [35], [36]. However, autoregressive (AR) features have also shown promise in 

previous myoelectric control studies [22], [30], [37], [38], and both sets are tested in this 

study in the presence of electrode shift.

II. Methods

A. Data Collection

Seven non-amputee subjects participated in this study, which was approved by Northwestern 

University Institutional Review Board. Four control sites were spaced evenly around the 

circumference of the forearm. At each control site, two monopolar Ag/AgCl surface 

electrodes with a diameter of 1 cm were placed longitudinally with respect to the proximal 

forearm (Fig. 1A). A ground electrode was placed on a bony region on the elbow, away 
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from muscles of interest. Eight differential EMG channels were formed from these eight 

electrodes: four longitudinal channels and four transverse channels (see Fig. 1B).

Training data were recorded at three different interelectrode distances: the distal electrode 

was placed either 2 cm, 3 cm, or 4 cm from the proximal electrode (Fig. 1C). One set of 

training data was collected for each distal electrode location. Seven different motion classes 

were tested: wrist flexion, wrist extension, forearm pronation, forearm supination, hand 

open, hand close, and relaxed (no motion), yielding a total of three degrees of freedom: one 

forearm DOF, one wrist DOF and one hand DOF. Subjects were prompted by software to 

perform two repetitions of each motion class in a randomized order and held the 

contractions for 4 s and made repeatable, constant-force contractions to the best of their 

ability.

Test data for each of the three interelectrode distances were collected by a similar procedure. 

In addition, data for each of the three interelectrode distances were collected with all 

electrodes shifted to 1 cm and 2 cm locations in the direction perpendicular to the muscle 

fibers (Fig. 1 A&C). In total, test data including each motion class were obtained for nine 

different electrode placements for each subject.

B. Interelectrode Distance Testing

Controllability for interelectrode distance was assessed using the Target Achievement 

Control (TAC) test. The TAC test is described in detail elsewhere [12], [39], [40]. Briefly, 

the subject controls a virtual prosthesis that can move in any of the trained DOFs, which in 

this study were forearm rotation, wrist flexion/extension, and hand open/close. The speed 

was proportionally controlled based on the mean absolute value of EMG signals across all 

the channels, normalized for each subject for a specific motion class. Subjects had to move 

the virtual prosthesis into six target postures. The virtual prosthesis changed color when it 

was in the target posture (with a small tolerance for error). The subject had to remain in the 

target posture for 2 s to complete a trial. TAC tests were completed for interelectrode 

distances of 2 cm and 4 cm at the no shift locations and the 2 cm shift locations. Only two 

channels were used for the TAC test: one longitudinal channel on flexors and one 

longitudinal channel on extensors (L1 and L3 in Fig. 1B). In this experiment, real-time 

performance was measured in terms of subject failure rate and average time to completion. 

Failure rate was defined as the percentage of trials the subject did not complete within the 

allotted time of 17 s. Average completion time was defined as the average time for a subject 

to correctly position the virtual prosthesis in the target zone, including the 2 s dwell time.

C. Electrode Configuration Testing

Electrode configuration was analyzed in this study by selecting the best combination of four 

channels based on classification performance at all three shift locations (0 cm, 1 cm and 2 

cm) with a 2 cm interelectrode distance. Every possible combination of four channels from 

the eight recorded channels (Fig1B) was trained at the no shift location and tested at the no 

shift, 1 cm, and 2 cm shift locations. The weighted average error score was calculated using 

Equation 1 and used to determine the subset of channels that performed best across all shift 

conditions:
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(1)

E0, E1, and E2 corresponded to the classification error of the selected channel at the no shift, 

1 cm shift, and 2 cm shift locations, respectively. Ew is the weighted average error. 

Weighting was designed to emphasize scores closer to the training location as small shifts 

are likely to be more common during prosthesis use.

D. Number of Electrode Channels Testing

In order to determine the effects of electrode shift with different numbers of recording 

channels, we analyzed subjects’ performance using from one to eight channels. Every 

possible combination of channels was tested and a weighted error was assigned to each 

combination. For each number of channels, the combination that had the lowest weighted 

error was determined.

