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Dynamic regulation of phosphoinositide lipids (PIPs) is crucial for
diverse cellular functions, and, in neurons, PIPs regulate mem-
brane trafficking events that control synapse function. Neurons
are particularly sensitive to the levels of the low abundant PIP,
phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], because muta-
tions in PI(3,5)P2-related genes are implicated in multiple neu-
rological disorders, including epilepsy, severe neuropathy, and
neurodegeneration. Despite the importance of PI(3,5)P2 for neural
function, surprisingly little is known about this signaling lipid
in neurons, or any cell type. Notably, the mammalian homolog of
yeast vacuole segregation mutant (Vac14), a scaffold for the PI(3,5)P2
synthesis complex, is concentrated at excitatory synapses, sug-
gesting a potential role for PI(3,5)P2 in controlling synapse function
and/or plasticity. PI(3,5)P2 is generated from phosphatidylinositol
3-phosphate (PI3P) by the lipid kinase PI3P 5-kinase (PIKfyve). Here,
we present methods to measure and control PI(3,5)P2 synthesis in
hippocampal neurons and show that changes in neural activity
dynamically regulate the levels of multiple PIPs, with PI(3,5)P2
being among the most dynamic. The levels of PI(3,5)P2 in neu-
rons increased during two distinct forms of synaptic depression,
and inhibition of PIKfyve activity prevented or reversed induc-
tion of synaptic weakening. Moreover, altering neuronal PI(3,5)P2
levels was sufficient to regulate synaptic strength bidirectionally,
with enhanced synaptic function accompanying loss of PI(3,5)P2
and reduced synaptic strength following increased PI(3,5)P2 levels.
Finally, inhibiting PI(3,5)P2 synthesis alters endocytosis and recycling
of AMPA-type glutamate receptors (AMPARs), implicating PI(3,5)P2
dynamics in AMPAR trafficking. Together, these data identify
PI(3,5)P2-dependent signaling as a regulatory pathway that is critical
for activity-dependent changes in synapse strength.
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Phosphorylated phosphoinositide lipids (PIPs) regulate di-
verse cellular processes (reviewed in refs. 1, 2). These seven

interconvertible PIP species are synthesized and turned over by
highly regulated lipid kinases and phosphatases. PIPs likely as-
semble complex protein machines on membrane subdomains
through binding of specific downstream protein effectors, which
provides tight spatial and temporal control of cellular processes.
Such precision is likely critical for complex cellular functions,
including regulation of synaptic strength in the CNS.
Pleiotropic defects are associated with impairments in phos-

phatidylinositol 3,5-bisphosphate [PI(3,5)P2] synthesis (reviewed
in ref. 3). Mutations in FIG4, the gene that encodes a positive
regulator of PI(3,5)P2 (4–10), are linked to several neurological
disorders, including Charcot–Marie–Tooth type 4J (CMT4J)
(4, 11), ALS, and primary lateral sclerosis (12), familial epi-
lepsy with polymicrogyria (13) and Yunis–Varón syndrome
(14). Little is known about how perturbations in PI(3,5)P2
synthesis cause disease.
Fig4 is a member of a protein complex that includes the

phosphatidylinositol 3-phosphate (PI3P) 5-kinase (PIKfyve; Fab1 in
yeast) (10, 15–18) and the scaffolding protein Vac14 (8, 9, 19–22)
(Fig. S1). PIKfyve provides the sole source of PI(3,5)P2 (10, 15,

17, 23–28). The pools of PI3P that are converted to PI(3,5)P2
may derive from the class III PI 3-kinase VPS34 (29) and/or
the class II PI 3-kinase C2α (30). In vivo, depletion of PIKfyve
affects both PI(3,5)P2 and PI5P pools (10, 21, 24, 28). Identifi-
cation of PI(3,5)P2 and PI5P protein effectors will likely reveal
specific roles for each lipid.
The ability to control PI(3,5)P2 levels dynamically in mam-

