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Entropy drives the phase behavior of colloids ranging from dense
suspensions of hard spheres or rods to dilute suspensions of hard
spheres and depletants. Entropic ordering of anisotropic shapes into
complex crystals, liquid crystals, and even quasicrystals was demon-
strated recently in computer simulations and experiments. The
ordering of shapes appears to arise from the emergence of directional
entropic forces (DEFs) that align neighboring particles, but these
forces have been neither rigorously defined nor quantified in generic
systems. Here, we show quantitatively that shape drives the phase
behavior of systems of anisotropic particles upon crowding through
DEFs. We define DEFs in generic systems and compute them for
several hard particle systems. We show they are on the order of a few
times the thermal energy (kg T) at the onset of ordering, placing DEFs
on par with traditional depletion, van der Waals, and other intrinsic
interactions. In experimental systems with these other interactions,
we provide direct quantitative evidence that entropic effects of shape
also contribute to self-assembly. We use DEFs to draw a distinction
between self-assembly and packing behavior. We show that the
mechanism that generates directional entropic forces is the maximi-
zation of entropy by optimizing local particle packing. We show that
this mechanism occurs in a wide class of systems and we treat, in
a unified way, the entropy-driven phase behavior of arbitrary shapes,
incorporating the well-known works of Kirkwood, Onsager, and Asa-
kura and Oosawa.
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N ature is replete with shapes. In biological systems, eukaryotic
cells often adopt particular shapes, for example, polyhedral
erythrocytes in blood clots (1) and dendritic neurons in the brain
(2). Before the development of genetic techniques, prokaryotes
were classified by shape, as bacteria of different shapes were im-
plicated in different diseases (3). Virus capsids (4, 5) and the
folded states of proteins (6) also take on well-recognized, distinct
shapes. In nonliving systems, recent advances in synthesis make
possible granules, colloids, and nanoparticles in nearly every
imaginable shape (7-12). Even particles of nontrivial topology
now are possible (13).

The systematic study of families of idealized colloidal and
nanoscale systems by computer simulation has produced over-
whelming evidence that shape is implicated in the self-assembly*
of model systems of particles (14-17). In these model systems,
the only intrinsic forces between particles are steric, and the
entropic effects of shape (which we term “shape entropy”") can
be isolated. Those works show that shape entropy begins to be
important when systems are at moderate density (21).

In laboratory systems, however, it is not possible to isolate shape
entropy effects with as much control, and so the role of shape
entropy in experiment is less clear. However, intuition suggests
that shape entropy becomes important when packing starts to
dominate intrinsic interactions and therefore should be manifest
in crowded systems in the laboratory.

Unlike other interactions, shape entropy is an emergent®
quantity that is expected to become important as systems become
crowded. Although entropy-driven phase behavior, from the
crystallization of hard spheres (22-27) to the nematic transition in
hard rods (28) to colloid—polymer depletion interactions (29), has
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been studied for decades, linking microscopic mechanisms with
macroscopic emergent behavior is difficult in principle (30).
Hence, even for idealized systems, despite the overwhelming evi-
dence that shape entropy is implicated in phase behavior, un-
derstanding how shape entropy is implicated is only now starting
to be distilled (14-17, 31-59). For example, the phase behavior of
binary hard sphere mixtures (60-64) or polygons (40, 43, 65) can
be deduced from global packing arguments, but for many other
shapes (17), including “simple” platonic solids such as the tetra-
hedron (36) and its modifications (15), this is not the case.

One suggestion of how shape entropy is implicated in the phase
behavior of systems of anisotropic particles is through the idea of
directional entropic forces (DEFs). Damasceno et al. (15) inferred
the existence of these forces by observing that in many idealized
systems of convex polyhedral shapes, one tends to observe a high
degree of face-to-face alignment between particles in crystals.
However, the origin and strength of these forces are unclear.

Here we use computer simulations to address how these forces
arise and construct a rigorous theoretical framework that enables
this investigation. Our key results are as follows: (i) We quantify
pairwise DEFs in arbitrary systems, compute them directly in
several example systems, and show they are on the order of
a few times the thermal energy (kg7T) just before the onset of
crystallization. (ii) We show that the microscopic mechanism
underlying the emergence of DEFs is the need for particles to

Significance

Many natural systems are structured by the ordering of re-
peated, distinct shapes. Understanding how this happens is
difficult because shape affects structure in two ways. One is how
the shape of a cell or nanoparticle, for example, affects its sur-
face, chemical, or other intrinsic properties. The other is an
emergent, entropic effect that arises from the geometry of the
shape itself, which we term “shape entropy,” and is not well
understood. In this paper, we determine how shape entropy
affects structure. We quantify the mechanism and determine
when shape entropy competes with intrinsic shape effects. Our
results show that in a wide class of systems, shape affects bulk
structure because crowded particles optimize their local packing.
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*We use “self-assembly” to apply to (thermodynamically) stable or metastable phases
that arise from systems maximizing their entropy in the presence of energetic and
volumetric constraints (temperature and pressure, i.e., spontaneous self-assembly) or
other constraints (e.g., electromagnetic fields, i.e., directed self-assembly).

