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Summary

Elucidating the complexity of cytokine signaling within the normal mucosa and during acute and 

chronic inflammation will be a pivotal step towards understanding the pathogenesis of immune-

mediated gut diseases, and developing effective therapies to treat them.
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Introduction

The intestinal mucosa faces the constant challenge of maintaining a peaceful co-existence 

between commensal microbiota and the gut-associated immune system [1]. At steady-state, 

homeostasis signifies a tightly regulated communication between the two parts via 

successive but interrelated mucosal barriers. During acute injuries, barriers are temporarily 

compromised, allowing an influx of microorganisms into the lamina propria. In healthy 

mucosa, this is followed by complete architectural and functional recovery without 

permanent defects. Nevertheless, when, under genetic and/or environmental pressure, barrier 

dysfunction becomes permanent, the ability to handle everyday encounters with microbiota 

or repair acute traumas is lost and chronic inflammation is established [2]. This is best 

exemplified in Crohn's disease (CD) and ulcerative colitis (UC), collectively termed 

inflammatory bowel disease (IBD) [3].

Cytokines regulate the function of the mucosal barrier(s) at multiple levels [4]. Innate 

cytokines exert dichotomous roles during homeostatic and inflammatory pathways, as 

revealed by murine models of acute injury and repair [5]. Unexpectedly, deletion of several 
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“pro-inflammatory” factors was associated with more severe active inflammation and 

delayed mucosal healing [6]. The cellular sources and temporal pattern of expression of a 

specific cytokine appear to dictate its ultimate function; transient epithelial expression 

maintains homeostatic control, whereas persistent production by monocytes leads to 

inflammation [7]. Adaptive immune responses are also complex at the intestinal mucosa, as 

chronic inflammation develops through sequential steps, each of which is mediated by 

distinct sets of cytokines [4, 8, 9]. In experimental models as well as in patients with IBD, 

initiation of ileitis or colitis is dominated by Th1-type responses, whereas Th2 and Th17 

pathways prevail in later stages [10-13]. Furthermore, effector lymphocytes may convert to 

other phenotypes (effector-or even regulatory) [14]. Adding more to the complexity, cells 

with mixed innate/adaptive characteristics have been recently described. These innate 

lymphoid cells (ILCs) consist of several subpopulations of mucosal residents that regulate 

local immunity through the secretion of cytokines [15, 16]. Such variability not only creates 

difficulty to provide a uniform pathogenetic model for chronic inflammatory diseases, but 

will also critically affect the selection of future therapeutic targets.

The present review will focus on recent publications, presenting important new information 

for the role of specific cytokines in mucosal homeostasis and inflammation.

CYTOKINES OF THE IL-1 FAMILY

The concept of dichotomous cytokine function has been mostly based on observations 

regarding the role of members of the IL-1 family in intestinal inflammation, given that IL-1, 

IL-18 and IL-33 have demonstrated both pro-inflammatory and protective properties, 

depending on the type of receptor-bearing cells [6].

In keeping with this concept, Bersudsky et al. recently reported opposing roles for IL-1α and 

IL-1β during acute injury and repair by studying the natural course of acute dextran sulfate 

sodium (DSS)-induced colitis in mice deficient for the respective cytokines [17]. IL-1α has 

a pro-inflammatory role in this model, as IL-1α KO mice demonstrated no mortality and 

milder histological damage, compared to wild-type mice. They also displayed accelerated 

epithelial restitution and preserved barrier function. Mice carrying epithelial-specific 

deletion of the il-1a gene were similarly protected, pointing to the epithelium as the primary 

cellular source of pro-inflammatory IL-1α, which acts as an alarmin when its precursor is 

released from necrotic cells. On the other hand, IL-1β deficiency led to more severe colitis 

with failure of repair mechanisms, findings indicative of a protective role of IL-1β, which 

was mainly derived from lamina propria monocytes. In fact, when IL-1β-deficient mice 