E. Myoelectric Feature Testing

The pattern recognition system architecture was the same as that used in previous research 

[12]. Briefly, preprocessing consisted of high-pass filtering at 20 Hz and sampling at 1 kHz. 

Each motion class was trained on 16 s of active data, and tested on a different 16 s of data. 

Data were divided for each class into 250 ms windows with 50 ms overlap [16], [39]. Due to 

limitations of the software at the time of the experiment, only TD features were extracted 

online and used for controllability testing. However, in postprocessing, TD + AR features 

were extracted for analysis in all conditions in this experiment. Linear discriminant analysis 

was used for feature classification.

F. Statistical Analysis

Because data were normally distributed, differences in performance for all cases were 

analyzed with a general linear model using classification error as the response variable and 

subject as a random factor. Shift distance, interelectrode distance, electrode configuration, 

and feature choice were used as fixed factors. Post-hoc comparisons with a Bonferroni 

correction factor were analyzed for each statistically significant factor of interest.

III. Results

A. Effects of Interelectrode Distance

Larger interelectrode distances consistently produced lower classification errors (p<0.01) 

(Fig. 2). A post-hoc comparison of interactions at each electrode shift distance revealed that 

interelectrode distance was not significant at the no shift location. At the 1 cm shift location, 

the 4 cm interelectrode distance was significantly better (p<0.05) than the smaller 

interelectrode distances. At the 2 cm shift location, the 4 cm interelectrode distance 

significantly better (p<0.01) than the 2 cm interelectrode distance.

The results for the TAC test for different interelectrode distances indicated that failure rates 

and completion times were nearly the same for each interelectrode distance with no shift 
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(Fig. 3). However, in the presence of electrode shift, subjects performed better with an 

interelectrode distance of 4 cm compared to 2 cm: Failure rates were 20% lower and 

completion times were more than 2 s faster with the 4 cm interelectrode distance compared 

to the 2 cm interelectrode distance.

B. Effect of Electrode Configuration

In terms of classification accuracy, the best subset of four channels from the eight recorded 

channels was found to be a combination of two longitudinal and two transverse channels 

(L2, L4, T1, and T3 from Fig. 1B). While there are 70 possible combinations, this 

configuration was compared only to electrode configurations consisting of four longitudinal 

or four transverse channels (Fig. 4) as baselines. There were no significant differences 

between channel configurations at the no shift location, as all three configurations had 

average classification errors of less than 10%. However, with electrode shift, channel 

configuration had a significant (p<0.01) effect on classification error. At 1 cm shift, 

performance using four transverse channels was significantly worse (p<0.01) than the other 

two configurations. At 2 cm shift, the combined longitudinal and transverse channel 

configuration performed significantly better (p<0.01) than the all longitudinal and all 

transverse channel configurations, and longitudinal channels performed significantly better 

(p<0.01) than transverse channels. There was a significant interaction (p<0.01) between 

channel configuration and shift distance indicating that the configuration with two 

longitudinal and two transverse channels had smaller increases in classification error with 

increasing shift distance compared to the other two configurations.

C. Effect of Number of Recording Channels

The best channel subset for each number of recording channels between one and eight was 

determined—a total of eight subsets. An important result was that the best channel subset for 

each number of channels always consisted of at least one longitudinal and one transverse 

channel when more than one channel was used (see Table 1). The weighted error decreased 

with increasing number of channels up to six, and slightly increased with more than six 

recording channels.

The performance of the best channel subsets with electrode shift is shown in Fig. 5. The use 

of four to six channels had the lowest classification error across the three shift conditions. 

An important result was that classification error was below 15% at the no-shift and 1cm shift 

locations when using more than two recording channels. Classification errors in this range 

have demonstrated high controllability for seven motion classes [12]. The 2 cm shift 

location represents the worst-case scenario for electrode shift and had high (>20%) 

classification error regardless of the number of recording channels.