malian cells is likely crucial for cellular function. In yeast,
hyperosmotic stress transiently increases and decreases PI(3,5)P2
levels (6, 31). Similarly, in multicellular organisms, diverse
external cues, such as hormones, growth factors, or neuro-
transmitters, may lead to dynamic regulation of PI(3,5)P2 levels.
Indeed, analysis of the CMT4J disease mutation Fig4-I>T in
yeast showed an impairment in stimulus-induced PI(3,5)P2 syn-
thesis without an effect on basal PI(3,5)P2 levels (4). In cultured
cortical neurons, knockdown of PIKfvye impairs the internali-
zation of an AMPA-type glutamate receptor (AMPAR) subunit,
HA-tagged GluA2 (32), and loss of Vac14 and/or Fig4 is asso-
ciated with strengthened synapses (33). Together, these findings
suggest that Vac14 and Fig4 regulate synapse strength via posi-
tive regulation of PIKfyve.
Here, using multiple approaches, we show that PIKfyve kinase

activity negatively regulates postsynaptic strength and plays special-
ized roles during two distinct forms of synaptic weakening. Chronic
down-regulation of PIKfyve activity using shRNA increases
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postsynaptic strength, whereas brief chemical inhibition of PIKfyve
blocks NMDA receptor (NMDAR)-dependent long-term de-
pression (LTD) and reverses homeostatic synaptic weakening
(downscaling). Notably, we developed methods to measure the
activity-dependent changes in each PIP species in cultured hip-
pocampal neurons and identified that two low abundant PIPs,
PI(3,4,5)P3 and PI(3,5)P2, are highly dynamic during LTD. More-
over, PI(3,5)P2 levels increase during homeostatic downscaling,
and increasing PI(3,5)P2 via a dominant-active PIKfyve mutant
(PIKfyveKYA) is sufficient to weaken postsynaptic strength. We
further show that these effects on synapses derive, in part, from
PI(3,5)P2-dependent trafficking of AMPARs. Together, these
findings demonstrate that PIKfyve lipid kinase activity plays a
critical role in regulation of synapse strength.

Results
PIKfyve Is a Regulator of Synapse Strength. Genetic deletion of
Vac14 and/or Fig4, positive regulators of PI(3,5)P2 synthesis,
leads to increased basal strength of excitatory synapses (33).
These results raise the possibility that Vac14 and/or Fig4 has an
impact on synapse function through its known role as a regulator
of PIKfyve activity. To determine whether PIKfyve is a regu-
lator of synapse strength, we knocked-down PIKfyve in mouse

hippocampal cultured neurons using lentiviral expression of
PIKfyve-targeting shRNA and compared miniature excitatory
postsynaptic currents (mEPSCs) of shRNA-expressing neurons
with sham or nontargeting controls. One week postinfection,
PIKfyve shRNA causes small vacuoles to appear, a phenotypic
hallmark of reduced PI(3,5)P2 levels (16, 21, 28, 34, 35). We
found that the amplitude of mEPSCs in PIKfyve shRNA-trans-
duced neurons is significantly higher than sham or nontargeting
control neurons (Fig. 1 A and B). Thus, loss of PIKfyve reca-
pitulates the enhancement of postsynaptic strength observed
following genetic deletion of Vac14 or Fig4.
The finding that Vac14 is concentrated at excitatory synapses