"The term “shape entropy” was used previously in unrelated contexts in refs. 18-20.
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ideal gas. Ordered phases arise only at reduced pressures of order one.

www.pnas.org/cgi/doi/10.1073/pnas. 1418159111


http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1418159111&domain=pdf
mailto:sglotzer@umich.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1418159111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1418159111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1418159111

L T

/7

1\

BN AS - PNAS D)

optimize their local packing in order for the system to maximize
shape entropy. (iii) By computing quantities for DEFs that can be
compared with intrinsic forces between particles, we determine
when shape entropy is important in laboratory systems and suggest
how to measure DEFs in the laboratory. (iv) We explain two
notable features of the hard particle literature: the observed fre-
quent discordance between self-assembled and densest packing
structures (15, 17, 39, 41, 44, 53) and the high degree of correla-
tion between particle coordination in dense fluids and crystals
(17). (v) As we illustrate in Fig. 1, we show that the same local
dense packing mechanism that was known to drive the phase be-
havior of colloid—depletant systems also drives the behavior of
monodisperse hard particle systems, thereby allowing us to view—
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within a single framework—the entropic ordering considered here
and in previous works (14-17, 21-29, 31-59, 66-81).

Methods

To compute statistical integrals, we used Monte Carlo (MC) methods. For
purely hard particle systems, we used single-particle-move MC simulations for
both translations and rotations for systems of 1,000 particles at fixed volume.
Polyhedra overlaps were checked using the Gilbert-Johnson-Keerthi algo-
rithm (82) as implemented in ref. 17. For penetrable hard sphere depletant
systems, we computed the free volume available to the depletants using
MC integration.

We quantified DEFs between anisotropic particles at arbitrary density by
using the potential of mean force and torque (PMFT). Such a treatment of
isotropic entropic forces was first given by De Boer (83) using the canonical

The general nature of entropic interactions treated in this work applies to a broad class of known systems. Here we represent them on three or-

thogonal axes. One axis represents, schematically, the shape of the constituent particles, with spheres at the origin. The other two axes concern the sea of
particles that are being integrated out and provide the effective interaction. On one axis is the inverse of the strength of the interaction between them
(where 0 represents hard steric exclusion). On the other axis is the ratio of the characteristic size of the particles of interest to that of the particle being
integrated out. Other axes, not shown, represent the shape of the particle being integrated out, mixtures of particle shapes and types, etc. Examples of
known experimental and model systems are sketched to illustrate their location on these axes (see references and description in text).
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potential of mean force (84); for aspherical particles, first steps were taken in
this direction in refs. 85, 86.

Consider a set of arbitrary particles, not necessarily identical. Take the
positions of the particles to be given by g; and the orientations of the
particles to be given by Q;. The partition function in the canonical ensemble,
up to an overall constant, is given by

7= /[dq][dQ]e'/’U({q)'(O”, [1]

where U is the potential energy for the interaction among the particles.
Suppose we are interested in only a single pair of particles, which we label
with indices 1 and 2, and denote all the other (sea) particles with a tilde. The
partition function is formally an integral over all the microstates of the
system, weighted by their energies. Because we are interested in a pair of
particles, we do not want to perform the whole integral to compute the
partition function. Instead, we break up the domain of integration into slices
in which the relative position and orientation of the pair of particles are
fixed; we denote this by A¢;;.

We choose to work with coordinates A&, that are invariant under
translating and rotating the pair of particles. In two dimensions, a pair of
particles has three scalar degrees of freedom. In three dimensions, for ge-
neric particles without any continuous symmetries, a pair of particles has six
scalar degrees of freedom. In S/ Appendix, we give an explicit form for these
coordinates that is invariant under translations and rotations of the particle
pair, and the interchange of their labels. Note that particles with continuous
symmetry (i.e., spherical or axial) have fewer degrees of freedom. Separating
out the integration over the sea particles gives the partition function as

Z= / dAELI(AE,)ePUBi) / [dd] [dé} ePu{ar{Q}ac,). 121

We formally integrate over the degrees of freedom of the sea particles to
write

Z= / dAE (AL PUBR) g PRra(bdia) [31

where F1, encodes the free energy of the sea particles with the pair of in-
terest fixed, and J is the Jacobian for transforming from the absolute posi-
tions and orientations of the particles in the pair to their relative position
and orientation. We define the PMFT for the particle pair Fi; implicitly
through the expression

ZE/dA§12e7/jF‘Z(A512). [4]

Equating the logarithms of the integrands on the right-hand sides of Egs. 3
and 4 gives an expression for the PMFT (Fy;):

BF12(A12) = BU(AErp) —log J(Ay;) + BFr2(Asy). [51

In SI Appendix, we outline how to extract the forces and torques from Eq. 5
and give example calculations that determine the thermally averaged
equations of motion for pairs of particles.