D. Effect of Feature Set

AR and TD+AR feature sets were compared to the standard TD feature set and the mean 

absolute value (MAV) feature (Fig 6). With no electrode shift or a 1 cm shift, only the 

TDAR feature set significantly outperformed the TD feature set (p<0.01). With 2 cm shift, 

both the AR and TDAR feature sets performed significantly better (p<0.01) than the TD 

feature set. Performance of the AR and TDAR feature sets were never significantly 
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different. The AR and TDAR feature sets performed better than just the TD feature set at all 

electrode locations. This trend existed across all channel configurations and interelectrode 

distances considered in this experiment, but is only shown here for a classifier consisting of 

four longitudinal channels with an interelectrode distance of 2 cm.

E. Effect of Choice of Degree of Freedoms

All the pattern recognition results displayed in this study were for three degrees of freedom. 

New advanced prosthesis may be able to support all three of these degrees of freedom, but 

many current devices only allow for one or two. Therefore, Fig. 7 was included to display 

results for four clinically relevant DOF control options. Results are displayed for two 

interelectrode distances – 2cm and 4cm – and two channel configurations: 1) two 

longitudinal channels (Fig. 7a) and 2) four combined channels (Fig 7b).

As expected, the 1 DOF classifier, which included hand open/close control, performed with 

lowest error across conditions. Notably, a two DOF classifier that also included forearm 

rotation (2 DOFb in Fig. 7) performed worse with shift in terms of classification error 

compared to the 3 DOF classifier. This indicates that the forearm pronation and supination 

motion classes are considerably more sensitive to shift than any of the other motion classes. 

The removal of the forearm rotation DOF (2DOFa in Fig. 7) considerably decreases 

classification error across conditions.

IV. Discussion

The hypothesis behind this work is that pattern recognition classifiers trained with global 

EMG signals are less sensitive to shift than those trained with selective signals. The 

interelectrode distance primarily determines the selectivity of the recording system. 

Channels with larger interelectrode distances record from a larger detection volume that 

includes a more global representation of the muscle activity. In this study, larger 

interelectrode distances decreased classification error and failure rates on the TAC test, 

demonstrating an increase in robustness by training with global EMG signals. Based on 

these results, we recommend using larger interelectrode distances, up to the 4 cm distance 

tested in this study.

This study found that a combination of longitudinal and transverse channels was the most 

beneficial electrode configuration for mitigating the effects of electrode shift. This result 

demonstrates that a combination of selective information from longitudinal channels and 

global information from transverse channels is useful for ensuring low error with and 

without electrode shift (Fig. 4). Our previous study [12] also found that transverse channels 

added complementary information to longitudinal channels but was limited in that channel 

number was not kept consistent between conditions. In the present study, each channel 

configuration was compared with configurations containing the same number of recording 

channels.

Two of the goals of this study were to determine the number of recording channels 

necessary to obtain sufficiently low classification error and to determine the optimal 

composition of channel subsets given a set number of channels. Based on weighted 
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averages, it was found that a combination of longitudinal and transverse channels was 

always optimal when using more than one channel. This combination of selective and 

nonselective information decreased error with and without shift compared to configurations 

with only one type of electrode configuration. Also, these results indicated that there was 

little or no improvement in terms of classification error when using more than six channels 

which corroborates previous claims [18–20]. For the transradial case, this study 

demonstrated that four to six channels were sufficient to obtain classification errors of less 

than 15% both without electrode shift and with shifts up to 1 cm.

Many previous pattern recognition studies have considered feature selection for myoelectric 

control. In this study, use of AR and TDAR features improved classification with and 

without shift compared to TD features, demonstrating that they form a better initial classifier 

and that they are more robust to shift up to 2 cm. Overall, the average decrease in 

classification error of the TDAR feature set compared to the TD feature set was 5.9%. 

Therefore, when practical, we recommend extraction of the TDAR feature set, especially in 

cases when electrode shift is involved.

