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Abstract

Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose PET acquisitions have been 

used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) 

for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC 

requires a space-variant model describing the reconstructed image spatial point spread function 

(PSF) that accounts for resolution limitations, including non-uniformities across the field of view 

due to the parallax effect. For OSEM, image resolution convergence is local and influenced 

significantly by the number of iterations, the count density, and background-to-target ratio. As 

both count density and background-to-target values for a brain structure can change during a 

dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-

reconstruction the kinetic parameter estimates may be biased when neglecting the frame-

dependent resolution. We explored the influence of the PVC method and implementation on 

kinetic parameters estimated by fitting 18F-fluorodeoxyglucose dynamic data acquired on a 

dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM 

algorithm. The performance of several PVC algorithms was quantified with a phantom 

experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame 

reconstructed image only for regional spread function (RSF) generation, as opposed to computing 

RSFs for each frame independently, and applying perturbation GTM PVC with PSF based OSEM 

produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the 

cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the 

last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias 

in CMRGlc estimates, although by less than 5% in most cases compared to the other PVC 

methods. The results indicate that the PVC implementation and choice of PSF modelling in the 

reconstruction can significantly impact model parameters.
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1. Introduction

Calculation of kinetic parameters and the cerebral metabolic rate of glucose (CMRGlc) from 

dynamic 18F-fluorodeoxyglucose (18F-FDG) PET has been used extensively to estimate 

glucose utilization in the “normal” brain (e.g. healthy volunteers and mild dementia 

patients). Kinetic parameter calculation requires fitting a three compartment model (Phelps 

et al. 1979) to a full duration time activity curve (TAC) (i.e. starting immediately after 

injection) to estimate rate constants K1, k2, k3, and k4 representing 18F-FDG’s forward and 

reverse transport from the blood pool to tissue and its phosphorylation and 

dephosphorylation, respectively. 18F-FDG kinetic modelling has been found to have utility 

in both preclinical (Yu et al. 2009, Song et al. 2010) and clinical (Piert et al. 1996, Graham 

et al. 2002) neurological imaging studies. Mosconi et al. (2007) found that K1 and k3 were 

significantly reduced in several brain structures in mild Alzheimer’s disease patients 

compared with age matched subjects while Cornford et al. (1998) measured significantly 

reduced K1 and k3 values in seizure foci versus parameters derived from contralateral ROIs 

in patients being evaluated for the surgical treatment of intractable seizures.

Neglecting partial volume correction (PVC) for reconstructed images of a dynamic study 

has been shown to produce significant bias in kinetic parameter estimates (Rousset et al. 

2000). Numerous PVC methods have been proposed (see Erlandsson et al. (2012) for a 

review); however, for the hybrid MR-PET system used in this study PVC methods which 

utilize the spatially registered high resolution anatomical information from MR images may 

offer optimal performance. We restrict our analysis to geometric transfer matrix (GTM) 

PVC algorithms which estimate mean ROI corrected uptake values through noiseless 

simulations of the PET system using as input unit filled images (binary maps or 

characteristic functions) generated from segmentations of each anatomical region 

contributing to spill-in and spill-out of the given ROI (Rousset et al. 1998). For TACs 

derived from images reconstructed with an analytic method such as FBP, PVC can be 

performed in post-reconstruction via such anatomic based GTM methods by estimating 

correction factors once and using these factors to correct for PV for all images in the time 

series. Accurate post-reconstruction PVC of FBP dynamic data in this manner is justified 

due to the independence of FBP image spatial resolution on the raw sinogram data. 

Application of PVC using a single calculation of correction factors assumes that patient 

motion during the dynamic acquisition is either negligible or corrected for, as 

misregistration between the anatomical and emission images can produce significant bias in 

corrected uptake values (Meltzer et al. 1999). If expectation maximization (EM) or ordered 

subsets EM iterative reconstructions are used, however, image spatial resolution 

independence is not maintained and PVC performance of dynamic image series may suffer 

bias.

Although ordered subsets expectation maximization (OSEM) reconstruction produces 

images with superior SNR compared with FBP (Hudson and Larkin 1994), spatial resolution 

convergence is local for OSEM and depends significantly on the background activity, count 

density, and size of the object being imaged (Boellaard et al. 2004). Yao et al. (2000) found 

that when background activity was added to rat brain data significantly more iterations were 

required to match image spatial resolution, at the cost of increased noise, versus when 
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background activity was absent, while Gaitanis et al. (2010) demonstrated that resolution 

convergence was inversely related to the number of counts for a Hoffman brain phantom.

The performance of OSEM on 18F-FDG kinetic modelling has been evaluated previously 

(Boellaard et al. 2001) and was found to produce similar bias and variance results to FBP 

derived values for most conditions, although significantly higher bias was noted for cold 

regions with relatively high background activity levels. For PET systems where sinogram 

data has limited sinogram sampling due to gaps, however, FBP reconstructed images may 

have significant artefacts compared to OSEM estimates (Michel et al. 2000), greatly 

reducing the accuracy of FBP for kinetic modelling. For the camera of interest in this study, 

termed BrainPET, 44% of projection data is missing due to gaps between detector blocks 

(Catana et al. 2010). Although gap filling methods in sinogram space have been shown to 

reduce artefacts (Tuna et al. 2010, de Jong et al. 2003) in another dedicated brain scanner, 

the ECAT HRRT, this system lacks only ~10% of sinogram data and such methods are 

expected to be less effective for BrainPET.

During a dynamic imaging acquisition the noise and background to ROI activity 

concentration ratio can vary significantly between early and late frames, thereby potentially 

altering the local resolution convergence properties of the resulting OSEM reconstructed 

images on a frame-by-frame basis. The application of post-reconstruction PVC methods 

applied to each frame may subsequently propagate bias into kinetic parameter estimates if 

such frame-by-frame resolution convergence changes are not accounted for. We aim to 

explore the influence of the PVC method and implementation on kinetic parameter and 

CMRGlc values estimated from OSEM reconstructed dynamic BrainPET data. Few studies 

have examined the influence of PVC on kinetic modelling (Lehnert et al. 2012). Frouin et al. 

(2002) investigated the influence of two GTM PVC implementations in combination with 

analytical reconstruction on 18F-L-dopa and 11C-raclopride TAC quantification while 

Walker et al. (2011) assessed the influence of PSF modelling in OSEM reconstruction on 

bias in 11C-DASB and 15O-H2O patient dynamic scans. Thus, to our knowledge, this 

manuscript represents the first characterization of the effect of post-reconstruction PVC on 

kinetic modelling from images reconstructed with EM or OSEM.