received hematopoietic cells capable of producing IL-1β, restoration of repair mechanisms 

occurred. A protective role for IL-1β was previously proposed in rabbit formalin-immune 

complex colitis [18]. Therefore, deficient mucosal upregulation of “protective” IL-1β may 

impair homeostasis after transient injury and lead to chronic inflammation. Such impaired 

secretion of IL-1β from monocytes has also been described in IBD patients bearing NOD2 

double mutant genotypes or mutations to a regulatory region downstream of the 

inflammasome component NLRP3 [19, 20]. Dichotomy of function between IL-1α and 

IL-1β had therapeutic implications as well, as neutralization of IL-1α via an anti-IL-1α-

specific monoclonal antibodies (but not administration of the IL-1-receptor antagonist 
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[IL-1Ra], which blocks both IL-1α and IL-1β), led to decreased severity of DSS colitis in 

wild-type mice [17]. The ability to act as a pro-inflammatory alarmin was recently shown 

for IL-33, another member of the IL-1 family [21]. Bessa and co-investigators developed a 

novel mouse strain that lacks the signal for nuclear localization of IL-33 (IL-33tm1 mice). 

Constitutive detection of IL-33 in the systemic circulation was observed in this strain, 

indicating that when IL-33 is not localized to the nucleus, it gets released from the cell and 

may act as an alarmin. Accordingly, IL-33tm1/+ mice develop severe multi-organ 

inflammation with prominent eosinophilic infiltration, leading to early death. Small and 

large intestines showed severe inflammatory lesions, indicative of loss of mucosal 

homeostasis. These effects were aborted when IL-33tm1/+mice were crossed with mice 

deficient for the IL-33 receptor, ST2 (ST2−/−/IL-33tm1/+ mice), although a high 

concentration of IL-33 in the serum was still detected. Taken together, the studies by 

Bersudsky [17] and Bessa [21] imply that nuclear localization of the IL-1α precursor or 

IL-33 acts as an internal protective mechanism, preventing their extracellular movement [22, 

23]. Nevertheless, upon DSS-induced cell necrosis or by the genetic blockade of nuclear 

localization of IL-33 in IL-33tm1/+mice, these cytokines are released and mediate 

inflammatory responses due to their function as alarmins.

Further supporting a role for IL-33 in mucosal homeostasis/inflammation, two recent studies 

reported diminished severity of colitis and enhancement of mucosal healing in animal 

models of acute injury/repair in the presence of a deficient IL-33/ST2 pathway [24, 25]. In 

the first study [25], it was shown that ST2 KO mice had significantly less severe acute DSS 

colitis compared to wild-type controls, whereas administration of exogenous IL-33 

exacerbated acute intestinal inflammation in DSS-treated wild-type mice. The latter was 

dependent upon intact IL-4-signaling as the same effects were not seen in IL-4 KO mice. 

The second study [24] confirmed the dependence of DSS, but also TNBS, colitis upon ST2 

signaling as both were significantly milder in ST2 KO mice or in mice treated with anti-ST2 

neutralizing antibodies. Compatible with the previous findings, IL-33 was localized to the 

nucleus of enterocytes and myofibroblasts, while strictly epithelial localization of ST2 was 

shown. Accordingly, absence of ST2 in non-hematopoietic cells was sufficient to protect 

against colitis via a mechanism that included enhanced wound healing and elevated 

expression or the cytoprotective factor connexin-43. Hence, IL-33/ST2 appear to be 

critically involved in the process of acute injury/mucosal healing in the gut. This is further 

supported by the recent identification of genetic polymorphisms in the il-33 and il-1r1 genes 

that modify the susceptibility for developing IBD [26]. It should be noted, however, that 

cytokines within the IL-1 family may occasionally exert opposite functional roles depending 

on the clinical or experimental conditions [6]. For example, in a recent study IL-33 acted in 

an anti-inflammatory mode by augmenting the development of a population of B 

lymphocytes with regulatory properties (Bregs) [27]. Accordingly, peritoneal injection of 

IL-33 exacerbated colitis in IL-10-deficient mice, whereas IL-33-treated wild type mice 

were protected from disease.