In cases in which the particle pair of interest has only excluded volume
interactions, as in the remainder of this paper, it is convenient to combine the
first two terms to cast expression Eq. 5 as

Fi2(A&1y) =—ks T log(H(d(A&12))(Aérp)) + Fi2(A+3), (6]

where H is the Heaviside step function that we use as a bookkeeping device
to ensure that the effective potential is infinite for configurations that are
sterically excluded, and d(Aé&,,) is the minimum separation distance of the
particle pair in their relative position and orientation, which is negative
when the particles overlap and positive when they do not.

When the sea particles are penetrable hard sphere depletants, i.e., the sea
particles are an ideal gas with respect to each other but hard with respect to
the pair, the contribution of the sea particles to Eq. 5 can be evaluated di-
rectly. If we have N penetrable hard sphere depletants, we evaluate the sea
contribution Fy2(A&;) in Eq. 5 to be

e PFa(bEn) Ve(A&)Y, 71

where Vi is the free volume available to the sea particles. If we consider two
nearby configurations, we have that

E4814 | www.pnas.org/cgi/doi/10.1073/pnas.1418159111
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/ V,
ﬂ(F12—F12)=ﬂ(U’—U)—NIog(i) —logJ’ +logJ -

= (U = U) - pP(V{ - Vi) —log J' +log J,

where we have used the ideal gas equation of state for the depletant par-
ticles. Thus, up to an irrelevant additive constant,

PF12(A&12) = BU(AG2) — BPVE(Aq;) — log J(Aéyy). [91

The treatment of mixed colloid-polymer depletion systems as mutually hard
colloids in the presence of noninteracting polymers is known in the litera-
ture as the penetrable hard sphere limit (66). Hence, Eq. 9 is the general-
ization of the Asakura—Oosawa (29) result for depletion interactions
between spherical particles and particles of arbitrary shape.

Results

Entropic Forces in Monodisperse Hard Systems. As argued in refs.
15, 17, we expect that for a pair of polyhedra, the DEFs favor
face-to-face arrangements. In terms of the PMFT, we therefore
expect face-to-face configurations to have the deepest well of
effective attraction.

We compute the force components of the PMFT in Cartesian
coordinates for polyhedra or polyhedrally faceted spheres and
integrate over the angular directions, as described in ST Appen-
dix, which also gives explicit results for torque components in an
example monodisperse hard system. We then use a set of or-
thogonal coordinate systems for each face of the polyhedron (see
SI Appendix for a schematic diagram of this for a tetrahedron)
and linearly interpolate the PMFT to the coordinate frame of
each facet.

In Fig. 2, we plot the PMFT in the direction perpendicular to the
face for the three systems—hard tetrahedra (Fig. 24), hard tetra-
hedrally faceted spheres (Fig. 2B), and hard cubes (Fig. 2C)—at
various densities shown in the legend. We have chosen an axis that
passes through the global minimum of the potential. Several in-
dependent runs were averaged to obtain these results. Because we
are free to shift the PMFT by an additive constant, we have shifted
the curves for each density for clarity. We show only points that lie
within 4 kgT of the global minimum, because we can sample ac-
curately at these points. As the density increases, the first minimum
of the potential decreases and gets closer to contact. This indicates
that the particles exhibit greater alignment at higher densities, as
expected. Note that this is not merely an artifact of the decrease in
average particle separation at higher densities because, as we show
below and in SI Appendix, the alignment effect is concentrated near
the center of the facet.

To understand what the PMFT is surrounding each shape, we
do the following. In Fig. 3, we plot the PMFT in the plane
parallel to the face that passes through the global minimum of
the potential (which may be identified by the minimum of the
respective curve in Fig. 2). The outline of one of the faces of one
particle of the pair is indicated by the solid line. The second
reference particle is allowed to have its center of mass anywhere
on this plane. The orientation of the second particle may vary,
and we integrate over all the angles. Because the particles cannot
overlap, in practice not all orientations are allowed at close
distances (we plot this effect for cubes in Fig. 4). Each row shows
(from left to right) increasingly dense systems of tetrahedra (top
row), tetrahedrally faceted spheres (middle row), and cubes
(bottom row), respectively.