Performance of kinetic modelling from OSEM images processed with several PVC methods 

was assessed with phantom, simulation, and subject data. Image bias as a function of the 

PVC algorithm and the background-to-target ratio was measured with acquisitions of a 

multi-compartment phantom filled with both 18F and 11C radionuclides, noise and bias 

performance of the PVC algorithms in a patient imaging scenario was quantified with 

multiple noisy realizations of a Monte Carlo brain simulation based on subject data from 

BrainPET, and the difference between kinetic parameters estimated from data processed 

with the PVC methods was calculated from a healthy volunteer scan.

2. Materials and methods

2.1. System description

The BrainPET (Siemens Healthcare Inc.) scanner is a stand alone PET system inserted into a 

3-T MRI (MAGNETOM Trio, Siemens Medical) and has been described elsewhere (Catana 
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et al. 2010). Briefly, the PET camera uses avalanche photodiodes (APDs) to decode lutetium 

oxyorthosilicate arrays of 12×12 elements (crystal size, 2.5 × 2.5 × 20 mm) arranged into a 

ring of 32 detector cassettes (6 axial detector blocks) producing effective transaxial and axial 

fields of view (FOVs) of 32 and 19.25 cm, respectively. Data is acquired in list-mode format 

and reconstructed with the ordinary Poisson OSEM 3D (OP-OSEM) algorithm (Byars et al. 

2005) (span=9, maximum ring difference=67). Spatial resolution close to the center of FOV 

has been measured at ≤3.0 mm FWHM in all three dimensions based on line source 

measurements in air (Kolb et al. 2012).

2.2. Point spread function modelling

The OP-OSEM reconstruction was modified to include spatially variant point spread 

function (PSF) modelling in the image domain through the convolution of a spatially 

invariant 3D Gaussian and 2D radial motion blurring functions. The 3D Gaussian kernel 

accounted for resolution effects due to photon acolinearity, positron range, and the crystal 

face size, while the radial motion blurring modelled the degradation in radial resolution due 

to the parallax effect. The OP-OSEM algorithm was formulated as in Reader et al. (2003) to 

include PSF modelling of both kernels. Spatially variant PSFs have previously been 

modelled in image space (Kotasidis et al. 2011, Cloquet et al. 2010, Rapisarda et al. 2010) 

by parameter estimation of a set of simplified basis functions and as a function of the 

position in the scanner FOV. The method presented here differs from these implementations 

in that it requires the estimation of only two free parameters, and more importantly, these 

parameters are independent of the coordinate in scanner space. Consequently, the proposed 

implementation allows for significantly reduced computations and potentially increased 

robustness to local errors and noise in the parameter estimation and blurring matrix 

generation, although at the potential cost of reduced local model accuracy compared to prior 

methods. For the current implementation radial motion blurring was described as follows:

(1)

(2)

(3)

where Is (r) is the continuously defined smoothed image, r = [x y]T the 2D coordinate vector, 

I (r) the original image, l (r) the integration length, re the end coordinate, rc the center of the 

image, and b the radial blurring factor with ‖·‖2 symbolizing the L2-norm. The integration 

path, expressed in the argument of I, describes a radial line between r and re and the upper 

integration limit (l (r)) increases with the distance of r from rc. The result of the radial 

motion blurring function is shown in figure 1. PSF parameters were estimated by acquiring a 

total of 441 two minute duration 68Ge point source measurements from locations spanning 

the transaxial FOV. The optimal radial blurring factor was chosen by reconstructing 68Ge 

point source data with OP-OSEM with a range of b values, measuring the x and y resolutions 
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at each source location, and choosing the value (b=1.067) that minimized the standard 

deviation computed over all locations. For the spatially invariant 3D Gaussian the FWHM 

was set to 3 mm and was chosen as an approximate match of the experimentally measured 

spatial resolution close to the center of FOV (Kolb et al. 2012). Figure 2 compares images 

for OP-OSEM reconstructions of the point source measurements with and without inclusion 

of the PSF models. A uniform background of 0.1% the point source maximum intensity was 

added to sinograms, from the forward projection of a digital uniform cylinder phantom 

filling the transaxial FOV, and subtracted after reconstruction to reduce potential bias from 

the OSEM non-negativity constraint. Use of the combined PSF model significantly 

improved radial resolution uniformity compared to application of the 3D Gaussian alone or 

no PSF.

2.3. Partial volume effect correction implementation

PVC was implemented with two variations of the GTM method (Rousset et al. 1998). In 

both approaches measured mean ROI values (b ∈ ℝK×1) are used to estimate the mean PVC 

values (a) as follows:

(4)

(5)

where K is the total number of ROIs considered,W ∈ ℝK×K is the GTM with elements wi,j, 

rsfj ∈ ℝN×1 is the regional spread function (RSF) N-voxel column vector image for ROI j, 

 is the binary map for ROI i and ‖ · ‖1 is the L1-norm. The PVC values (a) are 

then estimated by calculating W−1 b. The two methods differ in how RSF images are 

computed. With the original approach, deemed “GTM” (Rousset et al. 1998), the RSF is 

computed as follows:

(6)

where ℛ and ℘ are the reconstruction and forward projector operators, respectively, and 

include PSF modelling. roij is the result of registering the binary image of the 3D ROI 

drawn on structure j from its native space (e.g. MR) to the PET frame of reference, while 

 is a binary map generated from the threshold of roij. Through this methodology the 

tissue fraction effect (Soret et al. 2007) in the resulting PVC ROI values (W−1b), caused by 

downsampling the segmented brain structures from MR to the PET space, can be mitigated. 

In the second approach the influence of the background activity on resolution convergence is 

accounted for by using a perturbation method (Du et al. 2005), deemed “pGTM”, as follows:

(7)

Bowen et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2014 November 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(8)

where f ∈ ℝN×1 is the originally reconstructed 3D image without PVC, dj is the normalized 

perturbation factor, and p is the perturbation fraction. The goal of the pGTM approach is to 

generate an rsfj using the same series of OSEM update coefficients originally used to 

compute f. A large perturbation fraction (p) may significantly alter the update coefficients, 

while a very small p may induce rsfj to suffer from numerical precision errors due to 

nonlinear operations (e.g. thresholding) of the reconstruction or projection operators. The 

pGTM method was found to produce significantly less bias in PVC brain ROI values 

compared to the GTM approach for static Monte Carlo simulation SPECT data sets, 

particularly when PSF based OSEM was used (Du et al. 2005). Furthermore Du et al (2005) 

demonstrated that bias in pGTM PVC estimates was largely insensitive to the value p over 

three orders of magnitude.

