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Chloroviruses (family Phycodnaviridae) are large DNA viruses
known to infect certain eukaryotic green algae and have not been
previously shown to infect humans or to be part of the human
virome. We unexpectedly found sequences homologous to the
chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) in
a metagenomic analysis of DNA extracted from human oropharyn-
geal samples. These samples were obtained by throat swabs of
adults without a psychiatric disorder or serious physical illness
who were participating in a study that included measures of cog-
nitive functioning. The presence of ATCV-1 DNA was confirmed by
quantitative PCR with ATCV-1 DNA being documented in oropha-
ryngeal samples obtained from 40 (43.5%) of 92 individuals. The
presence of ATCV-1 DNA was not associated with demographic
variables but was associated with a modest but statistically signif-
icant decrease in the performance on cognitive assessments of visual
processing and visual motor speed.We further explored the effects of
ATCV-1 in a mouse model. The inoculation of ATCV-1 into the intes-
tinal tract of 9–11-wk-old mice resulted in a subsequent decrease in
performance in several cognitive domains, including ones involving
recognition memory and sensory-motor gating. ATCV-1 exposure in
mice also resulted in the altered expression of genes within the hip-
pocampus. These genes comprised pathways related to synaptic plas-
ticity, learning, memory formation, and the immune response to
viral exposure.
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Mucosal sites of humans such as the oral pharynx and in-
testinal tract are not sterile but contain many micro-

organisms including bacteria, viruses, and fungi. It has recently
become apparent that individuals differ in the composition of the
microbial flora at their mucosal sites, characterized as the “micro-
biota” comprising the “microbiome.” Studies in both humans and
animal models have shown that the microbiome can affect bio-
logical functions, including cognitive performance (1, 2). Bacterial
and fungal components of the oral microbiome have been the
subject of several prior studies. These studies generally rely on
PCR-based amplification and subsequent analysis of ribosomal
RNA sequences conserved among most species (e.g., refs. 3–6).
Analysis of viral components in the microbiome (virome) has re-
ceived less attention, largely because there are no universal target
regions suitable for PCR amplification across different viral taxa.
This problem can be overcome by whole genome sequencing in
which viral particles are separated from the rest of the sample, se-
quenced, and then bioinformatically identified. Such analyses have
identified bacteriophages as the most abundant component of the
human oral microbiome (6–9). The virome can also be evaluated by
sequencing unfractionated samples. This approach has the advan-
tage of identifying viruses that might be in low concentrations or
evade detection by standard fractionation methods (10–12).

In the process of analyzing whole genome sequences obtained
from unfractionated samples of the oropharynx from healthy indi-
viduals participating in a study that involved the assessment of
cognitive functioning, we unexpectedly discovered a substantial
number of sequence reads very similar to virus Acanthocystis turfa-
cea chlorella virus 1 (ATCV-1), a member of the genus Chlorovirus
(family Phycodnaviridae). This family of algae-infecting viruses is
common in aqueous environments but not previously thought to
infect humans or animals or to inhabit human mucosal surfaces
(13). Viruses that cross kingdoms are rare; however, some plant
viruses can replicate in both their plant host as well as an in-
vertebrate vector. However, there is one report indicating a possible
algal-infecting virus associated with humans. In this report, cervico-
vaginal secretion samples contained virus-like particles, and these
samples inhibited the propagation of certain algal cultures, consis-
tent with the presence of a virus capable of infecting algae (14).

Significance

Humanmucosal surfaces contain a wide range of microorganisms.
The biological effects of these organisms are largely unknown.
Large-scale metagenomic sequencing is emerging as a method
to identify novel microbes. Unexpectedly, we identified DNA
sequences homologous to virus ATCV-1, an algal virus not
previously known to infect humans, in oropharyngeal samples
obtained from healthy adults. The presence of ATCV-1 was asso-
ciated with a modest but measurable decrease in cognitive func-
tioning. A relationship between ATCV-1 and cognitive functioning
was confirmed in a mouse model, which also indicated that ex-
posure to ATCV-1 resulted in changes in gene expression within
the brain. Our study indicates that viruses in the environment not
thought to infect humans can have biological effects.
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The surprising discovery of this apparent human–ATCV-1
association led us to conduct further investigations in humans
and in mice by using high throughput sequencing methods, PCR
procedures, and immunological analyses. The presence of ATCV-1
genomes in the oropharynx of many individuals was evaluated in
a Baltimore, Maryland-based cohort, and correlations were dis-
covered between the presence of ATCV-1 and cognitive per-
formance. These results prompted us to explore the ability of
ATCV-1 to infect mice under experimental conditions and to
study the effect of ATCV-1 infection on cognitive performance
and brain gene expression.