(33) suggests that PIKfyve is localized to excitatory synapses as
well. Current antibodies are not suitable for immunofluores-
cence of endogenous PIKfyve. To test PIKfyve localization di-
rectly, neurons were cotransfected with HA-tagged PIKfyve and
mCherry. Neurons were then stained for HA as well as vesicular
glutamate transporter 1 (vGLUT1), the latter of which is a
marker for excitatory presynaptic terminals. HA-PIKfyve puncta
were found throughout the cell body and dendrites. To quantify
the number of synapses with HA-PIKfyve nearby, the number
of vGLUT1 puncta that overlap with HA-PIKfyve was coun-
ted in the first 55-μm segment of the dendrite. HA-PIKfyve
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Fig. 1. PIKfyve activity regulates synaptic responses. (A) Representative mEPSC recordings from WT mouse neurons 1 wk after lentiviral transduction with
vehicle control (sham), nontargeting control shRNA, or PIKfyve shRNA. (B) Mean (±SEM) mEPSC amplitude. Knocking down PIKfyve increased mEPSC am-
plitude [sham: 12.73 ± 0.40 pA, control shRNA: 11.63 ± 0.35 pA, PIKfyve shRNA: 17.11 ± 0.77 pA; one-way ANOVA: F(2,39) = 29.00, P = 1.9 × 10−8]. (C)
Representative confocal image showing HA-PIKfyve in proximity to excitatory synapses. Neurons were transfected with mCherry and HA-PIKfyve before fixing
and staining for HA-PIKfyve and presynaptic glutamatergic terminals (vGLUT1). HA-PIKfyve is found inside (Top) and at the base (Bottom) of spines with an
opposed presynaptic terminal. (D) Representative Western blots depicting doxycycline-dependent induction of 3× FLAG control, 3× FLAG-Citrine-PIKfyve
(Top) or 3× FLAG-Citrine-PIKfyveKYA (Bottom) in stable cell lines (HEK 293). Cells were induced for 0, 8, or 24 h before lysis and analyzed by Western blot.
Immunoblotting for PIKfyve shows two bands, consistent with detection of endogenous PIKfyve and 3× FLAG-Citrine-PIKfyve or 3× FLAG-Citrine-PIKfyveKYA.
(E) Mean (±SEM) PIP levels relative to total PI. Induction of 3× FLAG-Citrine-PIKfyveKYA for 24 h increases PI(3,5)P2 and PI5P levels [PI(3,5)P2: 3× FLAG: 0.022 ±
0.001%, 3× FLAG-Citrine-PIKfyve: 0.025 ± 0.002%, 3× FLAG-Citrine-PIKfyveKYA: 0.093 ± 0.005%; one-way ANOVA: F(2,7) = 105.44, P = 5.9 × 10−6]. [PI5P: 3×
FLAG: 0.102 ± 0.011%, 3× FLAG-Citrine-PIKfyve: 0.082 ± 0.011%, 3× FLAG-Citrine-PIKfyveKYA: 0.185 ± 0.012%; one-way ANOVA: F(2,7) = 21.63, P = 0.001]. (F)
Representative recordings from cultured rat hippocampal neurons [21 days in vitro (DIV)] transfected at DIV14 with Citrine-PIKfyve or Citrine-PIKfyveKYA.
untrans., untransfected. (G) Mean (±SEM) mEPSC amplitude of untransfected and transfected neurons expressing Citrine-PIKfyve or Citrine-PIKfyveKYA.
PIKfyveKYA expression decreased mEPSC amplitude [untransfected: 17.75 ± 0.78 pA, Citrine-PIKfyve: 17.14 ± 1.16 pA, Citrine-PIKfyveKYA: 12.65 ± 0.43 pA; one-
way ANOVA: F(2,31) = 17.32, P = 0.0005]. *P < 0.05.
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puncta were detected at 39.6 ± 4.7% of the putative synapses
(Fig. 1C and Fig. S2). Thus, PIKfyve is well positioned to reg-
ulate excitatory synapse strength.

Increasing PIKfyve Activity Causes Synaptic Depression. The in-
volvement of PIKfyve and other components of the PI(3,5)P2
synthesis complex in regulating synapse strength suggests that
PI(3,5)P2 functions as a negative regulator of synaptic efficacy.
Hence, we tested whether increasing PIKfyve activity has the
opposite effect on synapse strength. A common approach for
increasing the levels of specific metabolites in cells is to over-
express the enzyme required for their synthesis. In yeast, over-
expression of Fab1, the homolog of mammalian PIKfyve, is
insufficient to increase PI(3,5)P2 levels (15). To test the effect of
overexpressing PIKfyve in mammalian cells, we generated two
doxycycline-inducible stable cell lines using the Flp-In T-Rex-293
System (Invitrogen) with 3× FLAG-Citrine-PIKfyve or 3× FLAG
for a control. This strategy was necessary to titrate the amount of
expression. By Western blot, induction for 24 h yielded a robust
increase in expression of 3× FLAG-Citrine-PIKfyve to ∼16-fold
above the level of endogenous PIKfyve (Fig. 1D). Despite this
strong overexpression, PI(3,5)P2 levels did not change (Fig.
1E). Thus, similar to overexpression of yeast Fab1, overexpres-
sion of PIKfyve in mammalian cells is insufficient to increase
PI(3,5)P2 levels.
Dominant mutations in yeast Fab1 have been identified that