2.4. Sensitivity of PVC to the target-to-background ratio

Bias as a function of the background-to-target ratio and application of different PVC 

methods was estimated from acquisitions of a phantom filled with both 18F and 11C 

radionuclides. The phantom was based on the image quality test object in the NEMA NU 2–

2001 standards (National Electrical Manufactures Association 2001) and was composed of 

an insert of six hollow spheres with internal diameters ranging from 4.0–22.0 mm placed in 

a uniformly filled cylinder (D=9.6 cm). Figure 3 shows a photograph and schematic of the 

sphere phantom. The hollow spheres (targets) and background compartment were filled 

with 11C and 18F radionuclides, respectively, thereby allowing the background-to-target 

ratio to change dynamically during the course of PET imaging while other factors that may 

induce bias were significantly minimized (i.e. changes in tracer distribution and position). 

The phantom was filled with a total activity of 56 MBq (54 MBq of 18F and ~2 MBq of 11C) 

and background-to-target concentration ratio of 0.26 at the start of imaging, and scanned 

with both PET for 133 minutes and a 3D T2 weighted MR sequence (1 mm isotropic 

resolution) for ROI and µ-map generation.

Dynamic PET data was framed such that each resulting sinogram had ≈equal noise 

equivalent counts (NECs). As OSEM convergence is significantly influenced by count 

statistics, NECs are estimated from raw counts and are ∝SNR2 for OSEM reconstructions of 

uniform phantoms (Dahlbom et al. 2005), and the majority of counts in this instance were 

from the 18F background, resolution convergence variations on a frame-by-frame basis were 

expected to be largely due to the background-to-target changes and not count statistics. 

NECs (NECn) for each second n of the PET acquisition were estimated from global energy 

windowed prompts (Pd,n) and randoms (Rd,n) DAQ rates as follows:

(9)
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where SF is the scatter fraction, and K(T+S) and KR are the scalar fraction of energy 

windowed trues plus scatters or randoms, respectively, with lines of response passing 

through the phantom. These fractions were assumed constant and calculated from a single 

set of sinograms framed from the complete acquisition time. Given an initial frame time a 

summed NEC (NECs) was calculated and sequential binning durations producing frames 

with ≈ equal summed NECs were estimated for each frame i by calculating the end 

summation limit (li) as follows:

(10)

ROIs comprising the fillable volume of the spheres and the background compartment (roij 

and ) were segmented from the MR images and a µ-map of the full phantom was 

generated from these segmented volumes assuming a uniform linear attenuation coefficient 

of 0.096 cm−1. Frames were reconstructed with PSF based OP-OSEM (subsets=8, 

iterations≤40 total, sampling=1.25 mm isotropic) with corrections for 18F tracer decay, 

branching fraction, dead-time, attenuation, randoms, and scatter, as estimated from the 

single scatter simulation (SSS) method (Watson et al. 1997) and post-reconstruction PVC 

applied as in section 2.3. The activity concentration ratio (ACR) of the spheres with respect 

to the 18F background was estimated by measuring tracer concentration in the MR 

segmented ROIs for the spheres and a total of five 10 mm circular ROIs (11 slices thick) 

drawn on the background at a central axial position where all spheres were visible. Bias in 

activity concentration ratios was estimated with respect to ground truth values calculated 

from initial well counter 18F and 11C activity measurements.

2.5. Influence of the PVC method on kinetic parameter estimation in patient imaging

2.5.1. Monte Carlo simulations—To determine how the choice of the PVC method 

influences estimation of kinetic parameters and CMRGlc in patient imaging, a dynamic 

acquisition with BrainPET was modeled with a Monte Carlo (MC) simulation. A digital 

Zubal phantom (Zubal et al. 1994) was used to model the activity and attenuation 

distributions, with normal and pathological 18F-FDG kinetic parameters assigned to various 

brain structures (table 1 in section 3.2.1) based on patient trials (Mosconi et al. 2007, Heiss 

et al. 1984). For the simulation study k4=0 for all structures. Additional structures were 

segmented manually in the Zubal phantom, including the right subiculum, left amygdala, 

and right entorhinal cortex, chosen for their measured hypometabolism in Alzheimer’s 

Disease patients. The attenuation distribution was generated from the Zubal phantom using 

single µ values for soft tissue (0.096 cm−1) and cortical bone (0.151 cm−1) (Catana et al. 

2010). Figure 4 shows cross sections of the modified Zubal phantom.

The acquisition was simulated by generating a decay weighted “true” dynamic series, with 

time activity curves (TACs) for each structure calculated with the COMKAT package 

(Muzic and Cornelius 2001), assuming a three compartment model (Sokoloff et al. 1977) 

and using an analytical purely plasma arterial input function (AIF) generated as in (Feng et 

al. 1995). The cerebral blood volume effect (CBV) was not accounted for in the simulations. 
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For each frame the 3D volume was blurred with the combined PSF and forward projected 

into sinogram space. Time binning of 4×30 seconds, 3×60 seconds, 2×150 seconds, 2×300 

seconds, and 4×600 second was assumed. Figure 5 shows the normalized TACs and 

background-to-target ratios for several structures of the Zubal phantom.

To accurately match Poisson count statistics for the simulation with those from patient 

acquisitions a set of 18F-FDG human BrainPET scans was utilized. A total of 7 dynamic 

scans of healthy volunteers (range of injection activities=[171, 191] MBq) were framed 

using the simulated data binning times and the prompts, randoms (R), and scatter (S) 

(estimated from the SSS sinograms) rates estimated. Figure 6 shows the rates and fractions 

from this subject analysis. The scatter (SF) and dead-time (DF) fractions were assumed 

constant for all frames of the simulation, and set to 43% and 12% respectively, while the 

randoms fraction (RFi) (median value from subject scans) varied from 70% to 20% over the 

course of the dynamic series. Randoms and scatter fractions were defined as RF = R/(T +S) 

and SF = S/(T +S), respectively, where T denotes the trues rate. The randoms (r0) and scatter 

(s0) distribution sinograms (not magnitude) with M elements in ℝM×1 were assumed 

constant and generated from the last five frames of variance reduced randoms sinograms 

from a single healthy subject scan, and the SSS scatter estimate of the acquisition time 

weighted average of all frames of the true Zubal images, respectively. The normalization 

sinogram was generated from BrainPET acquisitions of a 68Ge plane source as in (Catana et 

al. 2011). Simulated “true” frames (ti), previously uncorrected for attenuation and 

normalization, were scaled by a constant factor (fT) to match patient count rates by 

minimizing the root mean square error (RMSE) between the two cases of TACs composed 

of the sum of dead-time corrected trues and scatter frame rates. For each frame i, simulated 

prompts (pi ∈ ℝM×1), randoms (ri), and scatter (si) sinograms were generated as follows:

(11)

(12)

(13)

(14)

where cT, i is “true” frame scaling factor, and Ai is the acquisition time. Figure 6 compares 

experimental and scaled rates. A total of 30 noisy Poisson realizations was generated for 

each frame.