Directional entropic forces originate from entropic patch sites
(57)—geometric features that facilitate local dense packing—but
as emergent notions, these patch sites cannot be imaged as, say,
sticky patches created through gold deposition on the surface of
a nanoparticle can be through electron microscopy. Instead, in
Fig. 3 we plot the location and strength of entropic patches at
different densities. These plots show that the entropic patches lie
at the centers of the facets. The effect of the pressure of the sea
particles may be seen by comparing the density-dependent PMFT

van Anders et al.
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In monodisperse systems, we compute the PMFT by considering pairs of particles (A, C, and E). Density dependence of the PMFT along an axis per-

pendicular to the polyhedral face for a hard tetrahedron fluid (B), a fluid of tetrahedrally faceted hard spheres (D), and a hard cube fluid (F). Data are computed
from the frequency histogram of the relative Cartesian coordinates of pairs of particles in MC simulations of monodisperse hard particles and correspond to the
integration of the PMFT over relative orientation. We plot along the axis that contains the global minimum of the potential and plot only data that are within
4 kg T of the global minimum at each respective density, because we can sample such points reliably. The perpendicular distance z is given in units of the
minimum separation between particles, which is twice the radius of the inscribing sphere of the given polyhedron. Error bars are smaller than the markers
indicating data points, and a smooth curve through the data points in each series is used to guide the eye.

from Eq. 6, plotted for cubes in Fig. 3 I-L, to the density-in-
dependent pair contribution for cubes in Fig. 4. The pair con-
tribution clearly drives pairs of cubes away from direct face-to-
face contact, and it is the other contribution from the sea particles
that is responsible for driving them together. For the polyhedral
shapes, the coordination of the patches corresponds to the loca-
tions of the vertices of the dual polyhedron, and the shapes of the
patches themselves at high densities appear to reflect the sym-
metry of the dual. In ref. 57, we showed that systematic modifi-
cation of the particle shape induces DEFs between particles that
lead to the self-assembly of target crystal structures.

Note that although the tetrahedron and the tetrahedrally faceted
sphere share the same point group symmetry, and the geometrical
coordination of basins of attraction is the same in both cases, the
shape of the effective potential and its strength are different. For

van Anders et al.

example, contrasting the two shapes at packing fraction ¢=0.4
(Fig. 3), we see that the potential difference between the center of
the facet of the tetrahedrally faceted sphere and the truncated
vertex is more than a kg7 different from in the case of the actual
tetrahedron. This indicates that small changes in particle shape
may have dramatic effects on the structural coordination of the
dense fluid.

The existence of the directionality in the PMFT in the dense
fluid strongly suggests that DEFs provide the mechanism for
crystallization. In Fig. 5, we show that DEFs persist, and increase,
in the crystal. For concreteness, we study systems of cubically
faceted spheres that are very close to perfect cubes at a packing
fraction of ¢ =0.5 (fluid) and ¢ =0.6 (crystal). As we showed in
ref. 57, at sufficiently high packing fractions, these particles self-
assemble a simple cubic lattice. Upon increasing the packing

PNAS | Published online October 24, 2014 | E4815
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Fig. 3. Directional entropic forces are emergent in systems of particles and, as such, cannot be imaged directly through microscopy. Here we show the
location of potential wells by taking slices of the PMFT (computed from the frequency histogram of the relative Cartesian coordinates of pairs of particles in
MC simulations of monodisperse hard particles) parallel to the faces of a tetrahedron (A-D), a tetrahedrally faceted sphere (E-H), and a cube (/-L) at various
packing fractions ¢ =0.2,0.3,0.4,0.5, indicated at the head of the column. As the packing fraction increases from left to right, the potential well becomes

stronger and its shape becomes more well-defined.

density from the fluid to the crystal, the PMFT develops stronger
anisotropy. For example, by comparing the PMFT at the center of
the facet to the location of the vertex of the faceting cube, we note
that the difference between identical points may increase by more
than 1.5 kgT.

Entropic Forces with Penetrable Hard Sphere Depletants. We study
DEFs as a function of colloid shape in systems with traditional
weakly interacting, small depletants. One system consists
of a pair of spherical particles that are continuously varying
faceting with a single facet, to promote locally dense packing.
The other is a system of spherocylinders of constant radius that
are continuously elongated. In each case, the alteration creates
a region on the surface of the particle with reduced spatial
curvature.