One of the primary limitations of this study was that only unimpaired subjects were used to 

test the hypotheses. We expect these results to be useful for amputees provided that there is 

sufficient remaining musculature. These electrodes are typically embedded in the socket that 

attaches the residual limb to the prosthesis. The 4 cm interelectrode distance was the largest 

distance tested, as this is the widest spacing that prosthetists can reasonably accommodate 

on many transradial sockets.

This study complemented the previous study [12] by providing four additional findings. The 

first of these was related to the interelectrode distance, which had not been considered 

previously. We found that larger interelectrode distance mitigated the effects of electrode 

shift (Fig. 2 and Fig 3). The second finding involved an extended analysis of electrode 

configuration. In the previous study, two transverse channels were shown to provide 

complimentary information to two longitudinal channels using the same four electrode 

poles. In this study, two longitudinal and two transverse channels were shown to be 

preferred over four longitudinal channels or four transverse channels (Fig 4). Also, if more 

than one recording channel is used, we demonstrated that it is always beneficial to use at 

least one longitudinal and one transverse channel (Table 1). The third additional finding was 

that, in consideration of electrode shift, between four and six channels are preferred for 

transradial myoelectric pattern recognition control (Fig. 5). These values agree with 

previously published work that had not taken electrode shift into consideration. In the 

previous study, we considered different classification approaches. In this paper, we 

performed a complementary analysis on the feature extraction choice and demonstrated that 

TDAR features are most beneficial with and without electrode shift (Fig. 6). Based on these 

findings, and the findings of the previous study, Table 2 was included to summarize the 

main guidelines for the properties of the electrode detection interface and signal processing 

tested in these studies for myoelectric pattern recognition.
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V. Conclusion

We found that larger interelectrode distances and a combination of longitudinal and 

transverse channels reduced system sensitivity to electrode shift. These results should be 

applicable for designing robust, clinically viable EMG pattern recognition systems. 

Additionally, we found that four to six EMG channels is preferred for the transradial case in 

consideration of classification errors both with and without electrode shift. Finally, we show 

that a TDAR feature set reduces the effects of electrode shift on pattern recognition systems.

Acknowledgments

The authors would like to acknowledge Ann Barlow and Aimee Schultz for helping to revise and edit the 
manuscript.

This work was supported in part by the NIH under Grant R01-HD-05-8000. A.J. Young was supported by NSF and 
NDSEG graduate fellowships.

References

1. Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: A survey of the last 25 years. 
Prosthetics and Orthotics International. 2007; 31:236–257. [PubMed: 17979010] 

2. Parker P, Englehart K, Hudgins B. Myoelectric signal processing for control of powered limb 
prostheses. Journal of Electromyography and Kinesiology. 2006; 16:541–548. [PubMed: 17045489] 

3. Zecca M, Micera S, Carrozza MC, Dario P. Control of multifunctional prosthetic hands by 
processing the electromyographic signal. Critical Reviews in Biomedical Engineering. 2002; 
40:459–485. [PubMed: 12739757] 

4. Oskoei MA, Hu H. Myoelectric control systems-a survey. Biomedical Signal Processing and 
Control. 2007; 2:275–294.

5. Alstrom C, Herberts P, Korner L. Experience with Swedish Multifunctional Prosthetic Hands 
Controlled by Pattern Recognition of Multiple Myoelectric Signals. International Orthopedics. 
1981; 5:15–21.

6. Hudgins B, Parker P, Scott RN. A new strategy for multifunction myoelectric control. IEEE 
Transactions on Biomedical Engineering. 1993; 40:82–94. [PubMed: 8468080] 

7. Lock, B.; Simon, A.; Stubblefield, K.; Hargrove, L. Prosthesis-Guided Training for Practical Use of 
Pattern Recognition Control of Prostheses. Myoelectric Controls Symposium; Fredericton. 2011. 

8. Stubblefield, A.; Finucane, S.; Miller, L.; Lock, B. Training Individuals to Use Pattern Recognition 
to Control an Upper Limb Prosthesis. Myoelectric Controls Symposium; Fredericton. 2011. 