Results
Detection of ATCV-1 DNA in Human Pharyngeal Samples. Meta-
genomic sequencing was performed on DNA extracted from oro-
pharyngeal samples obtained from 33 adult individuals without
a known psychiatric disorder or physical illness. The demographic
characteristics of these individuals are reported in Table S1A. The
viral fraction of these metagenomic analyses revealed a wide range
of viruses consistent with human and bacterial components of the
oropharyngeal cavity. However, there were an unexpected signifi-
cant number of sequences that resembled chlorovirus ATCV-1.
Individuals with and without detectable ATCV-1 sequences in their
oropharyngeal samples did not differ significantly in terms of the
demographic variables of age, sex, race, educational level, level of
maternal education, cigarette smoking, basal metabolic index (BMI)
score, a history of travel outside of North America, or place of birth.
The sequence reads mapped to many ATCV-1 sites located
throughout the viral genome (Fig. 1 and Table S2).
A quantitative PCR (qPCR) procedure with a fluorescent-

labeled probe (Taqman) was developed to allow throats of more
individuals to be tested for ATCV-1 DNA. The assay relied on
primers directed at ATCV-1 gene z100l. The sensitivity of the
assay was ∼10 copies of target DNA based on standard curves
generated from purified ATCV-1 DNA. The qPCR assay
detected ATCV-1 DNA in all 10 individuals with at least two
sequence reads homologous to ATCV-1 and in 12 of the 14
individuals who had one sequence read homologous to ATCV-1.
The Taqman assay was negative when tested with either human
DNA or extracts from buffer solutions. Furthermore, the assay
was negative, with DNA extracted from either the ATCV-1 host
Chlorella heliozoae or with DNA from two other chloroviruses,
PBCV-1 and CVM-1, and their hosts Chlorella variabilis and
Micractinium conductrix, respectively.
The Taqman assay was used on oropharyngeal samples from

92 individuals, including the 33 individuals tested above. Overall
ATCV-1–like DNA was detected in 40 (43.5%) of the 92 sam-
ples. Individuals with or without detectable ATCV-1 DNA were
similar in terms of demographic variables (Table S1B). No
ATCV-1 DNA was detected in blood samples obtained from the
study individuals by the qPCR assay.
Because the individuals in the study cohort were also partici-

pating in a study of cognitive functioning (15), we examined the
association between detection of ATCV-1 DNA and perfor-
mance on a battery of cognitive tests. A significant association
occurred between the presence of oropharyngeal ATCV-1 DNA
and a lower level of performance on the Trail Making Test Part
A (Trails A), a test of visual motor speed (P < 0.002), as well as
the total score of the Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS) (P < 0.014) (Table 1).
Within the RBANS test, there were statistically significant dif-
ferences between those who had detectable oropharyngeal
ATCV-1 DNA and those who did not in the domains of delayed
memory (P < 0.039) and attention (P < 0.011). These differences
were independent of the covariates of age, sex, race, socioeco-
nomic status, educational level, place of birth, and current cig-
arette smoking. On the other hand, no differences were observed
between the presence/absence of ATCV-1 DNA and scores on

the Wechsler Adult Intelligence Scale (WAIS) Information
subtest, a test of general knowledge.
The odds ratios defining the association between the presence

of oropharyngeal ATCV-1 DNA and low performance on the
cognitive tests were significantly correlated. As depicted in Fig. 2,
the presence of ATCV-1 oropharyngeal DNA was associated with
low performance on Trails A with an odds ratio of 5.2 (95%
confidence interval, 1.63–16.7; P < 0.005) and low performance
on the RBANS Total Score with an odds ratio of 4.3 (95%
confidence interval, 1.4–12.8; P < 0.01). Within the RBANS there
was a strong association between oropharyngeal ATCV-1 DNA
and low performance on the attention domain (odds ratio, 8.0;
95% confidence interval, 1.7–37.6; P < 0.008). These associations
were independent of the covariates of age, sex, race, socioeco-
nomic status, educational level, place of birth, and current ciga-
rette smoking. No significant differences occurred with a low level
of performance on the other RBANS domains or on the test of
information (all P > 0.1).