As the amount of alteration to particle shape increases, it
leads to stronger attraction between the sites of the reduced
curvature, as encoded in the probability of observing particles
with these entropic patches (57) adjacent. In the case of the
faceted particle, we vary the depth of the facet linearly between
zero (a sphere) and unity (a hemisphere), with the radius of the
sphere fixed to 10 (Fig. 6E). In the case of spherocylinders, we
studied cap radii fixed to 5 and cap centers interpolating linearly
between 1 (nearly spherical) and 4 (an elongated spherocy-
linder), where all lengths are in units of the depletant radius (Fig.
6F). See SI Appendix for computational details. In Fig. 6 4 and B,
we show the probability that if a pair of particles is bound, then
they are bound patch to patch entropically (specific binding) as
a function of depletant pressure. Specific binding is depicted in
the inset images and the left-hand particle pairs in Fig. 6 C and
D, and is contrasted with patch-to-nonpatch (semispecific bind-
ing) and nonpatch-to-nonpatch (nonspecific binding) in the
center and right-hand particle images in Fig. 6 C and D. Fig. 6 4

E4816 | www.pnas.org/cgi/doi/10.1073/pnas.1418159111

and B show that we can tune binding specificity by adjusting the
patch size and the depletant pressure. Different curves corre-
spond to increasing patch size (more faceting) as the color goes
from blue to red.

For spherocylinders, it is straightforward to show the effect of
the entropic patches in generating torques that cause the par-
ticles to align. To isolate the part of the torque that comes from
the patch itself, we rearrange Eq. 9 for nonoverlapping spher-
ocylinders to get

Fi +kBTlOg]_ Vi
Po3 T [10]

Note that, conveniently, for ideal depletants, the expression on
the right-hand side is independent of the depletant pressure. For
clarity, we fix the separation distance R between the spherocy-
linders’ centers of mass to be 1% larger than the spherocylinder
diameter (which is the minimum separation distance) and fix the
orientation of each spherocylinder to be normal to the separa-
tion vector between them (¢, =¢, =0 in the coordinates in S/
Appendix). Because it is always possible to shift the PMFT by
a constant, for normalization purposes we define

Vr(R,x)
-5 [11]

Q(x)

where y describes the angle between the spherocylinder symme-
try axes. In Fig. 7, we plot AQ=Q(y) —Q(0) for spherocylinders
of different aspect ratios. For small side lengths of the spherocy-
linder, there is very weak dependence of the PMFT on y. As the
length of the cylinder increases (and therefore as the entropic
patch gets larger), the y dependence of the PMFT becomes more
pronounced. This means that not only do the particles coordi-

van Anders et al.
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Fig. 4. The density-independent contribution to the PMFT for cubes at distances of z/2r; ~ 1.1 (A), 1.2 (B), and 1.3 (C), which arises intrinsically from the pair
of colloids under consideration and contributes the first term factor on the right-hand side in Eq. 6. This contribution provides an effective repulsion between
free particles, which is stronger at small separations (A) than at larger ones (B and C). The pattern of the repulsion is opposite that of the overall PMFT
between cubes seen in Fig. 3, in which both factors in Eq, 6 have been taken together.

nate at their entropic patch sites, but there also exists a torque
(75) that aligns the patches.

Discussion

PMFT as an Effective Potential at Finite Density. Extracting physical
mechanisms from systems that are governed mainly by entropy is,
in principle, a difficult task. This difficulty arises because en-
tropic systems have many degrees of freedom that exist at the
same energy or length scale. Typically, disparities in scale are
used by physicists to construct “effective” descriptions of physical
systems, in which many degrees of freedom are integrated out
and only the degrees of freedom key to physical mechanisms are
retained. Determining which degrees of freedom are key in en-
tropic systems is difficult because of the lack of natural hierar-
chies, but to extract physical mechanisms, it still is necessary.
To extract the essential physics of shape for anisotropic col-
loidal particles, we computed the PMFT. In so doing, we de-
scribed the PMFT as an effective potential, but we emphasize
here that it is an effective potential in a restricted sense of the
term. The restriction comes about because when we separate
a system into a pair of reference colloids plus some sea particles,
the sea particles may be identical to the reference colloids. Only
the pair of reference colloids is described by the effective po-
tential, which means it describes the behavior of a system of only
two particles, with the rest implicit. Indeed, the rest of the col-
loids in the system are treated as an “implicit solvent” for the
pair under consideration. Because of this fact, the PMFT for
monodisperse colloids is not synonymous with the bare in-
teraction potential for the whole system. Note that in systems of
multiple species, there is some possibility of a broader in-

crystal

Fig. 5. Directional entropic forces emerge in the fluid phase (Left) and
persist into the crystal (Right). Here we plot the PMFT for cubically faceted
spheres (from the family of shapes studied in ref. 57) that are nearly perfect
cubes. In the dense fluid at ¢ =0.5 (Left) and the crystal ¢ =0.6 (Right), the
PMFT has a similar form, but the strength of the interaction is at least
1.5 kg T stronger in the crystal.