CYTOKINES OF THE TNF/TNFR SUPERFAMILIES

Several members of the TNF/TNFR superfamily act as co-stimulatory molecules, regulating 

the interactions between antigen-presenting cells (APCs) and lymphocytes [28]. This is of 
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particular importance for the mucosal environment due to the local abundance of bacterial 

antigens. Moreover, APC-lymphocyte binding is critical for the fate of immune responses 

and the shaping of ensuing adaptive immunity.

Interaction between APC-derived TL1A (TNFSF15) and its functional receptor DR3 

(TNFRSF25) in lymphocytes contributes to both gut homeostasis and inflammation [29, 30]. 

A recently published study reported that type-2 innate lymphoid cells (ILC2s) abundantly 

express DR3 [31]. TL1A provides critical signals upon association with its cognate receptor, 

DR3, that promote the survival and augment the function of ILC2s, such as the secretion of 

IL-5 and IL-13. Accordingly, effective immunity against helminthic infection is 

compromised in DR3-deficient mice due to impaired innate ILC2 responses. Finally, TL1A 

functions independently but also synergistically with IL-25 or IL-33 to activate ILC2s. 

Similar defects were observed in the lungs of DR3-deficient mice, indicating that 

TL1A/DR3 are important mediators of mucosal immunity at various sites, and a possible 

mode of action is the activation of ILC2-mediated pathways [32] . It is also important to 

note that, so far, the only known ligand for DR3 is TL1A. Nevertheless, a recent publication 

reported that atsttrin is also capable to bind DR3 with high affinity [33]. Attstrin is an 

engineered molecule, which is derived from progranulin, a growth-factor with multiple 

biological functions, including the ability to bind to TNFR [34]. In this study, attstrin not 

only showed in vitro affinity for DR3 binding, but also significantly ameliorated the severity 

of DSS colitis, indicating that administration of attstrin may also be of clinical importance in 

the future. Another co-stimulatory molecule of the TNF family, LIGHT (TNFSF14) was 

recently shown to be a critical factor for the resolution of intestinal inflammation in mice 

[35]. Krausse et al. reported accelerated colonic inflammation when CD4/CD45RBhi T cells 

were adoptively transferred into tnfsf14/Rag1 double KO, compared to Rag1 KO recipients 

alone. Furthermore, tnfsf14 KO mice developed more severe DSS colitis than wild-type 

controls, both clinically and histologicaly. In addition, in the absence of intact LIGHT 

signaling, immune responses were enhanced within the inflamed mucosa, including elevated 

number of immunocytes and augmented production of cytokines. LIGHT was mainly 

produced by myeloid cells and interacted with the lymphotoxin β receptor to exert its 

protective effect [35].

An important characteristic of TNFSF/TNFRSF cytokines is that they are functionally 

implicated in common inflammatory pathways, either by regulating the initiation of 

responses through modification of APC-lymphocyte interactions or by acting as final 

effector molecules produced by innate immune cells. In this sense they offer unique 

therapeutic opportunities for chronic inflammatory diseases, irrespectively of the 

predominant immunophenotype. In the case of intestinal inflammation, this is emphasized 

by the significant therapeutic benefit for patients with CD or UC with the use of anti-TNF 

monoclonal antibodies. Recent studies have provided new evidence for the pathogenic 

mechanism through which blockade of TNF-α leads to anti-inflammatory effects. In a 

seminal study by Atreya et al., response to anti-TNF therapy directly correlated to the 

number of mucosal immunocytes expressing membrane TNF-α (mTNF) before treatment 

commencement [36]. The investigators administered fluorescent, specific, anti-TNF 

antibodies locally (i.e. via an endoscope) and were able to enumerate intestinal cells positive 
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for mTNF staining by use of confocal laser endomicroscopy. Response to anti-TNF 

treatment was critically dependent upon the number of TNF-expressing immunocytes, as 

patients with high numbers of mTNF almost universally responded to treatment (92%). In 

sharp contrast, patients with low numbers of mTNF expressing cells did not respond to the 

treatment (15%). In a different study, the relative contribution of neutralization of soluble 

vs. transmembrane TNF-α to the therapeutic effect was examined [37]. To accomplish this, 

the investigators utilized the model of colitis that follows adoptive transfer of 