Effect of ATCV-1 on Mouse Behavior and Cognition. A series of be-
havior tests were performed on an equal number of male and
female mice gavaged with either C. heliozoae alone (control, n =
20) or C. heliozoae infected with ATCV-1 at a multiplicity of
infection of 10 per cell for 5 h (C. heliozoae/ATCV-1 exposed,
n = 30). The behavior tests were started 6 wk postinoculation.
An open field test and dark–light box were used to evaluate the
effects of viral exposure on general locomotor activity and anx-
iety (16, 17). No significant group differences occurred in either
test. The effect of ATCV-1 exposure on learning and memory

SAG 3.83_ATCV-1

Fig. 1. Chlorovirus ATCV-1 genome showing the gene block distributions
[blue arrows, protein coding sequence (CDS); red arrows, tRNAs] on each
strand of the genome. Histograms in black indicate the G+C distribution
along the genome; colored histograms (green, magenta) indicate the GC
skew of the genome. The most inner circle indicates the genome map po-
sition with the start position at “12 o’clock.” The viral genome is a linear
dsDNA, but is represented here as a circle for convenience of presentation.
Control throat swab deep sequencing consensus sequence reads are
matched to ATCV-1, and two experiments (17 and 16 individuals per ex-
periment) are represented by the black lines connecting the gene blocks.
BLAST hits, 61; Query, ATCV-1; Subject, human throat swab chlorovirus
consensus sequence reads (52).
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was then tested using the Y-maze test to evaluate spatial rec-
ognition memory (17, 18). Mice exposed to ATCV-1 performed
at a lower level on this test compared with control mice (Fig. 3A).
ANOVA of the percentage of entries to the previously blocked arm
showed a significant effect of group, F(1, 49) = 6.4, P = 0.015. This
difference could not be explained by lower locomotor activity in
ATCV-1–exposed mice, as both groups had similar numbers of total
entrances over the observational period: 19.8 ± 1.45 for the control
group and 19.5 ± 1.39 for the ATCV-1 group. The effects of
ATCV-1 exposure on recognition of a novel object or a novel lo-
cation were then evaluated. These tests evaluate different aspects of
recognition memory in mice (19). No differences were observed in
baseline exploratory activity of the objects during training between
the ATCV-1–exposed and control group. In contrast, compared
with control mice, ATCV-1–exposed mice spent significantly less
time exploring the novel object, F(1, 48) = 62.3, P < 0.001 (Fig. 3B),
or the novel location of the same object, F(1, 47) = 7.75, P = 0.008
(Fig. 3C). The passive avoidance test was used to evaluate memory
to aversive stimuli in mice (20). No significant effect of virus ex-
posure was observed in this test.
The effects of ATCV-1 exposure on the acoustic startle and its

prepulse inhibition (PPI) were assessed. These are translational
measures of sensorimotor gating that are impaired in patients
with neurological and psychiatric illnesses (21). No group dif-
ference was found in the baseline acoustic startle response, and
both groups exhibited comparable amplitudes (in mV): 193.1 ±
8.4 for control mice and 212.4 ± 8.6 for ATCV-1–exposed mice.
However, ATCV-1 exposure impaired PPI in mice. Two-way
repeated measures ANOVA with treatment as a between-subject
factor and PPI as a within-subjects factor indicated a significant
group effect, F(1, 45) = 6.9, P = 0.015, and a significant effect of type
of prepulse, F(4, 234) = 98.2, P < 0.001 (Fig. 3D). No Group ×
Prepulse interaction was found. Post hoc test results revealed that
compared with control mice the ATCV-exposed group had signifi-
cantly reduced PPI averaged across all prepulses (P < 0.05) (Fig. 3E).