cause a several-fold elevation in PI(3,5)P2 (6). Two of these
mutants, Fab1-E1822K,N1832Y and Fab1-E1822V,F1833L,
T2250, are mutated in conserved residues (Fig. S3), which sug-
gests that dominant-active mammalian PIKfyve mutants can
be generated. Indeed, we found that induction of PIKfyveKYA

(E1620K, N1630Y, S2068A) mutant protein to levels fourfold
above endogenous PIKfyve increased PI(3,5)P2 approximately
fourfold (Fig. 1E). PIKfyve is required for most of the PI5P pools
as well (10, 21, 24, 27), likely because PI(3,5)P2 is the major
precursor to PI5P (10). We found a twofold increase in PI5P
levels in PIKfyveKYA-expressing cells (Fig. 1E), which is consis-
tent with a precursor–product relationship. Unexpectedly, we
found that the levels of PI(3,4,5)P3 are reduced by ∼25% in
PIKfyveKYA-expressing cells (Fig. 1E). Although there is cur-
rently no known connection between PI(3,5)P2 synthesis and
PI(3,4,5)P3, potential links have not been tested directly.
To test the impact of increasing PIKfyve activity on synapse

function, postnatal rat cultured hippocampal neurons were
transfected with Citrine-PIKfyveKYA or WT Citrine-PIKfyve,
and the amplitude of mEPSCs in transfected neurons was com-
pared with untransfected neighbors. Whereas overexpression of
Citrine-PIKfyve in neurons does not have an impact on synapse
function (Fig. 1 F and G), the amplitude of mEPSCs recorded in
Citrine-PIKfyveKYA

–expressing neurons is significantly reduced
(Fig. 1 F and G). These results suggest that elevated levels of
PI(3,5)P2 negatively regulate postsynaptic strength. Although
a number of neurological diseases have been linked to decreased
PI(3,5)P2 synthesis and synaptic dysfunction, it is possible that
mutations that activate PIKfyve may also contribute.

Neural Activity Dynamically Regulates PIP Levels. PIPs play essential
roles in cellular events important for Hebbian and homeostatic
forms of synaptic plasticity. For example, PI(4,5)P2 regulates
endocytosis, exocytosis, actin dynamics, and ion channel func-
tion (36–43). PI(3,4,5)P3 clusters membrane proteins both pre-
synaptically (44) and postsynaptically (45), and postsynaptic
strength is diminished by increased turnover of PI(3,4,5)P3 by
the lipid 3-phosphatase, PTEN (46). These highly dynamic
processes strongly imply that PIP metabolism is regulated by
neural activity.
Detection of PIP species in cultured neurons. To assess activity-
dependent changes in PIP levels in neurons, we adapted methods