CD45RBhiCD25negT-cells to immunodeficient mice. As expected, administration of anti-

TNF mAbs (that block both membrane and soluble TNF-α) suppressed colitis in recipient 

mice. Alternatively, mice treated with a dominant negative mutant of TNF-α (XENP1595) 

that selectively inhibits soluble TNF-α did not show amelioration in colitis. XENP1595 acts 

by exchanging subunits with native soluble TNF homotrimers and forming inactive 

heterotrimers which are unable to signal through TNFR1 or 2 [38]; membrane TNF-α 

signaling is not modified. Hence, it appears that neutralization of membrane TNF-α is the 

critical event for the amelioration of T-cell-mediated colitis. In the past, it was proposed that 

lymphocytes expressing membrane TNF-α are eliminated through apoptosis as an 

explanation for the differences in the therapeutic response between the various anti-TNF-α 

agents. However, a recent study reported that TNF-α produced exclusively by epithelial 

cells is sufficient to induce chronic enterocolitis in mice [39]. In this study, the investigators 

created an intestinal-specific TNFΔARE mouse (TNFiΔARE) that expressed murine TNF-α 

under the promoter of the intestinal fatty acid binding protein (I-FABP) gene, which is only 

expressed on small intestinal epithelial cells with minimal spillover to colonocytes. The 

study showed that TNFiΔARE/iΔARE mice had elevated mucosal and systemic TNF-α levels 

and developed severe chronic ileitis but not extraintestinal manifestations. TNFiΔARE/iΔARE 

mice demonstrated dense infiltration of the lamina propria and mesenteric lymph nodes with 

activated lymphocytes, which produced both Th1 (IFNγ) and Th2 (IL-5, IL-13) cytokines 

and were able to adoptively transfer ileitis to immunologically naïve severe combined 

immunodeficient recipients. These results confirm the notion that the final immunological 

effect is dictated not only by the cellular origin, but also by the transient or constitutive 

pattern of TNF-α secretion.

CYTOKINES OF THE IL-23/TH17 AXIS

The IL-23/Th17 pathway is unique in several ways among the major effector pathways of 

adaptive immunity [40, 41]. First, IL-17 is detectable in healthy mucosa, where it 

contributes to preservation of homeostasis and effective immunity against specific 

microorganisms. Second, Th17 cells show considerable functional plasticity and may revert 

to Th1 or Th1/Th17 cells when exposed to specific mucosal microenvironments. 

Furthermore, the development of Th17 cells is interconnected with that of Tregs, as they 

both require the presence of TGF-β1. Finally, instead of producing only one or few effector 

molecules, Th17 cells are capable of producing several cytokines that often demonstrate 

diverse (or even opposing) functions, among which is interleukin-22 (IL-22). Several recent 

publications have provided important evidence of a central role for the IL-22 in mucosal 

immunity.
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Traditionally, a protective role has been reserved for IL-22 in the regulation of gut 

homeostasis [42]. A recent study supports this concept by demonstrating depletion of IL-22-

producing CD4+ cells in patients with active UC, but not in normal mucosa or healthy 

controls [43]. The proportion of Th22 cells (IL-22+, IL-17-) was decreased whereas that of 

Th17 (either IL-22- or IL-22+) increased among lamina propria mononuclear cell 

populations from UC patients. Interestingly, when multiple cytokines were analyzed at the 

single-cell level with flow cytometry it was found that the expression of IL-22 correlated 

more with that of IFN-γ and T-bet (Th1 markers) than with expression of the Th17 marker 

IL-17A, similar to previous studies [44]. This association may be related to the induction of 

Th1 and Th22 by identical microbiota constituents as shown in this study. Depletion of Th22 

cells in UC was attributed to a negative regulatory effect of TGF-β1 on IL-22 production. 