van Anders et al.

terpretation of the PMFT for a single species having integrated
out another species (87), but even in that case, difficulties arise
(88). For example, Onsager (28) treated the nematic transition in
hard rods by considering rods of different orientations as dif-
ferent “species,” but an effective potential between rods of the
same species or orientation does not capture the physics of the
system in the same way an effective potential between rods in-
duced by polymer depletants would (21).

Interpreting the PMFT from Eq. 5 in the restricted sense, we
see that it naturally exhibits three contributions: (i) The first
term on the right-hand side is the bare interaction between the
pair of particles, which originates from van der Waals, electro-
static, or other interactions of the system of interest. It encodes
the preference for a pair of particles to be in a particular relative
position and orientation. Here, we are concerned mostly with
hard particles, so this term encodes the excluded volume in-
teraction. (ii) The second term on the right-hand side is the
logarithmic contribution from the Jacobian; it counts the relative
number of ways the pair of particles can exist in a relative po-
sition and orientation. For a more technical discussion of this
term, see SI Appendix. (iii) The third term is the free energy of
the sea particles that are integrated out, keeping the relative
position and orientation of the pair fixed. In purely hard systems,
this last term is sea particle entropy, which is just the logarithm
of the number of microstates available to the sea particles for
that configuration of the pair.

The free energy minimizing configuration of the pair of particles
is determined by a competition between the three terms in Eq. 5.
Consider the contribution from the third term. For any non-
attractive bare interactions between sea particles, if the pair of
particles is separated by a distance that is less than the effective
diameter of the sea particles (89) and adopts a configuration that
packs more densely, the free energy of the sea particles will never
increase. This is the case for bare interactions that are repulsive
because of excluded volume (in which case, the system is dominated
by entropy) and for sea particles that are soft and interpenetrable.

In the absence of the first two terms in Eq. 5, the third term
will drive the pair of particles into denser local packing config-
urations. The driving force for local dense packing becomes
stronger as the system density increases. To understand why this
occurs, we note that DEFs arise by the pair of particles balancing
the pressure of the sea particles. Rather than considering the
effects of the sea on the pair, we momentarily consider the
effects of the pair on the sea. The pair of interest forms part of
the “box” for the sea particles. Density dependence arises be-
cause changes in the relative position and orientation are related
to the local stress tensor. This contribution is on the order of
P’ /ksT, where P is the characteristic scale of the local stress
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Fig. 6. The probability of specific binding, Z; for (A) particles with a single facet and (B) capsules in a bath of depletants as a function of depletant pressure.
(C and D) Configurations that correspond to specific, semispecific, and nonspecific binding according to whether the binding occurs at sites of low curvature.
(E and F) Singly faceted spheres and spherocylinders with various facet and cylinder sizes, respectively. Curves in A and B show the probability of specific
binding at various faceting amounts; with increasing patch size (more faceting), the color goes from blue to red.

tensor, which we expect to be related to the pressure, and ¢ is
a characteristic length scale. Because this contribution is density
dependent, the effective forces between particles are emergent.
These emergent forces are directional, because some local
packing configurations are preferred over others. For example,
dense local packing configurations involve face-to-face contact
for many particles, which is why face-to-face contact is observed
in so many hard-particle crystals, and is borne out in Fig. 3. Of
course, this also is akin to hard rods aligning axes in nematic
liquid crystals (28). Indeed, in repulsive systems, only at suffi-
ciently high densities is the system able to overcome any re-
pulsion from the first two terms in Eq. 5, plotted in Fig. 4 for
cubes, which drive the system away from locally dense packings.
It is this competition between the drive toward local dense
packing supplied by the sea particles’ entropy and the preferred
local relative positions and orientations of the pair, which are
induced by the maximization of shape entropy, that determines
the self-assembly of entropic systems of repulsive (hard) shapes.

Two general lessons from the literature of hard particle
self-assembly are intuitive in light of the mechanism we have
described.