9. Scheme, E.; Fougner, A.; Stavdahl, O.; Chan, A.; Englehart, K. Examining the Adverse Effects of 
Limb Position on Pattern Recognition Based Myoelectric Control. 32nd Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society; Buenos Aires, Argentina. 
2010. 

10. Tkach D, Huang H, Kuiken T. Study of stability of time-domain features for electromyographic 
pattern recognition. Journal of Neuroengineering and Rehabilitation. 2010; 7

11. Hargrove, L.; Englehart, K.; Hudgins, B. The effect of electrode displacements on pattern 
recognition based myoelectric control. Proceedings of the 28th IEEE EMBS Annual International 
Conference; New York City. 2006. p. 2203-2206.

12. Young A, Hargrove L, Kuiken T. The Effects of Electrode Size and Orientation on the Sensitivity 
of Myoelectric Pattern Recognition Systems to Electrode Shift. IEEE Transactions on Biomedical 
Engineering. 2011; 58:2537–2544. [PubMed: 21659017] 

13. Kamen, G.; Gabriel, D. Essentials of Electromyography. Champaign: Human Kinetics Publishers; 
2009. 

14. Freriks, B.; Hermens, H. European Recommendations for Surface ElectroMyoGraphy: Results of 
the SENIAM Project (CD-rom). Enschede: Roessingh Research and Development; 1999. 

Young et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 November 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



15. Young, A.; Hargrove, L. Effects of Interelectrode Distance on the Robustness of Myoelectric 
Pattern Recognition Systems. presented at the 33rd Annual Internation Conference of the IEEE 
Engineering in Medicine and Biology Society; Boston. 2011. 

16. Englehart K, Hudgins B. A robust, real-time control scheme for multifunction myoelectric control. 
IEEE Transactions on Biomedical Engineering. 2003; 50:848–854. [PubMed: 12848352] 

17. Englehart K, Hudgins B, Chan ADC. Continuous multifunction myoelectric control using pattern 
recognition. Technology and Disability. 2003; 15:95–103.

18. Hargrove L, Englehart K, Hudgins B. A Comparison of Surface and Intramuscular Myoelectric 
Signal Classification. IEEE Transactions on Biomedical Engineering. 2007

19. Huang H, Zhou P, Li G, Kuiken TA. An Analysis of EMG Electrode Configuration for Targeted 
Muscle Reinnervation Based Neural Machine Interface. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering. 2008; 16:37–45. [PubMed: 18303804] 

20. Li G, Schultz AE, Kuiken TA. Quantifying pattern recognition-based myoelectric control of 
multifunctional transradial prostheses. IEEE Transactions on Neural Systems and Rehabilitation 
Engineering. 2010; 18:185–192. [PubMed: 20071269] 

21. Park SH, Lee SP. EMG pattern recognition based on artificial intelligence techniques. IEEE 
Transactions on Rehabilitation Engineering. 1998; 6:400–405. [PubMed: 9865887] 

22. Huang YH, Englehart KB, Hudgins B, Chan ADC. A Gaussian mixture model based classification 
scheme for myoelectric control of powered upper limb prostheses. IEEE Transactions on 
Biomedical Engineering. 2005; 52:1801–1811. [PubMed: 16285383] 

23. Englehart K, Hudgins B, Parker P, Stevenson M. Classification of the myoelectric signal using 
time-frequency based representations. Medical Engineering & Physics. 1999; 21:431–438. 
[PubMed: 10624739] 

24. Englehart K, Hudgins B, Parker PA. A wavelet-based continuous classification scheme for 
multifunction myoelectric control. IEEE Transactions on Biomedical Engineering. 2001; 48:302–
311. [PubMed: 11327498] 

25. Hargrove L, Scheme E, Englehart K, Hudgins B. Multiple Binary Classifications via Linear 
Discriminant Analysis for Improved Controllability of a Powered Prosthesis. IEEE Transactions 
on Neural Systems and Rehabilitation Engineering. 2010; 18:49–57. [PubMed: 20071277] 

26. Han, JS.; Song, WK.; Kim, JS.; Bang, WC.; Lee, H.; Bien, Z. New EMG pattern recognition based 
on soft computing techniques and its application to control a rehabilitation robotic arm. 
International Conference on Soft Computing; Fukuoka, Japan. 2000. p. 1-4.