Hippocampus Gene Expression in ATCV-1–Exposed Mice. Gene ex-
pression in the hippocampus of mice was evaluated to compare
ATCV-1 exposure (26 wk after ATCV-1 exposure) and control
mice. The hippocampus was selected because it contains pathways
essential for learning, memory, and behavior (22, 23). Exposure to
ATCV-1 was associated with a significant up-regulation or down-
regulation of 1,285 individual genes (Fig. S1), which could be
constructed into 34 functional pathways that met the inclusion
criteria (Table S3). Pathways with multiple components relevant to
the response of the mice to ATCV-1 exposure and the development
of cognitive changes following infection include pathways related to
dopamine receptor signaling (Fig. S2), cyclin-dependent kinase 5
(CDK5) signaling (Fig. S3), antigen presentation (Fig. S4), immune
cell adhesion (Figs. S5 and S6), and eukaryotic initiation factor 2
(EIF2) (Fig. S7) with color coding legend (Fig. S8).

Antibodies to ATCV-1 in Exposed Mice. Following the completion of
the behavioral studies, there were a total of 47 mice from which
serum could be obtained for antibody testing ∼6 mo following
oral inoculation. This set included 28 of the 30 mice that had
been inoculated with ATCV-1–infected C. heliozoae (15 females,
13 males; 2 males died before testing) and 19 mice inoculated
with C. heliozoae alone (10 males, 9 females; 1 female died be-
fore testing). We found detectable antibodies to ATCV-1 by
enzyme immunoassay (ELISA) in 10 of the 28 mice exposed to
ATCV-1 (5 males and 5 females) but in none of the 19 mice
exposed to C. heliozoae alone (P < 0.0033, Fisher’s exact test).
The presence of antibodies to ATCV-1 proteins was examined by

Western blot in 12 available blood samples from mice exposed to
ATCV-1 in this study. Of five tested samples that were positive by
ELISA, four also reacted to multiple ATCV-1 proteins but not to
C. heliozoae proteins (Fig. S9). One of the predominant proteins
recognized was tentatively identified as the ATCV-1 major capsid
protein. No reaction to ATCV-1 proteins occurred in Western blots
with the seven samples that were seronegative with ELISAs. Sera
obtained from mice exposed to C. heliozoae in the absence of
ATCV-1 did not react with ATCV-1 proteins.

Discussion
Metagenomic sequencing of DNA extracted from human oro-
pharyngeal samples identified sequences homologous to chlor-
ovirus ATCV-1 in 14 of 33 (42.4%) individuals from a cohort of
adults without a known psychiatric disorder or physical illness
who were living in an urban area in the United States. DNA
sequences found in study individuals mapped to many sites on
the ATCV-1 genome and included many viral genes (Fig. 1). The
finding of ATCV-1 sequences by metagenomic sequencing was
confirmed by a sequence-specific (gene z100l) qPCR assay that
detected ATCV-1 sequences in oropharyngeal samples from 40
of 92 (43.5%) individuals from the same study cohort. There
were no differences between individuals, with or without ATCV-1
sequences, with respect to demographic variables, such as age,
sex, race, socioeconomic status, cigarette smoking, travel history,
or place of birth.
As noted in the introduction, ATCV-1 is a member of the genus

Chlorovirus, family Phycodnaviridae. Viruses in the phycodnavirus
family, together with those in the Poxviridae, Iridoviridae, Ascovir-
idae, Asfarviridae, Mimiviridae, and Marseilleviridae, are proposed to
have a common evolutionary ancestor and are often referred to as
nucleocytoplasmic large DNA viruses (24–26). Chloroviruses have
large dsDNA genomes (290–370 kb) that encode up to 410 proteins
and many tRNAs (13). Chloroviruses infect certain unicellular,
eukaryotic, exsymbiotic chlorella-like green algae, called zoochlor-
ellae. Zoochlorellae are associated with the protozoan Paramecium
bursaria, the coelenterate Hydra viridis, the heliozoon A. turfacea,
and other freshwater and marine invertebrates and protozoans
(27, 28). Three such zoochlorellae are Chlorella NC64A (renamed

Table 1. Association between ATCV-1 oropharyngeal DNA and performance on cognitive tests

Cognitive Test ATCV-1 DNA detected, n = 40 ATCV-1 DNA not detected, n = 52 Overall cohort, n = 93 P value