The dynamic series were reconstructed with the PSF based OP-OSEM (subsets=8, 

terations≤25, sampling=1.25 mm isotropic) and PVC was applied with the following 

methods: GTM, pGTM with rsfj for all brain structures and W in (4) computed for each 

frame independently (“ind pGTM”), and pGTM with rsfj computed from a reconstructed 
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mage (f in (7)) of the last frame alone and used to correct all frames (“last pGTM”). Use of 

the last frame alone forW generation significantly reduces total computation time for pGTM 

PVC of a dynamic series and may reduce noise propagation into mean ROI values 

(compared o early frames), but at the potential cost of increased bias due to resolution 

convergence differences with the frame being corrected. As the emission image from the last 

frame contains structures with the greatest differences in background-to-target ratios and 

number of counts compared to early frames, the last pGTM condition represents the worst 

case scenario for applying PVC to TACs using RSFs computed at one time point. Binary 

ROI images were generated directly from the structures of the Zubal phantom ( ), 

accounting for all structures in the phantom. RSF images (rsfj) were generated with the 

same OSEM parameters as the emission images and, in the case of pGTM, emission images 

with the same number of iterations were used as input. Emission and RSF images were also 

reconstructed with no PSF modelling in the OP-OSEM (“noPSF”) and the PVC methods 

applied as above. For the noPSF cases the forward projector (℘) in (6) and (7) maintained 

PSF modelling for RSF image generation. Kinetic parameters were estimated with an 

unweighted nonlinear least-squares (NLS) fitting, with initial parameters calculated with 

linearized least-squares (LLS) fitting as in (Muzic and Christian 2006), with COMKAT 

(Muzic and Cornelius 2001) for each brain structure from uncorrected and PVC images, and 

percent bias and coefficient of variation (CoV) computed with respect to the ground truth 

values (see table 1). NLS fitting was chosen due to its relatively low bias and noise 

performance, even at low count statistics, compared with other methods (Feng et al. 1995). 

Calculation of CMRGlc was performed as follows:

(15)

where K1, k2, and k3 are the kinetic parameter estimates, LC is the lumped coefficient and 

was set to 0.42 (Huang et al. 1980), and Cp is the capillary plasma glucose concentration and 

was assumed to be 4.81 µmol/ml (86.7 mg/dL) (Phelps et al. 1979). Bias and CoV of mean 

ROI values on a frame-by-frame basis were calculated and statistical significance between 

the results from the different PVC methods, and between data with and without PSF based 

OSEM, was determined through a student’s t-test (unpaired two-tailed), with P-value of 

<0.05 deemed significant.

2.5.2. Patient case comparison—The effect of the PVC method on kinetic parameter 

and CMRGlc values was quantified for a subject data set. Under an approved Institutional 

Review Board protocol, written consent was obtained from a healthy volunteer (male, 27 

years old) and an arterial line was placed in the radial artery (opposite the arm intended 

for 18F-FDG injection) under local anaesthesia. The subject was positioned on the scanner, 

injected with 190 MBq 18F-FDG intravenously, and imaged with PET for 90 minutes. 

Simultaneously, the subject was scanned with MR using a multi-echo MPRAGE 

(MEMPRAGE) (TR=2.53s, TE1/TE2/TE3/TE4=1.64/3.5/5.36/7.22 ms TI1=1.2, 1 mm 

isotropic resolution) (van der Kouwe et al. 2008), dual-echo ultrashort echo time (DUTE) 

(TR=200ms, TE1/TE2=0.07/2.46 ms, 1.67 mm isotropic resolution, frame rate=0.33 Hz), 

and 2D echo planar imaging (EPI) (TR=3 s, TE=30 ms, 3.1×3.1×3.0 mm sampling, for 
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affine motion estimates of the subject’s head) sequences. Arterial blood samples (2 ml 

samples) were drawn at the following time intervals: every 10 seconds for the first 3 minutes 

and at 5 minutes, 10 minutes, 30 minutes, 60 minutes, and 90 minutes after injection, 

immediately centrifuged (3200 RPM), and plasma samples’ activities measured with an 

automatic gamma counter (2480 WIZARD, Perkin Elmer).

PET sinograms were framed as in section 2.5.1 and each sinogram frame corrected for 

motion using the MR estimates as in (Catana et al. 2011), such that all raw sinogram data 

were registered to the same patient position before reconstruction. The µ-map was generated 

from the DUTEMR image as in (Catana et al. 2010), and PET images reconstructed with 

and without the PSF based OP-OSEM algorithm as in section 2.5.1. ROI and rsfj estimates 

for each structure were generated by first automatically segmenting MPRAGE data using 

the software suite FreeSurfer (Fischl et al. 2002), registering each segmented brain structure 

independently to the PET frame of reference via an a priori affine transformation with 

trilinear interpolation to get roij, and running the result through (6) or (7) to compute rsfj or 

thresholding the result by 0.1% of the maximum intensity to get  in (5). GTM and 

pGTM PVC values for each frame were generated and kinetic parameters estimated as in 

section 2.5.1, except that the CBV was also included as a free parameter in the LLS and 

NLS fitting (Cai et al. 2002) as follows:

(16)

where Cs (t) represents the CBV influenced 18F-FDG concentration,  the AIF, and 

 the tissue 18F-FDG concentration as a function of time. CBV was estimated to reduce 

kinetic parameter bias in smaller structures where contribution to the total ROI count rate 

from plasma 18F-FDG may be significant. For consistency with the MC simulation study 

(section 2.5.1) k4 was set to zero for all structures during fitting.

3. Results

3.1. Sensitivity of PVC to the target-to-background ratio

Bias in activity concentration ratios as a function of the background-to-target ratio and 

processed with several PVC methods, and PSF based OSEM, for two sphere sizes is shown 

in figure 7. For convenience results using PSF based OSEM and conventional OSEM are 

labelled “wPSF” and “noPSF”, respectively. Results with no post-reconstruction PVC are 

denoted as “noPVC” in this instance and throughout the manuscript and a perturbation 

fraction p of 10−3 was used for the pGTM PVC algorithms. Results are compared after 30 

iterations, as fractional convergence for individual frames was estimated to be 

approximately ≤ 0.5% over the majority of background-to-target ratios and sphere sizes. 

Activity concentration ratio bias where no PVC was applied (noPVC) tended to increase as a 

function of the absolute background-to-target ratio and inversely with sphere diameter. 

Application of any of the PVC methods led to reduced magnitude and sensitivity to the 

background-to-target ratio of activity concentration ratio bias compared to noPVC, with 

noPVC, GTM, ind pGTM, and last pGTM producing RMSE bias averaged over all frames 

for the 6 mm sphere of 62.5, 29.6, 17.2 and 13.4%, respectively.
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The differences in bias between data processed with wPSF ind pGTM and pGTM with W 
generated from a single frame and used in (4) to correct all frames is shown in figure 8. 