First, in a previous systematic study of shape and self-assembly
using a family of highly symmetric convex polyhedra (17), it was
shown that there is a remarkable correlation between the number
of nearest neighbors in the crystal structure of a given polyhedron
and the number of nearest neighbors in the dense fluid. Because
systems at finite density exhibit a drive toward local dense packing,
we would expect the organization of neighbor shells to be de-
termined by the same local packing considerations in both the
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dense fluid and the crystal. Indeed, we might expect to predict
crystal structure based on local packing considerations alone. In
recent work, we designed particle shape to favor certain local
dense packing arrangements to self-assemble targeted crystal
structures (57). We viewed the induced anisotropy of the effective
interactions between particles as the entropic analog of the in-
trinsic anisotropic interactions between enthalpically patchy par-
ticles (7, 90). Attractive entropic patches are features in particle
shape that facilitate local dense packing.

Second, hard particle systems often assemble into their densest
packing structure; however, some do not (15, 17, 39, 41, 44, 53).
The present work helps highlight two key differences between self-
assembly and packing: (i) Systems self-assemble because the sec-
ond law of thermodynamics drives them to free energy minima,
so like packing, self-assembly has a mathematical optimization
problem at its root. In self-assembling systems, all three terms in
Eq. 5 contribute, but in the infinite pressure limit relevant for
packing, the entropy of the pair of particles does not contribute.
This is because the first term provides the steric hindrance be-
tween particles, and the third term should scale with pressure,
whereas the second term encodes the entropy of a set of relative
positions and orientations of the pair, and this factor becomes
irrelevant in the infinite pressure limit. (i) Assembly is related to
local dense packing, which we have characterized here with two-
body potentials, whereas global dense packing ostensibly is an “all-
body problem.” Given these two differences, it might be more
surprising that densest packing solutions ever coincide with as-
sembled structures than the fact that they frequently do not.
However, the pair entropy term often only separates particles
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Fig. 7. The angular () dependence of the portion of the PMFT directly
attributable to modification of particle shape (Q; see Eq. 11), normalized to
0 at x=0) for spherocylinders in the presence of penetrable hard sphere
depletants for different cylinder side lengths. For short side lengths (¢=1,
light blue W), there is very little angular variation, indicating very little en-
tropic torque. As the side length, ¢, increases from 1 to 5 (in units of the
depletant radius, pink W), the strength of the dependence on y increases,
indicating greater torques, as expected.

while preserving their alignment; for example, we showed that
particles are observed more frequently with face-to-face alignment
at small separations than in direct face-to-face contact. Moreover,
in practice (e.g., ref. 91), the solution to the all-body packing
problem often is given by the solution to a few-body problem.

Unification. We saw above that directional entropic forces, as cap-
tured by the PMFT, arise when particles maximize shape entropy
through local dense packing. We verified this drive to local dense
packing with direct calculations for monodisperse hard shapes and
for hard shapes in a sea of penetrable hard sphere depletants.
Monodisperse hard-particle systems and colloid-depletant systems
would, at first glance, seem to be different.

However, depletion systems (29) and monodisperse systems of
hard anisotropic shapes are both entropy driven, as is the crys-
tallization of hard spheres (22-27) and the nematic liquid crystal
transition in hard rods (28). Indeed, since the original work by
Asakura and Oosawa (29) on depletion interactions, it has been
well known that the depletion-induced aggregation of colloids
arises from an osmotic effect in which depletants liberate free
volume for themselves by driving the colloids into dense packing
configurations. However, the earlier work of de Boer (83) suggests
that considerations of the potential of mean force in systems of
isotropic particles lead to pairs of particles having certain pre-
ferred distances, because they balance their own repulsive forces
with the sea particles’ preference for them to pack more densely.

In traditional depletion systems, the depletants are small
compared with the colloids, spherical, and interpenetrable. In
such systems, there is a substantial literature on the anisotropic
binding of colloids by depletants starting with ref. 67 and fol-
lowed by work on rough colloids (68-74), as well as more an-
isotropic shapes (42, 54, 55, 75, 80, 81) and lock-and-key systems
(76-79). In all these systems, the anisotropic binding may be seen
as resulting from a sea of depletants forcing colloids to adopt
local dense packing configurations.

However, one might ask how large or hard or aspherical the
depletants can be before they cease to act as depletants. In the
original work of Asakura and Oosawa (29), depletants were not
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restricted to be small; large depletants are the so-called protein
limit (66). In experimental systems, as well as accurate models,
depletants are not freely interpenetrable (66, 87, 92). In the
original work of Asakura and Oosawa (29), depletants were
imagined to be polymers, which certainly are not spherical, but
were modeled as spheres.