Trails A, scaled score 38.2 (12.4) 46.7 (11.7) 43.0 (12.7) <0.002
WAIS III, Information subtest, scaled score 10.8 (2.7) 10.8 (2.6) 10.8 (2.6) NS
RBANS
Total Score 81.3 (11.9) 85.4 (11.5) 83.6 (11.8) <0.014
Attention Index 91.4 (17.5) 98.5 (14.5) 95.4 (16.2) <0.011
Delayed Memory Index 85.2 (11.7) 88.3 (9.9) 87.0 (10.8) <0.039
Immediate Memory Index 85.8 (15.5) 89.3 (14.5) 87.8 (14.9) NS
Visuospatial/Constructional Index 72.6 (9.1) 74.4 (10.6) 73.6 (9.9) NS
Language Index 93.3 (17.0) 94.8 (17.0) 94.2 (16.9) NS

Values listed are means (standard deviations). P values calculated by linear regression adjusted for age, sex, race, educational level, maternal education,
cigarette smoking, and place of birth. NS indicates P > 0.1.
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C. variabilis), Chlorella Pbi (renamed M. conductrix), and C. helio-
zoae, the host for ATCV-1. ATCV-1 is a representative of a group of
viruses that infect C. heliozoae and collectively are referred to as
SAG viruses.
Genomes from 41 chloroviruses infecting these three hosts have

been sequenced, assembled, and annotated (29). Collectively, the 41
viruses encode genes from 632 protein families, whereas any given
virus only has 330–410 protein-encoding genes. Thus, the genomic
diversity among these viruses is large. Furthermore, the viruses
encode some unusual proteins that might influence brain function
including potassium ion and aquaglyceroporin channels, potassium
and calcium transporters, polyamine metabolic enzymes, a histone
methyltransferase, and numerous sugar enzymes including several
glycosyltransferases.
Chloroviruses are common in inland waters throughout the

world with titers as high as thousands of plaque-forming units
(PFUs) per milliliter of indigenous water, although titers are
typically 1–100 PFUs/mL. The viruses cannot infect zoochlor-
ellae when they are in their symbiotic phase, and we have no
evidence that the zoochlorellae grow free of their hosts in
indigenous waters.
To our knowledge, this is the first report of chlorovirus gene

sequences in the oral pharynx of humans. There have been several
recent reports of oral viromes, but ATCV-1 or other chloroviruses
were not mentioned. There are two explanations for this apparent
absence. First, in one report the authors specifically looked for
known human viral pathogens (30), and so they would have missed
the chloroviruses. Second, in three other reports, the samples were
filtered through both 0.45-μm and 0.2-μm filters; the material that
passed through both filters was used to extract DNA. These
researchers were primarily evaluating bacteriophages (7, 8, 31). The
icosahedral-shaped chloroviruses are 190 nm in diameter and have
a 34-nm spike structure protruding from one unique vertex (32).
Therefore, it is likely that ATCV-1 and most chloroviruses would be
trapped on a 0.2-μm filter.
The fact that the individuals in our study population were

participating in a project, which included measures of cognitive
functioning, allowed us to examine the association of detectable
ATCV-1 DNA in the pharynx and performance on a range of
cognitive tests. Surprisingly, the presence of ATCV-1 DNA in
the oropharynx was associated with modest but statistically sig-
nificant decreases in performance on tests including Trails A and

RBANS Attention, both of which measure visual processing and
visual motor speed.
The association between the level of ATCV-1 and decreased

performance on cognitive tests was independent of demographic
variables (Tables S1A and S1B). Also, there was no association
between the level of oropharyngeal ATCV-1 DNA and WAIS
Information, indicating that the association between ATCV-1
DNA and the other cognitive domains was not due to level of
general knowledge or educational background. Studies of asso-
ciations between environmental factors and cognitive performance
in humans must always be interpreted with caution because it is
possible that exposure to a single infectious agent might be associ-
ated with unmeasured exposures, such as other infectious agents,
heavy metals, pollutants, or other environmental factors that also
can be associated with alterations in cognitive functioning (33).
For this reason, we developed a mouse model for assessing