Images were chosen at background-to-target ratios of 2.2 and 5.0 for the latter case, as these 

values approximate the range of ratios over the course of the TAC for the entorhinal cortex 

in the Zubal phantom simulation (see figure 5). Use of a GTM matrix computed from a 

background-to-target ratio of 5.0 was found to minimize differences in activity 

concentration ratio bias between the pGTM methods, compared to when the lower bound of 

the background-to-target range was used, and the changes trended to increase inversely with 

sphere size. A similar comparison was made between wPSF ind pGTM and GTM (results 

not shown), demonstrating that bias between these methods increased as a function of 

background-to-target ratio and inversely with the sphere size, with a maximum value of 

31.4% at a ratio of 7.9 measured for the 6 mm sphere.

3.2. Influence of the PVC method on kinetic parameter estimation in patient imaging

3.2.1. Monte Carlo simulations—Figure 9 shows plots of CoV versus bias for kinetic 

parameter estimates of several structures calculated after application of the different PVC 

methods with and, and for one condition, without PSF based OSEM. A perturbation fraction 

p of 10−3 was used for the pGTM PVC algorithms. Significant differences were observed in 

the curves, with large magnitude differences in bias measured at late iterations in k2 

estimates taken from images processed with wPSF–ind pGTM PVC compared with all other 

wPSF PVC methods. Differences in k2 bias were greatest for the relatively large volume 

cerebellar and cortical structures, with differences between wPSF ind and last pGTM PVC 

results for the cerebellum, occipital lobes, and parietal lobes measured at 6.6%, 11.5%, and 

8.5%, respectively, after 25 iterations. We note that for CMRGlc estimates the differences in 

wPSF ind and last pGTM curves were minimal. For both k2 and k3 plots, with and without 

PSF based OSEM, bias was observed to not consistently decrease with iteration number, as 

is typically the case with ROI bias of individual images, and this was due to the very 

different resolution convergence rates of the early relative to the late frames. Figure 10 

shows plots of CoV versus bias for k2 estimates for the different noPSF PVC methods. 

Contrary to the wPSF results there was minimal difference between the noPSF ind and last 

pGTM curves across all structures. Furthermore, at later iterations noPSF estimates showed 

reduced CoV compared to wPSF values processed with the same PVC method at matched 

iterations for all kinetic parameters, CMRGlc, and across all but the smallest volume 

structures.

To focus the subsequent analysis the number of iterations to reach a fractional convergence 

of ≤0.5% for each kinetic parameter, structure, and PVC method combination was assessed. 

Results for wPSF indicated that the median number of iterations to reach this convergence 

threshold, calculated across all structures, was greatest for k2 and when ind pGTM was not 

used. Median number of iterations for wPSF–last pGTM were 11 (mode=9), 17 (mode=17), 

and 7 (mode=5) for K1, k2, and k3, respectively. The same analysis was performed for 

kinetic parameters estimated from images reconstructed without PSF modelling and it was 

determined that the number of iterations to reach the convergence threshold was greatest for 

k2 when GTM PVC was used, with median number of iterations equal to 11 (mode=11), 15 
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(mode=15), and 5 (mode=5) for K1, k2, and k3, respectively. Based on these findings, we 

restricted our analysis to results computed after 17 iterations.

Kinetic parameters, CMRGlc values, and corresponding variances calculated after 17 

iterations, with and without PSF based OSEM, are listed in table 1. For the PSF based 

OSEM case K1 estimates from wPSF–GTM PVC produced significantly lower bias (by an 

absolute difference in percent bias of ≥5%) than noPVC data for five of the structures 

considered, while wPSF–ind pGTM K1 values were significantly greater (more positive) 

than those calculated from GTM for all but the right subiculum and entorhinal cortex. For 

only the largest volume structures (e.g. the cerebellum, occipital lobes, temporal lobes, and 

parietal lobes) wPSF–last pGTM K1 estimates were significantly different than the wPSF–

ind pGTM results. Changes in k2 were significant, with ≥5% bias differences, between 

wPSF ind pGTM and GTM or last pGTM PVC data for this same set of four relatively large 

volume structures, while significant differences in k3 meeting this bias criteria were only 

observed between GTM and noPVC data for the left amygdala. For CMRGlc the cerebellum 

and temporal lobes showed significant differences between wPSF ind and last pGTM data; 

however, significance with ≥5% absolute difference in bias was only observed between 

GTM and noPVC or ind pGTM data in more than half the cases. For the noPSF case there 

were no structures, kinetic parameters, or CMRGlc estimates where last pGTM results were 

significantly different, with ≥5% bias, than the ind pGTM or GTM values, thus only last 

pGTM values are reported. We note also that noPSF ind and last pGTM estimates were not 

significantly different for all conditions. noPSF–last pGTM K1 and k2 estimates were 

frequently underestimated, with greater magnitude bias by ≥5%(difference in absolute bias 

values) than wPSF–last pGTM for K1 in several cortical (cerebellum, temporal lobes, 

parietal lobes) and deep (hippocampus and left amygdala) structures, and for k2 in this same 

set of structures excluding the cerebellum and hippocampus and including the occipital 

lobes, while for k3 noPSF–last pGTM had significantly lower bias for only three of the large 

volume cortical structures. noPSF–last pGTM CMRGlc estimates had significantly lower 

magnitude bias than those of wPSF–last pGTM for larger cortical structures, the 

hippocampus, and the entorhinal cortex, although this was by an absolute difference of ≥5% 

in only the last case. For noise, overall all PVC methods, using the same reconstruction 

method, produced comparable CoV averaged over all structures, although for smaller 

structures (≤2 cc) data with no and ind pGTM PVC produced the lowest and highest CoV 

values respectively. noPSF results had lower CoV than wPSF kinetic parameters and 

CMRGlc values for all structures except for k3 for the entorhinal cortex and subiculum.