designed for fibroblasts to cultured rat hippocampal neurons.
Neuronal cultures were metabolically labeled with myo-[2-3H]-
inositol for 24 h. Cells were precipitated by perchloric acid, and
the resultant precipitate was treated with weak base to deacylate
lipids. Following deacylation, water-soluble glycerol-inositol poly-
phosphates were separated by chromatography on an ion ex-
change column. In cultured hippocampal neurons at 21 days in
vitro, peaks representing all seven PIP species were observed,
including PI(3,5)P2 and PI5P (Table S1). We do not report the
levels of PI(3,4)P2, which were observed in some samples but
were often below the level of detection (<0.01% of PI). Com-
pared with mouse embryonic fibroblasts (10), neurons have
fivefold more PI4P, threefold more PI(4,5)P2, slightly more
PI(3,4,5)P3, and half the levels of PI(3,5)P2 (Table S1). The high
levels of PI4P and PI(4,5)P2 are likely due to the extensive
plasma membrane, endoplasmic reticulum (ER), and abundance
of somatic and dendritic Golgi in neurons.
Induction of chemical LTD dynamically regulates PIP levels. To examine
how PIP levels change during synaptic plasticity, we measured
PI(3,5)P2 and other PIP levels during induction of NMDAR-
dependent chemical LTD (cLTD) using an established NMDAR-
cLTD induction protocol (47, 48). We analyzed five time points
during the stimulus (30 s, 1 min, 2 min, 3 min, and 5 min), and the
levels of PIPs were compared with sister cultures without stimu-
lation (0 min) (Fig. 2A). We found dynamic changes in the levels
of multiple PIPs (Fig. 2B). Two of the most abundant PIPs, PI4P
and PI(4,5)P2, as well as PI5P, did not show consistent changes
during cLTD stimulation. On the other hand, we found that the
cLTD stimulus induced significant changes in three other PIPs.
PI(3,4,5)P3 levels increased ∼50% within 30 s. In the first 3 min,
PI(3,5)P2 rose rapidly and then returned to baseline levels within 5
min. Consistent with a transient elevation in PI(3,5)P2 levels, PI3P
levels were initially stable and then dropped by ∼20%. Note that
although the cLTD stimulus is associated with a rapid increase in
both PI(3,4,5)P3 and PI(3,5)P2, we found that expression of Cit-
rine-PIKfyveKYA, which also causes synaptic weakening, is associ-
ated with a reduction in PI(3,4,5)P3 and elevation in PI(3,5,)P2
levels (Fig. 1E). Thus, induction of cLTD involves dynamic
changes in multiple PIPs. The transient increase in PI(3,5)P2
during induction of cLTD suggests that PIKfyve activity may
be increased during the stimulus.
PIKfyve inhibition blocks induction of cLTD. To test for a causal role
for PIKfyve activity during induction of cLTD, we acutely inhibited
PIKfyve kinase activity. One of the most widely used PIKfyve
inhibitors is YM201636 (35). Recently, the small molecule api-
limod was identified as a potent PIKfyve inhibitor (49). The
potential for an off-target effect of YM201636 on Akt signaling
(50) prompted us to examine the levels of PI(3,4,5)P3, a positive
regulator of Akt, following PIKfyve inhibition with 1.6 μM
YM201636 (Fig. S4 A and B). We also analyzed the change in
levels of each PIP in response to 1 μM apilimod (Fig. S4 C and
D). Note that a time course of changes in PIP levels following
YM201636 inhibition of PIKfyve was reported previously (10),
but the PI(3,4,5)P3 levels were not included. Consistent with
both molecules acting as PIKfyve inhibitors, the level of the
PIKfyve product PI(3,5)P2 rapidly decreases within minutes of
treatment with YM201636 or apilimod (Fig. S4 B and D). Due to
the interconvertibility of PIPs, in addition to a reduction in
PI(3,5)P2, PIKfyve inhibition is expected to result in a concomi-
tant accumulation of the PIKfyve substrate PI3P and reduction
in PI5P, a product of PI(3,5)P2 (Fig. S4 B and D). Notably,
1.6 μM YM201636, but not 1 μM apilimod, produced a 50%
decrease in the level of PI(3,4,5)P3 within 5 min of treatment.
To determine whether PIKfyve activity is required during

cLTD, neurons were treated with 2 μM YM201636 or 1 μM
apilimod for 2.5 min before and during the 5-min cLTD stimulus
(7.5 min total). Neurons were then returned to media without
PIKfyve inhibitors for an additional 30 min before electrophys-
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iological recordings. As expected, the cLTD stimulus decreases
mEPSC amplitude in the absence of PIKfyve inhibitors (Fig. 2 C
and D). By contrast, the presence of apilimod or YM201636
during the 5-min cLTD stimulus prevented induction of en-
during synaptic depression (Fig. 2 C and D). Thus, during
induction of cLTD, PIKfyve activity is necessary for sustained
synaptic weakening.
PIP levels are regulated by prolonged changes in neural activity. To
identify PIP species that dynamically respond to changes in
network activity, we compared PIP levels in spontaneously active
neuronal cultures with neuronal cultures treated with either
2 μM TTX for 10 min (to block action potentials) or 50 μM
bicuculline for 1 min (to enhance firing by removing inhibitory
tone) (Fig. 3A). Comparison of each PIP level with the levels in
control samples from basally active neural cultures demonstrates
that these acute manipulations in activity do not have a signifi-
cant impact on PIP levels.
Chronic suppression or elevation in network activity is known