27. Farry KA, Walker ID, Baraniuk RG. Myoelectric teleoperation of a complex robotic hand. IEEE 
Transactions on Robotics and Automation. 1996; 12:775–788.

28. Karlsson S, Yu J, Akay M. Time–frequency analysis of myoelectric signals during dynamic 
contractions: a comparative study. IEEE Transactions on Biomedical Engineering. 2000; 47:228–
238. [PubMed: 10721630] 

29. Ajiboye AB, Weir RF. A heuristic fuzzy logic approach to EMG pattern recognition for 
multifunctional prosthesis control. IEEE Transactions on Neural Systems and Rehabilitation 
Engineering. 2005; 13:280–291. [PubMed: 16200752] 

30. Farrell TR, Weir RF. A comparison of the effects of electrode implantation and targeting on 
pattern classification accuracy for prosthesis control. IEEE Transactions on Biomedical 
Engineering. 2008; 55:2198–2211. [PubMed: 18713689] 

31. Gallant PJ, Morin EL, Peppard LE. Feature-based classification of myoelectric signals using 
artificial neural networks. Medical & Biological Engineering & Computing. 1998; 36:485–489. 
[PubMed: 10198534] 

32. Ye, J.; Janardan, R.; Park, H. Feature extraction via generalized uncorrelated linear discriminant 
analysis. The Twenty-First International Conference on Machine Learning; 2004. p. 895-902.

33. Oskoei MA, Hu H. Support Vector Machine-Based Classification Scheme for Myoelectric Control 
Applied to Upper Limb. Biomedical Engineering, IEEE Transactions on. 2008; 55:1956–1965.

34. Lucas M, Gaufriau A, Pascual S, Doncarli C, Farina D. Multi-channel surface EMG classification 
using support vector machines and signal-based wavelet optimization. Biomedical Signal 
Processing and Control. 2008; 3:169–174.

Young et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 November 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



35. Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB. Targeted 
muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA. 
2009; 301:619–628. [PubMed: 19211469] 

36. Hargrove, L.; Losier, Y.; Lock, BA.; Englehart, K.; Hudgins, B. A Real-Time Pattern Recognition 
Based Myoelectric Control Usability Study Implemented in a Virtual Environment. Proceedings of 
the 29th Annual International Conference of the IEEE EMBS; Lyons, France. 2007. p. 4842-4845.

37. Hargrove L, Englehart K, Hudgins B. A training strategy to reduce classification degradation due 
to electrode displacements in pattern recognition based myoelectric control. Biomedical Signal 
Processing and Control. 2008; 3:175–180.

38. Chan, ADC.; Englehart, KB. Continuous Classification of Myoelectric Signals for Powered 
Prostheses using Gaussian Mixture Models. 25th Annual International Conference of the 
Engineering in Medicine and Biology Society; 2003. p. 2841-2844.

39. Smith LH, Hargrove L, Lock BA, Kuiken T. Determining the optimal window length for pattern 
recognition-based myoelectric control: balancing the competing effects of classification error and 
controller delay. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2010 vol. 
In Press. 

40. Simon A, Hargrove L, Lock BA, Kuiken T. A decision-based velocity ramp for minimizing the 
effect of misclassifications during real-time pattern recognition control. IEEE Transactions on 
Neural Systems and Rehabilitation Engineering. 2010 vol. Accepted. 

Young et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 November 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Electrode pole placement and channel configuration. A. The four control sites were evenly 

spaced around the forearm. P1–P4 refer to the four proximal poles and D1–D4 refer to the 

four distal poles. B. From the four control sites, eight recording channels were formed: four 

longitudinal channels (L1, L2, L3, L4) and four transverse channels (T1, T2, T3, T4). 