To determine the source of bias in the kinetic parameters the bias in TACs was quantified 

and compared for the different PVC methods. Figure 11 shows bias as a function of time for 

both the occipital lobes and cerebellum. Bias in the TACs for most structures was found to 

be largely independent of the frame number, however, at early frames (time <9 minutes) for 

the PSF based OSEM results bias increased (became more positive) inversely with the frame 

number for all PVC methods. For small hypometabolic structures with relatively large 

background-to-target changes over the course of the dynamic scan, such as the entorhinal 

cortex and the subiculum, magnitude bias increased as a function of time and varied for the 

different PVC methods, although not between the wPSF last and ind pGTM TACs. For the 
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noPSF TACs bias tended to decrease (become more negative) inversely with the frame 

number for all the PVC methods at early frames, similarly starting at time <9 minutes, for all 

structures without significant spill-in (i.e. excluding white matter, the subiculum, and 

entorhinal cortex). Consequently, as bias was negative at later frames for large cortical 

structure and the hippocampus TACs, with and without PSF based OSEM, average 

magnitude bias at early frames was frequently less for wPSF, compared with noPSF, last 

pGTM. In order to improve visualization of bias differences between the TACs generated 

from the different PVC methods, the TACs in figure 11 (a) and (b) were subtracted by 

results with noPVC and are shown in figure 11 (c) and (d), respectively. These normalized 

TACs indicate that for the wPSF case the increase in bias in early frames was greatest for 

ind pGTM results compared with the other PVC methods. Notably, the difference in bias 

between wPSF ind and last pGTM for the second frame of the occipital lobe TACs was 

5.3%. For the noPSF case ind and last pGTM curves were not significantly different across 

all frames and for all structures and showed <1% absolute difference across all frames 

except for the entorhinal cortex and subiculum.

The bias in the pGTM method has been shown to be largely insensitive to the perturbation 

fraction p over a large range of values for a typical static brain acquisition (Du et al. 2005); 

however, the influence of p on bias for the low noise frames occurring at early TAC points 

has not been assessed. To determine if the increased bias in the ind pGTM TACs at early 

frames was due to a suboptimal choice in p, Zubal MC simulations were repeated with the p 

ranging from 10−3% to 104% for the 2nd and last frames and bias estimated. Figure 12 shows 

bias as a function of p for pGTM and GTM PVC methods with PSF based OSEM. Results 

demonstrated that even at early low count frames bias was relatively insensitive to change in 

p over nearly four orders of magnitude for both the cerebellum and occipital lobe. Bias for 

the wPSF ind and last pGTM methods approached GTM levels, as expected based on (7), 

for p > 101 %, and this drop was greater for the ind versus last pGTM PVC for the early 

frame. For several structures (i.e. the occipital lobe), bias crossed zero at the large p values 

for the 2nd frame corrected with wPSF–ind pGTM suggesting that p could be optimized on 

a frame-by-frame basis to reduce bias at early time points, although this same phenomenon 

was only observed for the left amygdala for the case of the last frame ind pGTM data.

3.2.2. Patient case comparison—Table 2 gives kinetic parameters and CMRGlc values 

processed with the different PVC methods for a healthy subject scan. Sum of squared errors 

(SSE) estimates from the OLS fits are also shown. For the results with PSF based OSEM a 

number of structures were found to have ≥10% absolute difference between the ind and last 

pGTM k2 estimates including the cerebral cortex, putamina, amygdalae, accumbens areas, 

and the right pallidum, while only the right pallidum met this criteria for K1, the right 

pallidum and left putamen this inequality for k3, and no structures met this condition for 

CMRGlc. Relatively low counts throughout TACs of the smallest structures (e.g. the 

subicula), compared to large volume regions, consistently resulted in kinetic parameters at 

the limits of the OLS fitting and were not considered in this analysis. For the noPSF based 

OSEM case noPSF–last pGTM k2 estimates were found to have an absolute difference of 

≥10% the wPSF–last pGTM results for all structures except the right amygdala, while this 

same set of structures excluding the cerebral cortex, right pallidum, and right accumbens 
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area met this criteria for K1, the left caudate and right accumbens area met this inequality for 

k3, and only the right pallidum and right accumbens area this condition for CMRGlc. In the 

majority of structures where such differences were noted K1 and k2 estimates for noPSF–last 

pGTM were lower than the wPSF–last pGTM values.

Figure 13 shows the TACs for the different PVC methods normalized (subtracted and 

divided) by the noPVC case for the subject scan. For the PSF based OSEM case the 

difference between the TACs was found to be inversely related to frame number for the ind 

pGTM data for time<13 minutes while the GTM and last pGTM PVC frames showed 

relatively constant difference over the course of the dynamic acquisition. For instance, the 

difference from the last to the first frame for the right cerebellum increased by 11.1% for 

images processed with wPSF–ind pGTM while both wPSF–GTM and wPSF–last pGTM had 

a difference of <3.5% between these time points. For all structures there was <5% change 

over the course of later frames (time>13 minutes). For the noPSF case ind and last pGTM 

curves showed a high degree of overlap across all frames and structures.

4. Discussion

The results demonstrate that the method of PVC combined with the choice of PSF modelling 

in the reconstruction can have a significant effect on kinetic parameters estimated from 

OSEM reconstructed frames, and that this performance differential is unique to dynamic 

imaging. Notably, for PSF based OSEM applying ind versus last pGTM PVC led to large 

magnitude bias increases in k2 estimates for several structures as observed in both the 

subject scan and MC simulations, with reduced changes in K1 and k3. Furthermore, this 

differential in k2 increased with iteration number (past when fractional convergence for all 

parameters was ≥0.5%), demonstrating that lack of convergence was not a source of this 

phenomenon. Increased residual error in k2 for wPSF–ind pGTM was attributed to an 

inverse relationship of bias with respect to time for early frames, as k2 largely influences 

early TAC kinetics, while K1 and k3 affect the overall magnitude and late kinetics for TACs, 

respectively. For the MC simulation the difference in bias between the GTM and pGTM 

methods at late high count frames, with or without PSF modelling, were consistent with the 

performance analysis for static images (Du et al. 2005). Furthermore these differences were 

relatively constant with time except for comparisons of noPVC with GTM or pGTM PVC 

TACs for small hypometabolic structures with large background-to-target changes, such as 

the entorhinal cortex and the subiculum. Overall, using the last pGTM PVC with PSF based 

OSEM produced the lowest absolute bias averaged across all structures of interest and over 

K1, k2, k3, and CMRGlc as shown through the MC simulations, when the smallest structures 

(subiculum and entorhinal cortex) were ignored. The noPSF–last pGTM algorithm generally 

underestimated both K1 and k2 compared to wPSF–last pGTM estimates and these deficits 

were due to the increase in negative bias for noPSF TACs with decreasing frame number at 

early times points. Similarly, for the patient data set noPSF–last pGTM K1 and k2 estimates 

were found to be lower in numerous structures than those of wPSF–last pGTM. For the 

subiculum and the entorhinal cortex, data with noPSF–last pGTM produced the lowest 

absolute bias for K1 and CMRGlc, while noPSF-noPVC k2 estimates were most accurate, 

and last pGTM with either reconstruction method optimal for k3.
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For optimal CMRGlc estimates alone noPSF–last pGTM PVC data produced significantly 

lower bias than the other methods for most structures, although with a difference in absolute 

bias of ≥5% compared with wPSF ind or last pGTM for only the entorhinal cortex. For the 

left amygdala, however, the wPSF–pGTM approaches were not significantly more accurate 

than the wPSF–noPVC CMRGlc value even though the structure underwent appreciable 

partial voluming. Consequently the high positive bias in K1 and k3 estimates for the left 

amygdala effectively cancelled through the CMRGlc calculation in (15).