to engage homeostatic synaptic control mechanisms that strengthen
or weaken synapses, respectively. This ability to adapt to persistent
changes in network activity through compensatory changes in syn-
apse function is important for neurons to maintain levels of activity
in a stable range (51). Notably, the levels of PI(3,5)P2 significantly
increased after 24 h of bicuculline-induced hyperactivation (Fig. 3B).
In contrast, following 24 h of activity suppression with TTX, the
levels of both PI4P and PI(4,5)P2 decreased (Fig. 3B).

To test for changes in PI(3,5)P2 independently and determine
whether there are specific subcellular locations where its synthesis
occurs during homeostatic downscaling, we monitored a fluores-
cent probe for PI(3,5)P2 under periods of normal or hyperactive
network activity. The reporter (mCherry-ML1N*2) is mCherry
fused to a tandem duplication of the PI(3,5)P2 binding domain of
the cytosolic N-terminal polybasic domain (ML1N) of transient
receptor potential mucolipin1 (TRPML1) and has been vali-
dated previously (52). We found that relative to conditions of
basal neural activity, chronic hyperactivity induced by bicuculline
produced a robust increase in dendritic reporter intensity (Fig. 3
C and D). To normalize for differences in expression levels, we
analyzed the average intensity of mCherry-ML1N*2 in the den-
drite relative to the soma and found network hyperactivation
increased this ratio. These data are consistent with the increased
PI(3,5)P2 levels detected by HPLC following homeostatic syn-
aptic weakening (Fig. 3B) and suggest that a component of the
rise in PI(3,5)P2 level is due to new synthesis in dendrites during
synaptic depression. The changes in PI4P and PI(4,5)P2 are
potentially interesting as well, and analysis of these species in
future studies may shed light on mechanisms governing ho-
meostatic synaptic strengthening.

PIKfyve Activity Is Required for Homeostatic Synaptic Weakening.
The observations that PI(3,5)P2 levels are elevated after prolonged
hyperactivation with bicuculline and, conversely, that basal synapse
strength is elevated in PI(3,5)P2-deficient neurons (33) suggest that
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PIKfyve activity may be important for homeostatic synaptic weak-
ening. We first tested whether Vac14−/− on a C57BL/6J background
shares the elevation in synapse strength observed in a “mixed”
background (strain 129 and C57BL/6J) (33) and found that the
amplitude of mEPSCs is increased in Vac14−/− relative to WT
neurons in a C57BL/6J background (Fig. 4 A and B). Then, we in-
duced prolonged increases or decreases in the level of neural activity
and monitored synaptic strength by measuring the amplitude of
mEPSCs. To test whether homeostatic plasticity was altered in
Vac14−/− neurons, we incubated neurons with 2 μM TTX or 50 μM
bicuculline for 24 h. As expected, WT neurons exhibited an increase
in mEPSC amplitude following chronic activity deprivation with
TTX. Vac14−/− neurons, despite larger basal mEPSC ampli-
tudes, exhibited homeostatic synaptic strengthening that was
indistinguishable from WT neurons (Fig. 4 A and C). On the
other hand, whereas chronically increasing network activity
induced a significant decrease in mEPSC amplitude in WT
neurons, Vac14−/− neurons failed to downscale synaptic strength

homeostatically (Fig. 4 A and C). Together, these data suggest
that Vac14 is required for homeostatic downscaling but not
for homeostatic upscaling, which fits with multiple studies that
suggest these two processes are controlled by independent
mechanisms (reviewed in refs. 53–58).