This suppressive effect on “protective” IL-22 may offer an explanation as to why elevated 

mucosal TGF-β1 expression is inadequate to limit intestinal inflammation in UC. Another 

study linked the anti-inflammatory role of IL-22 to its secretion by γδ T cells and ILC3s, 

under the control of retinoic acid (RA) [45]. RA promoted binding of RA receptor to the 

IL-22 promoter in γδ T cells and upregulated in vitro the expression of IL-22 in both cell 

types. In vivo administration of RA attenuated acute DSS- or infectious colitis. Protection 

was aborted by an anti-IL-22 neutralizing antibody. RA-induced IL-22 upregulation resulted 

in enhancement of mucosal defenses via production of the antimicrobial peptides Reg3β and 

Reg3γ.

This protective mucosal function of IL-22, however, was recently shown not be uniform; 

rather, it appears to depend on the specific experimental setting and pathogenetic model. 

Indeed, neutralization of IL-22 protected mice deficient in IL-23R from anti-CD40 

antibody-induced acute innate colitis in Rag1 KO mice [46]. In contrast, when IL-22 was 

added to IL-23R-deficient mice, disease developed. Taken together, this study implies that 

IL-23R+ ILCs may induce colitis via interleukin-22-dependent mechanism(s) and further 

add to the complexity of IL-22 function at the intestinal mucosa.

CONCLUSIONS

The role of cytokines in mucosal immunity continuous to evolve as new information is 

accumulated through the study of experimental models, the recognition of genetic 

polymorphisms associated with particular clinical entities, and the detailed identification of 

disease-specific mucosal and systemic immunophenotypes. Most cytokines appear to be 

surprisingly plastic in their function and the final outcome is not affected only by the 

specific molecules but also by the mucosal environment on the whole. The cellular sources 

and tissue specificities, the transient or permanent pattern of expression, the predominance 

of homeostatic or inflammatory pathways, and the occurrence of early or late phases of 

chronic inflammation, all influence the particular role that each cytokine plays in a specific 

situation. Understanding these aspects of cytokine function will be pivotal in elucidating the 

pathogenesis of intestinal inflammatory diseases and designing therapeutic strategies for 

their treatment.

Acknowledgments

This work was supported by NIH grants DK042191, DK055812 and DK09122 to Fabio Cominelli

Bamias et al. Page 6

Curr Opin Gastroenterol. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Recent Findings

Dichotomous, or even opposing, functions have been described for several cytokines involved in intestinal innate 
immunity (most notably for members of the IL-1 family), which depend on the specific inflammatory conditions 
within the intestinal mucosa. For example, both IL-1α and IL-33 exhibit “alarmin”-type properties that can signal 
tissue or cell damage, which further add to their well-described pro-inflammatory roles. Co-stimulatory molecules 
of the TNF/TNFR superfamily, such as TL1A and LIGHT, are actively involved in mucosal proinflammatory 
pathways, but also may exert protection against infectious agents to facilitate recovery from acute inflammation. 
Finally, innate lymphoid cells are increasingly recognized as important cellular sources of pivotal mucosal 
cytokines, including the IL-23/Th17 cytokine, IL-23.
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KEY POINTS

IL-1-α and IL-33 act as pro-inflammatory alarmins when released from injured epithelial 

cells

IL-1-α and IL-1-β play opposite roles during acute mucosal inflammation/repair

ILCs are critical sources of mucosal cytokines including DR3 (ILC2s) and IL-22 (ILC3s)

The number of TNF-bearing mucosal cells predicts the therapeutic response to anti-TNF 

agents
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