behavior and cognitive functioning following ATCV-1 exposure
by the oral route. As a group, mice inoculated by the oral route
showed signs of impairment in new object or new location rec-
ognition memory and sensory-motor gating as measured by PPI
several months after a single viral exposure (Fig. 3).
Exposure of mice to ATCV-1 also resulted in changes in gene

expression within the hippocampus, the region of the brain most
associated with spatial memory and navigation (22, 34, 35). Of
particular interest in light of the cognitive assays were alterations
in the Cdk5 pathway (Fig. S3) because this pathway is central to
learning and memory formation (36). Also of note were differ-
ences in expression of genes in the dopamine pathway (Fig. S2)
because perturbation of the dopamine system impairs novel
object recognition and PPI in rodents (37, 38), as do alterations
in the pathway of EIF2 because this factor is central to the
control of long-term synaptic plasticity and memory storage (39).
Although it is difficult to directly relate the cognitive tests used

in our human study with memory tests in mice, it is striking that

Fig. 2. Odds of detecting ATCV-1 in the pharynx by percentile of score on
cognitive testing. Bars represent the mean and 95% confidence interval odds
of detecting ATCV-1 DNA in the oropharynx in individuals with the indicated
test. The odds ratios are adjusted for the demographic variables of age, sex,
race, maternal education, educational status, and place of birth in the
United States. Trails A and Information are separate tests and not part of
the RBANS. **P < 0.005, *P < 0.01, adjusted for the same covariates.
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Fig. 3. Behavioral effects of oral ATCV-1 exposure. Mice were orally infec-
ted with C. heliozoae alone (open bars) or with ATCV-1–infected C. helio-
zoae (solid bars) as described in the text. (A) Spatial recognition memory; the
y axis displays the percentage of the previously blocked (i.e., novel) arm
entries; *P = 0.015 measured by one-way ANOVA. (B) Novel object recog-
nition; the y axis depicts the percentage of time spent exploring the novel
object; *P < 0.001 measured by one-way ANOVA. (C) Place recognition memory
recognition; the y axis depicts the percentage of time spent exploring the new
location of the familiar object; *P < 0.008 measured by one-way ANOVA. (D)
Impaired PPI; mice were exposed to presentation of pulse alone (120 dB) and
prepulse–pulse combinations across different prepulse intensities; for example,
p4 indicates pairing of the prepulse (4 dB above the background noise of 70 dB)
with the pulse alone (120 dB) (see the text for more details); the y axis displays
the percentage of PPI. (E) Impaired average PPI; the y axis displays the per-
centage of PPI; *P < 0.015 measured by post hoc test.
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exposure to ATCV-1 in both humans and mice was associated
with decrements in performance on tasks calling for visual spatial
abilities (Figs. 2 and 3). More detailed cognitive assessment of
humans and mice exposed to ATCV-1 might better define these
associations and the relationship between exposure to ATCV-1
and cognitive functioning.
There are several questions relating to ATCV-1 exposure in

humans that remain to be addressed. One concerns the source
of the acquisition of ATCV-1 in the virome. ATCV-1–like
viruses are common in inland waters such as those around Bal-
timore, so exposure to these water sources would be relatively
common. The factors involved in the acquisition of ATCV-1 in
the oropharynx following exposure will be the subject of addi-
tional investigations. ATCV-1 is the reference genome for the
SAG virus group, but we have previously sequenced 12 other
SAG viruses and there are 2–3 distinct clades (29). Therefore,
the exact nature of SAG viruses capable of colonizing the human
oropharynx and other mucosal sites is also an important subject
for future studies.
Another set of questions concerns the mechanisms by which