Of course, it is well known that depletants may be aspherical or
hard or large; in all cases, depletants exert an osmotic pressure
that causes colloids to aggregate as the colloids adopt dense
packing configurations. However, we argued above that consid-
eration of the three contributions to the PMFT in Eq. 5 leads to
a drive toward local dense packing in generic systems in which the
sea particles may simultaneously be arbitrarily aspherical, hard,
and large. Indeed, the sea particles may be the same species as the
colloids and still behave as “depletants.” Hence, the classic works
on the entropic behavior of systems as diverse as hard shapes from
spheres (22-27), to rods (28), to tetrahedra (36), and colloid-
depletant systems (29, 66) are similar not only because their phase
behavior is driven by entropy, but also because entropy controls
their phase behavior through a preference for local dense packing.

In Fig. 1, we show a schematic representation of the family of
systems whose phase behavior is governed by the shape entropy-
driven mechanism. We represent the family of systems on a set of
three axes. One axis represents the shape of the colloidal pair of
interest, in which we think of spheres as occupying the “zero”
limit and rods infinity. A second axis is the softness of the sea
particles; one limit represents hard-core particles (vanishing
softness) and the other an interpenetrable ideal gas [for spherical
sea particles, in the case that the sea particles may be considered
depletants, this is the so-called penetrable hard sphere limit (66)].
A third axis is the inverse size of the sea particles, where a
monodisperse system is at the origin, and the other limit has sea
particles being very small compared with the “colloids.” One also
might include other axes, such as the shape of the sea particles or
the density of the system, but we omit them for simplicity.

As a guide, we have indicated the location of some well-
studied model and experimental systems on these axes. Hard
spheres sit at the origin (C) (22-27), hard rods (28) lie at the
extreme of the shape axis (A), and Asakura and Oosawa’s model
of depletants (29) lies in the plane of zero shape (between D and
E). Some depletion systems are indicated (I, K, M); however, in
experiments, particles are not all the same shape and sometimes
are actually binary (J, L) or ternary (N) mixtures. Monodisperse
hard particle systems lie along the shape axis (B, F) but are
simply a limit of binary hard systems (G, H).

DEFs in Experimental Systems. We have shown that DEFs arise from
a mechanism that occurs in a wide variety of idealized systems. Do
DEFs and shape entropy matter for experimental systems? Using
systems in which shape entropy is the only factor that determines
behavior, we have shown that in several example systems, DEFs
are on the order of a few kgT around the onset of crystallization.
This puts DEFs directly in the relevant range for experimental
systems. If in experiment there is sufficient control over the in-
trinsic forces between colloids that puts them at much less than the
kgT scale, systems will be shape entropy dominated. If the intrinsic
forces are on the order of a kg7, then there will be a competition
between directional entropic forces and intrinsic forces. If the scale
of the intrinsic forces is much more than a few kg T, intrinsic forces
will dominate shape entropy effects.

Can these forces be measured in the laboratory? In colloidal
experiments, effective interaction potentials may be inferred from
the trajectories of the colloids in situ, e.g., by confocal microscopy
(93). Recently, it became possible to image anisotropic colloids in
confocal microscopes and extract particle positions and ori-
entations (94, 95). The determination of both particle positions
and orientations makes it possible to directly extract the PMFTs
computed here from experimental data. For isotropic potentials
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of mean force, this investigation already has been carried out by
analyzing the pair correlation function g(r) (93). As in ref. 93, we
may interpret this potential measurement as describing the
thermally averaged time evolution of the relative position and
orientation of pairs of particles. Furthermore, we have shown that
pairs of particles are described by the PMFT regardless of the
properties of the sea particles, so the PMFT describes the average
time evolution of pairs of particles in monodisperse systems, as
well as colloid-depletant systems.

Conclusions

In this paper, we show that shape entropy drives the phase be-
havior of systems of anisotropic shapes through directional en-
tropic forces. We define DEFs in arbitrary systems and show that
they are emergent and on the order of a few kg7 just below the
onset of crystallization in example hard particle systems. By
quantifying DEFs we put the effective forces arising from shape
entropy on the same footing as intrinsic forces between particles
that are important for self-assembly. In nano- and colloidal sys-
tems our results show that shape entropy plays a role in phase
behavior when intrinsic forces between particles are on the order
of a few kgT or less. This figure guides the degree of control of
intrinsic forces in particle synthesis required for controlling shape
entropy effects in experiment. In microbiological systems, it
facilitates the comparison between the effects of rigid shape in
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crowded environments and the elasticity of the constituents. We
suggest how existing experimental techniques might be used to
measure these forces directly in the laboratory. We show that the
mechanism that generates DEFs is that maximizing shape entropy
drives particles to adopt local dense packing configurations.

Finally, we demonstrate that shape entropy drives the emer-
gence of DEFs, as particles adopt local dense packing config-
urations, in a wide class of soft matter systems. This shows that in
a wide class of systems with entropy-driven phase behavior, en-
tropy drives the phase behavior through the same mechanism
(22-29).
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