Acute PIKfyve Inhibition Reverses Established Homeostatic Changes
in Synaptic Strength. Unlike cLTD induction, homeostatic down-
scaling is associated with a persistent increase in PI(3,5)P2 levels
(Fig. 3 B and D) during a time at which compensatory synaptic
adaptations have already been established (59–63). Given that
Vac14−/− neurons fail to express homeostatic synaptic down-
scaling in response to hyperexcitation (Fig. 4C) and that eleva-
tion of PIKfyve activity leads to reductions in excitatory synaptic
strength (Fig. 1 F and G), we hypothesized that the changes in
PI(3,5)P2 following chronic hyperactivity play a direct role in
maintaining synaptic depression. In agreement with this hy-
pothesis, we found that knocking down PIKfyve using shRNA
similarly prevents the weakening of synapses following 24 h of
treatment with bicuculline (Fig. 5 A and B). If PIKfyve activity is
required for maintaining synaptic depression, then acute blockade
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of PI(3,5)P2 synthesis may be sufficient to reverse homeostatic
downscaling rapidly after it has been established. To test this
prediction, we acutely blocked PI(3,5)P2 production with 1 μM
apilimod or 2 μM YM201636 in cultured rat hippocampal neu-
rons for 1 h after a 23-h period of basal (control) or elevated
(bicuculline) activity. Under control conditions, neither 1 h of

apilimod nor 1 h of YM201636 significantly increased mEPSC
amplitude, although there was a trend toward an increase with
apilimod (Fig. S5). Thus, brief inhibition of PIKfyve activity may
predispose synapses toward an increase in function. Notably,
when neurons were treated for the previous 23 h with bicuculline
to induce homeostatic synaptic weakening, PIKfyve inhibition by
either apilimod or YM201636 completely reversed downscaling
of mEPSC amplitude within 1 h (Fig. 5 C and D). Together,
these data suggest that the maintenance of synaptic adaptations
induced by network hyperactivity requires PIKfyve activity.
AMPARs are the predominant mediator of fast neurotrans-

mission in the CNS, and AMPAR trafficking is critical for
many enduring forms of synaptic plasticity (64, 65). Although no
direct interaction has been demonstrated between PI(3,5)P2 and
AMPARs, multiple groups have found that AMPAR trafficking
is sensitive to PIKfyve activity (32, 33, 66). Because bidirectional
regulation of AMPAR surface expression is a signature of
homeostatic synaptic plasticity, where prolonged hyperactivity
reduces surface levels of AMPAR subunits GluA1 and GluA2
(59, 63, 67–70), we tested whether PIKfyve inhibition following
induction of homeostatic synaptic depression has an impact on
surface AMPAR levels. Surface GluA2 (sGluA2) subunits
were detected with an amino-terminal antibody under non-
permeabilization conditions, followed by permeabilization and
detection of the excitatory synaptic scaffolding molecule post-
synaptic density 95 (PSD-95). Consistent with previous reports,
sGluA2 expression is significantly reduced during homeostatic
downscaling induced by 24 h of bicuculline treatment (Fig. 5 E
and F). We also found that this period of hyperactivity did not
have an impact on the total levels of PSD-95 (Fig. S6 A and B),
consistent with previous results from hippocampal neurons
(63, but see ref. 71). Notably, sGluA2 expression in bicuculline-
treated neurons was restored to baseline levels by PIKfyve in-
hibition for 1 h with either YM201636 or apilimod (Fig. 5 E
and F). Although 1 h of apilimod treatment reversed sGluA2
expression during network hyperactivation (Fig. 5 E and F), the
same course of apilimod treatment did not alter sGluA2 ex-
pression under basal conditions (Fig. S6 C and D). However, 1 h
of YM201636 treatment was effective in increasing sGluA2 in
control neurons (Fig. S6 C and D), suggesting that 1 h of PIKfyve
inhibition likely favors enhanced surface expression of AMPARs
even under basal levels of activity. Nevertheless, the reversal of
synaptic downscaling by both PIKfyve inhibitors suggests that the
increase in PI(3,5)P2 levels during network hyperactivation plays
a direct role in maintaining weakened synaptic strength via effects
on surface AMPAR dynamics.