Longitudinal channels were a differential of the proximal and distal pole at a single control 

site. Transverse channels were a differential of a pole from one control site and the 

corresponding pole from the control site on the opposite side of the arm. C. Three 
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interelectrode distances were tested for longitudinal channels: 2 cm, 3 cm, and 4 cm. For 

each interelectrode distance and condition tested in this study, the classifier was tested at the 

no shift location, 1 cm perpendicular shift, and 2cm perpendicular shift.
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Fig. 2. 
Effect of interelectrode distance on classification error. Two longitudinal channels and TD 

features were used to generate these results. Results are an average of 7 subjects. A shift 

distance of 0 corresponds to the classification error at the no shift location. Error bars show 

+/− 1 SEM.
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Fig. 3. 
Effect of interelectrode distance on system controllability in the presence of electrode shift. 

TAC test failure rates (a) and completion times (b) for tests conducted with electrodes at the 

no shift and 2 cm shift locations for interelectrode distances of 2 cm and 4 cm using TD 

features. Results are averaged over seven subjects with one outlier at the no shift location 

removed. Two longitudinal channels were used for controllability testing. Error bars show+/

− 1 SEM.
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Fig. 4. 
Effect of electrode configuration on classification error. Each configuration consisted of four 

recording channels but with different orientations. Results are averaged over seven subjects. 

Interelectrode distances of 2 cm and TD features were used for this analysis, but the trend 

existed across all interelectrode distances tested. Error bars show +/− 1 SEM.
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Fig. 5. 
Effect of the number of recording channels on classification error. Every combination of 

channels was tested and the best subset was chosen for each discrete number of channels. 

Results are averaged over seven subjects. 2 cm interelectrode distance and TD features were 

used for this analysis, but the trend existed across all interelectrode distances tested. Error 

bars show +/− 1 SEM.
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Fig. 6. 
Effect of feature choice on classification error. The mean absolute value (MAV) feature, 

time domain features (TD), autoregressive (AR) features, and a combination of time domain 

and autoregressive (TDAR) features are shown. Results for four longitudinal channels and 

2cm interelectrode distance are displayed here, but the general trend existed across all 

configurations and interelectrode distances. Results are an average of seven subjects. Error 

bars show +/− 1 SEM.
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Fig. 7. 
Effect of four DOF options on classification error. The 1 DOF option is hand open/close, 

2DOFa includes hand open/close and wrist flexion/extension, 2DOFb includes hand open/

close and forearm pronation/supination, and 3 DOF includes all DOFs collected. Results are 

shown for two interelectrode distances (2cm and 4cm) and two configurations: two 

longitudinal channels (Fig 7a) and four combined channels (Fig 7b) which consisted of two 

longitudinal and two transverse channels. Results are averaged over seven subjects. TD 
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features were used for this analysis, but the same trends existed across the other feature sets. 

Error bars show +/− 1 SEM.
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Table 1

Weighted average error scores for the best channel subset. Scores decreased with an increasing number of 

channels up until six. Small increases were observed when using more than six channels.

#of
Channels

Best Channel Subset Weighted
Average
Error

Average
Error

1 T3 33.5% 35.2%

2 L2, T3 16.7% 17.8%

3 L2, L3, T3 12.6% 14.8%

4 L2, L4, T1, T3 10.8% 12.7%

5 L2, L3, L4, T2, T3 9.7% 11.8%

6 L2, L3, L4, T1, T3, T4 8.9% 10.9%

7 L2, L3, L4, T1, T2, T3, T4 9.9% 12.3%

8 L1, L2, L3, L4, T1, T2, T3, T4 10.7% 13.4%

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 November 17.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Young et al. Page 22

Table 2

Recommendations gathered from study for pattern recognition based myoelectric control.

Property Recommendation

Interelectrode Distance Up to 4cm, as permitted by residual limb size

Electrode Size 1cm2

Electrode Configuration Combination of both longitudinal and transverse oriented channels

Number of Channels 4–6 for transradial

EMG features Time Domain and Autoregressive

Classification Method Linear Discriminant Analysis
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