ATCV-1 might be associated with alterations in cognitive func-
tioning. Although the exact mechanisms of the behavioral changes
in the exposed host remain unclear, the observed cognitive deficits
are unlikely to be related to sickness behavior, as no overt signs of
malaise were noted in exposed mice. Similar to a number of other
microbial infections, we think that both direct and indirect effects
of pathogens could play a role (e.g., refs. 40–42). The finding of
alterations in several pathways involved in antigen processing
and immune cell functioning in the hippocampus of mice exposed
to ATCV-1 (Table S3 and Figs. S4–S6) suggests that immune
mechanisms may be involved, as have been documented in other
biological systems (43). We found evidence of an immune response
to ATCV-1 in about 35% of mice exposed to ATCV-1 when
measured 6 mo following a single exposure. Thus, our serological
and gene expression data implicate immune response to ACTV-1
as a mechanism underlying the cognitive deficits. It is conceivable
that immune activation produced secretion of proinflammatory
cytokines that affected neuronal functioning, leading to behavioral
abnormalities. In this context, both shared and unique profiles of
cytokine up-regulation have been shown for various microbial
infections (Borna virus vs. Toxoplasma), and it is plausible that
differential neurobehavioral outcomes of different microbial
infections may be at least in part explained by unique “sig-
natures” of cytokine expression (44).
Earlier blood samples were not obtained from this cohort of

mice to avoid affecting the behavioral tests. Further studies of the
kinetics of ATCV-1 infection and the immune response to in-
fection are thus warranted. Our studies document that ATCV-1 is
part of the human virome and is associated with cognitive changes
in humans and experimentally infected animals. An increased
understanding of the role of ATCV-1 and related viruses may lead
to a new understanding of the role of the oropharyngeal virome in
human health and cognition.

Materials and Methods
Studies in Humans.
Study population. The study cohort consisted of 92 individuals living in the Bal-
timore, Marylandmetropolitan area who did not have current or past psychiatric
disorders and who did not have a serious medical illness that would be likely to
affect cognitive performance. The overall characterization of the study pop-
ulation including the methods of recruitment and measures used for their
characterization was previously described (45). Control individuals were enrolled
after they were screened to rule out the presence of current or past psychiatric
disorders with the Structured Clinical Interview for Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition Axis I Disorders–Nonpatient Edition
(46). Participants also met the following criteria: proficient in English, no history
of i.v. substance abuse, absence of mental retardation, absence of HIV infection,
absence of a serious medical disorder that would affect cognitive functioning,
and no indication of alcohol or substance use disorder. Demographic data

including age, self-reported race, level of highest educational attainment, level
of maternal education, and current use of cigarettes were obtained from all
participants. All of the participants provided written informed consent following
explanation of the study goals and procedures. The study was approved by the
Institutional Review Boards of Johns Hopkins University and Sheppard
Pratt Hospital.
Clinical samples. Oropharyngeal samples were obtained by swabbing the back
of the throat using sterile cotton swabs (BBL Culture Swabs, Becton Dickinson).
On the day of collection, the swabs were transported from the collection site
to the processing laboratory at room temperature and then frozen until
processed further, as described below.
Cognitive testing.All of the participants underwent a battery of cognitive tests,
as previously described (45). These included the RBANS (47), Trails A (48), and
the Information subtest of the WAIS III (49). Details of these tests are de-
scribed in SI Materials and Methods.

Sample Processing. DNA was extracted from throat swabs using Qiagen’s
Gentra Puregene Buccal Cell Kit. The collection brush heads from the swab
ends were excised and incubated at 65 °C overnight in the kit cell lysis so-
lution. The manufacturer’s instructions were followed with some minor
changes to the protocol as follows: (i) During the isopropyl alcohol pre-
cipitation, 2 μL of 5 mg/mL linear acrylamide (Life Technologies), a chemically
synthesized reagent, was substituted for the glycogen carrier to minimize
possible contamination by reagents extracted from natural sources; (ii) fol-
lowing this precipitation step, incubation on ice was added for 15 min; (iii)
centrifugation following the 70% (vol/vol) ethanol wash was extended to 5 min
from 1 min; and (iv) final elution of DNA was reduced from 100 μL to 30 μL.

Metagenomic Sequencing. DNA samples from 33 individuals (two in-
dependent experiments with 17 and 16 individuals) were analyzed by met-
agenomic sequencing. The demographic information on these individuals is
reported in Table S1A. The method used for sequencing is detailed in SI
Materials and Methods.

qPCR Analysis. Oropharyngeal samples from a larger set of individuals (n = 92)
were tested by a qPCR system. These individuals included the 33 individuals
evaluated by the initial metagenomic sequencing method. The demographic
information related to these individuals is presented in Table S1B. The method
of sample collection and DNA extraction was identical to that used in the met-
agenomic sequencing. The qPCR was performed using the 5′–3′ exonuclease
activity of Thermus aquaticus polymerase (Taqman) (50). Target primers were
directed at the portion of the genome encoding ATCV-1 protein Z100L. This
target region was selected because the primers did not have appreciable ho-
mology with any other viruses, bacteria, or eukaryotic organisms.