Due to the fact that kinetic modelling was done on ROIs with a relatively large number of 

voxels, changes in noise as a function of the PVC method, when the same reconstruction 

method was used, were less relevant than differences in bias; however, we note that in all 

cases and particularly for smaller structures (e.g. the left amygdala, entorhinal cortex, and 

the subiculum) ind pGTM PVC tended to amplify CoV compared to the other 

implementations. Amplification of noise is inherent in all of the post-reconstruction PVC 

algorithms explored here due to the summation of weighted Poisson distributed ROI values 

(Rousset et al. 1998) when solving for a in (4) and the inversion of the frequently ill-

conditioned GTM matrix (W) combined with noise propagation from the reconstructed 

images in the case of the pGTM PVC methods. Sattarivand et al (2012) assessed a modified 

GTM method (symmetric GTM), which was shown to have significantly less noise 

amplification than the classical GTM method for structures with small feature sizes, and this 

would likely translate into a similar reduction in noise amplification for kinetic parameter 

estimates. Use of PSF based OSEM led to an amplification of noise in most structures 

compared to noPSF kinetic parameters, which may be explained by the frequently measured 

increase in voxel covariance with PSF modelling (Rahmim et al. 2013). Such an increase in 

the variance of mean ROI values was also observed by Blinder et al (2012) in 11C-

methylphenidate derived binding potential measurements of the striata of rats.

Performance differences in kinetic modelling between the PVC methods examined here 

were influenced more by changes in counts over the course of the TACs than variations in 

background-to-target ratios. As bias and noise free scatter and randoms estimates were used 

in the MC simulation, the changes in the counts in the emission data as a function of time 

constitute the main source of bias. For the majority of structures in the Zubal MC 

simulation, bias for the PSF based OSEM PVC algorithms increased (became more positive) 

as the number of counts decreased at early frames, and this occurred in combination with 

small changes in the background-to-target ratios. Furthermore, as shown by the 18F–11C 

phantom experiment (figure 8(b)), the bias of all wPSF methods (GTM, ind and last PGTM) 

was largely insensitive to a large range of background-to-target ratios for spheres as small as 

6 mm ID. In contrast, for the noPSF PVC TACs bias became more negative with decreasing 

frame number for the cortical and low background-to-target deep brain structures, while for 

the white matter bias became more positive. The trend for the noPSF case can be attributed 

to the projection space domain non-negativity constraint employed in the OSEM algorithm, 

which has been shown to reduce contrast (effectively increase both spill-in and spill-out) for 

reconstructions of low count acquisitions using both attenuation weighted (Boellaard et al. 

2001, Reilhac et al. 2008) and OP-OSEM (Grezes-Besset et al. 2007). For the wPSF TACs 

use of PSF modelling has been shown to decrease magnitude bias at low count statistics. For 
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example, Walker et al. (2011) measured more than a 7% decrease in bias in the caudate head 

when using PSF based OSEM for 30 second frames from dynamic human 11C-DASB scans. 

We note that in our implementation parameters describing the Gaussian and motion blur 

kernels were chosen to match those exactly of the MC simulator, or closely approximate 

those in the experimental case, while for the study in (Walker et al. 2011) the resolution 

model FWHM was set to slightly lower magnitude than measured. Consequently, this may 

have led to an overcorrection of partial voluming and induced the positive bias observed at 

the earliest frames in this study. Together these results suggest that although ML 

reconstruction methods that allow for negative voxel values, such as AB-EMML 

(Erlandsson et al. 2000) and NEG-ML (Grezes-Besset et al. 2007), may significantly reduce 

bias at early low count frames for the noPSF PVC methods analysed here these 

reconstruction algorithms aren’t likely to lead to large decreases in positive bias for the 

wPSF PVC frames.

Significant differences in bias between wPSF ind and last pGTM PVC for ROI values at 

early frames for larger cortical structures were due primarily to overestimation of spill-out 

compared with spill-in activity. As ROIs from early frames for noPSF ind and last pGTM 

TACs showed negligible differences the use of PSF modelling in the reconstruction was 

primarily responsible for this phenomenon. An analysis of mean elements of the wPSF 

GTMs (wij) from the MC simulation for all structures demonstrated that for early frame 

wPSF–ind pGTM PVC, factors reflecting spill-out (i = j) were less than, and elements 

describing spill-in (i ≠ j) were greater than, those computed from last pGTM for a given 

structure i. Furthermore, the magnitude of the reductions and increases in spill-in and spill-

out factors were found to be comparable. As cortical structures, for both the MC simulation 

and patient imaging, typically showed higher activity concentrations than the nearest 

neighbouring white matter structures, which were responsible for the majority of cortical 

spill-in, inversion of W and estimation of a in (4) resulted in the positively biased ind pGTM 

ROI values at early frames compared with those from last pGTM PVC. The combination of 

increased spill-in and reduced spill-out wij elements for a given structure suggest that the 

source of increased bias in wPSF–ind pGTM for early frames was due to increased 

magnitude spatial resolution, or decreased contrast, for the RSF images compared with their 

source reconstructed emission (f) and wPSF–last pGTM RSF images. Although smaller 

deep structures, such as the left amygdala, had significant overestimation of spill-out also, 

this was counteracted by larger spill-in effects compared with cortical volumes, particularly 

from neighbouring and relatively high activity concentration structures such as the 

hippocampi and temporal lobes in the case of the left amygdala. Among the largest cortical 

structures, the occipital lobe experienced the greatest magnitude difference in early frame 

concentrations between the wPSF pGTM methods due to it having the relatively smallest 

feature sizes.

There were several limitations in this study that may have influenced the results. For 

example, in the MC simulations we didn’t account for all the factors that affect 

reconstructed image SNR and resolution, including the following: noise in the scatter and 

randoms estimates, scatter from OFOV, inconsistencies between the forward and back 

projection models, and patient motion. Lack of inclusion of these components could have 
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resulted in lower noise and bias, particularly at earlier frames, than encountered during 

patient imaging. Furthermore, we only considered a single patient phantom, with a single set 

of kinetic constants at one noise level, and the influence of cortical atrophy in different 

structures on kinetic modelling for data corrected with the investigated PVC methods was 

not explored. We did note a trend towards increased magnitude differences between kinetic 

parameters for the patient imaging case in several structures, notably in k2 for wPSF ind 

versus last pGTM for the amygdalae and putamina, and in K1 and k2 for for last pGTM with 

and without PSF modelling. As global count-rates were comparable for the patient scan and 

the MC simulation, differences in structure feature sizes, ground truth kinetic parameters, 

and the accuracy of the resolution model, likely caused these observed differences.