The method used for the Taqman assay was as follows: A 20× assay mix
was made using forward primer 5′-GCA ATT CCG ATA GTA ATG GTC A-3′,
reverse primer 5′- CTT GTT TGG CCT TTC ACA AA-3′, and probe /56-FAM/AG
TAA ACC CAC ACC CTT TGG TAG CCA /36-TAMSp/ containing 18-μM primers
and a 4-μM probe. A 20-μL reaction volume was used using 10 μL of 2× Gene
Expression Master Mix (Applied Biosystems) and 1 μL of the 20× assay mix
with the remaining volume consisting of input DNA and sterile water. The
qPCR reaction profile consisted of one cycle of 10 min at 95 °C followed by
45 cycles of 15 s at 95 °C and 1 min at 60 °C. Reactions were performed in
a Stratagene Mx3005P Thermocycler (Agilent Technology). Results were
quantified with a standard curve generated from the testing of 10-fold
dilutions of a plasmid created to contain the target. Testing of this standard
curve indicated that 10 copies of ATCV-1 DNA could be reliably detected in
the qPCR reaction. A sample, which contained ≥10 copies of ATCV-1 geno-
mic DNA, was considered to contain ATCV-1 DNA. DNA extracted from re-
lated chloroviruses PBCV-1 and CVM-1 (13, 29) and human DNA did not
produce products with this assay.

Statistical Analysis of Virome Studies. The demographic correlates for the
presence of ATCV-1 DNA were calculated by χ2 analysis for categorical
variables such as sex, race, cigarette smoking, history of travel outside of
North America, and place of birth and by two-way analysis of variance for
continuous variables such as age, level of education, BMI score, and ma-
ternal education, the latter being used as a marker of socioeconomic status
(51). Individual performances on the cognitive tests described above were
further compared with the performance of individuals who did or did not
have detectable ATCV-1 genomes in their pharynx using linear regression
models incorporating the covariates of age, sex, race, educational level, ma-
ternal education, cigarette smoking, and place of birth. Logistic regression
models were used to calculate the odds ratios, which define the association
between the presence of ATCV-1 DNA in the throat with low performance on
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the cognitive tests as defined above, using the same covariates that were used
in the linear regression models. To have adequate statistical power, analyses of
cognitive functioning were only performed on the larger cohort (n = 92), on
whom ATCV-1 DNA was detected by the qPCR method described above.

Mouse Model of Infection. Animal model studies were performed to de-
termine the effect of ATCV-1 exposure via the oral route on cognition and
other behaviors. The conditions of viral growth and mouse inoculation
were determined by a set of preliminary experiments. All protocols were
approved by the Animal Care and Use Committee at Johns Hopkins
University.

A total of 50 C57BL/6 male and female mice (Charles River Laboratories)
were used to evaluate the effect of ATCV-1 exposure on cognition and
behavior. Mice were housed five per cage (28.3 cm length × 17.4 cm
width × 13 cm height) unless separated due to fighting. Animals had free
access to food and water at all times. Mice were inoculated at 9–11 wk of
age, as described below.

Exposure to ATCV-1. C. heliozoae host algae were either uninfected (C. heliozoae
control) or infected with ATCV-1 at a multiplicity of infection of 10 PFU per cell

for 5 h (C. heliozoae/ATCV-1), pelleted (3,800 × g × 5 min, 4 °C), and then
resuspended in 0.4× PBS. Mice were gavaged with 0.2 mL of either
C. heliozoae/ATCV-1 (n = 30) or C. heliozoae control preparations con-
taining ∼4 × 107 cells (n = 20), with both groups equally divided between
males and females.

The tests used to monitor the behavior of the mice exposed to ATCV-1, as
well as the procedures used for RNA extraction, microarray analysis, data
normalization and statistical analysis for microarray transcriptomics,
pathway analysis, and measurement of antibodies to ATCV-1 and related
chloroviruses in mouse blood samples are described in SI Materials
and Methods.
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