Although this study was restricted to the influence of the PVC method on 18F-FDG kinetic 

modelling for the BrainPET system, these results may have equal or greater impact for 

numerous tracers and/or PET systems with limited tomographic sampling where EM 

reconstruction methods are utilized. For instance, 11C-raclopride (Lammertsma et al. 

1996), 18F-DOPA (Huang et al. 1991), and 11C-PiB (Price et al. 2005) all frequently merit 

TACs with low count frames at both early and late time points after tracer injection, which 

may lead to increased bias over a larger fraction of the dynamic acquisition than for 18F-

FDG acquisitions if wPSF–ind pGTM is used over other PVC methods. Furthermore, PET 

systems with significant undersampling in sinogram space have been developed for 

applications in dedicated breast imaging (MacDonald et al. 2009) and in beam hadron 

therapy monitoring (Crespo et al. 2006), to name a few. Kinetic modelling may have utility 

for both scanners, and as these systems utilize MLEM reconstruction quantification of the 

resulting kinetic parameters may be influenced significantly by the choice of PVC.

5. Conclusions

The influence of the PVC method on 18F-FDG kinetic modelling from OSEM reconstructed 

images of dynamic brain acquisitions with BrainPET was estimated through phantom 

experiments, anthropomorphic MC simulations, and a subject scan. The results indicate that 

the choice of PVC method can have significant impact on kinetic parameter estimation. 

Using the last frame reconstructed image (f) only for RSF generation, as opposed to 

computing RSFs for each frame independently, and applying pGTM PVC with PSF based 

OSEM produced the lowest magnitude bias in most instances. The bias difference between 

these two PVC approaches was greatest magnitude for k2 and this was attributed to positive 

bias in the spatial resolution for the wPSF–ind pGTM RSF images compared with their 

source reconstructed emission volumes (f), due to relatively low counts in early frames. The 

improvement in bias for the wPSF–last pGTM method came at the cost of increased noise 

versus the noPSF-last pGTM approach. The noPSF-last pGTM approach produced optimal 

CMRGlc estimates, although by less than 5% compared to the other PVC methods. More 

research is required to determine how the choice of PVC may influence the kinetic 

modelling of tracers beyond 18F-FDG.
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Figure 1. 
Example of the 2D radial motion blurring function in (1). (a) A simulated uniform grid of 5 

mm diameter point sources spanning the BrainPET FOV before and (b) after application of 

radial motion blurring alone with b=1.067.
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Figure 2. 
Influence of PSF based OSEM on 68Ge point source measurement image quality. Transaxial 

images showing a quadrant of the FOV reconstructed with (a) no PSF modelling, and 

modelling of the (b) spatially invariant Gaussian PSF (gblur) alone, (c) radial motion 

blurring alone (mblur), and (d) a combination of the Gaussian and radial motion blur 

kernels, and (e) line profile comparison along band in (d) (profile location of 0 is at the 

center of the FOV).

Bowen et al. Page 23

Phys Med Biol. Author manuscript; available in PMC 2014 November 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Sphere phantom used to determine the sensitivity of the PVC method to background-to-

target changes. (a) Photograph and (b) schematic of the insert alone or placed in the 

background compartment, respectively, with internal diameter (ϕ) in mm.
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Figure 4. 
Modified Zubal phantom used in MC simulations. (a) Axial, (b) sagittal, and (c) coronal 

views with ntensity equal to the structure label number and added structures denoted.
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Figure 5. 
“true” TACs simulated for the Zubal phantom. (a) TACs and (b) background-to-target ratio, 

defined as the whole brain average activity concentration over that of a given structure, for 

several structures.
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Figure 6. 
Comparison of measured patient and simulated count rates and fractions. (a) Median patient 

(exp), with ±σ error bars around the mean, and simulated (sim) TAC prompts (P) and 

randoms (R), and (b) median patient dead-time (DF), randoms (RF), and scatter (SF) 

fractions.
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Figure 7. 
Bias in the activity concentration ratio as a function of background-to-target ratio for spheres 

corrected with several PVC methods and PSF based OSEM. Results for spheres with (a) 22 

mm and (b) 6.2 mm ID after 30 iterations. last pGTM represents the case where W was 

computed with f in (7) from a single background-to-target ratio of 7.9 and used to correct all 

frames. Other legend definitions are described in section 2.5.1
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Figure 8. 
Difference in bias in the activity concentration ratio between wPSF–ind pGTM and pGTM 

with W generated at a single frame, as a function of background-to-target ratio for a range of 

spheres. Results for W computed at background-to-target ratios of (a) 2.2 and (b) 5.0 after 

30 iterations.
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Figure 9. 
Variance versus bias for kinetic parameters from the Zubal phantom simulation processed 

with several PVC methods and with (wPSF) and without (noPSF) PSF modelling in the 

reconstruction. K1, k2, k3, and CMRGlc (in rows) for the cerebellum, occipital lobes, and left 

amygdala, respectively, with data points representing iterations 1 through 25, with a step 

size of 2. Iteration 1 is closest to zero CoV.

Bowen et al. Page 30

Phys Med Biol. Author manuscript; available in PMC 2014 November 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 10. 
Variance versus bias in k2 for the Zubal phantom simulation processed with several PVC 

methods and without PSF modelling in the reconstruction. Plots for the cerebellum (a), 

occipital lobes (b), and left amygdala (c), respectively, with data points representing 

iterations 1 through 25, with a step size of 2.
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Figure 11. 
Bias for TACs from the Zubal phantom simulation processed with several PVC methods, 

and with and without PSF modelling in the OSEM reconstruction, calculated after seventeen 

iterations. Occipital lobes and cerebellum TAC bias over the full time duration, (a) and (b), 

or zoomed and subtracted by wPSF–noPVC for PSF based OSEM results or noPSF–noPVC 

for the noPSF curves, (c) and (d), respectively.
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Figure 12. 
Bias as a function of the perturbation fraction, p in (8), for the Zubal phantom simulation 

calculated after seventeen iterations and with several PVC methods using PSF based OSEM. 

(a) Occipital lobe and (b) cerebellum bias at the second 30 s frame (early) and at the 10 min 

last frame (late), with GTM results shown as constant dashed and solid blue lines, 

respectively.
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Figure 13. 
TACs for the patient data processed with several PVC methods. (a) Right cerebellum and (b) 

right cerebral cortex TACs normalized (subtracted and divided) by wPSF–noPVC data for 

PSF based OSEM results or noPSF–noPVC for the noPSF curves, respectively.
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