AMPAR Trafficking at the Plasma Membrane Is Sensitive to PIKfyve
Activity. PI(3,5)P2 likely regulates multiple endosomal functions
via interactions with specific downstream protein effectors.
However, the diversity of membranes on which PI(3,5)P2 is
synthesized and the identity of most PI(3,5)P2 binding proteins
are largely unknown. To test whether PIKfyve associates with
membranes involved in AMPAR trafficking, we cotransfected
neurons with HA-PIKfyve and GFP and measured the degree
of colocalization of HA-PIKfyve puncta in the first 55 μm of
dendrites with a marker of early endosomes, early endosome
antigen 1 (EEA1). We observed punctate HA-PIKfyve in the
soma and dendrites of cultured pyramidal neurons (Fig. S7A).
HA-PIKfyve puncta were observed both inside (Fig. S7B) and
at the base (Fig. 6A) of dendritic spines, and 44.7 ± 1.6% HA-
PIKfyve puncta colocalize with EEA1 (Fig. S7C). The pro-
portion of HA-PIKfyve puncta that colocalize with EGFP-
LAMP1, a late endosome/lysosomal marker, is lower (28.7 ±
2.6%; Fig. S7 D and E); thus, PIKfyve in dendrites is found with
both early and late endosomes/lysosomes.
Following endocytosis, AMPARs are known to traverse through

EEA1-positive endosomes, after which receptors may recycle
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way ANOVA: F(3,224) = 11.16, P = 7.5 × 10−7]. *P < 0.05.
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back to the plasma membrane or remain internalized. Locali-
zation of HA-PIKfyve to early endosomal compartments sug-
gested that this subcellular compartment may be where PI(3,5)P2
synthesis has a direct impact on AMPAR trafficking. Thus,
we tested whether PIKfyve activity is required for constitutive
and regulated AMPAR trafficking using exogenously expressed
AMPAR subunits tagged with the pH-sensitive GFP variant
pHluorin, pH-GluA1, or pH-GluA2(Q). pHluorin is fluores-
cent at neutral pH and is quenched in acidic environments.
Thus, changes in the abundance of surface-exposed pH-GluAs can
be detected as a change in fluorescence intensity. Note that we
used pH-GluA2(Q) to minimize contamination from the ER (72).
Initially, we tested the effect of acute PIKfyve inhibition on

steady-state fluorescence and found no change compared with
baseline intensity. To widen the scope of this analysis, neurons
were treated for 1 h with YM201636 or apilimod and then
stimulated with 20 μM NMDA to drive endocytosis of AMPAR
in the continuous presence of inhibitors. Of note, this NMDA
stimulation does not lead to persistent loss of AMPARs, as in
the case of cLTD, but rather drives a transient loss of surface
receptors through endocytosis that is restored over time by
recycling back to the plasma membrane. Indeed, although 5 min

of NMDA stimulation strongly decreased pHluorin fluorescence
by ∼60%, surface fluorescence slowly reappeared over the next
45 min due to recycling of AMPARs back to the cell surface
(Fig. 6B). We found that PIKfyve inhibition specifically en-
hanced the recovery rate of pH-GluA2(Q) fluorescence (Fig. 6 B
and C) yet had no detectable impact on the dynamics of
pH-GluA1 (Fig. 6D and Fig. S8). Subunit-specific trafficking of
AMPAR has been observed previously in a variety of contexts
(67, 73–77). Of particular relevance, coordinate loss of sGluA1
and sGluA2 during slow homeostatic downscaling requires sub-
unit-specific trafficking events controlled by the GluA2 subunit
(78, 79). Thus, our results are consistent with the idea that
PIKfyve activity has a selective impact on the GluA2 subunit to
control the surface expression of AMPARs.
To determine whether the effects of PIKfyve inhibition on pH-

GluA2(Q) dynamics reflect a role for PIKfyve in native AMPAR
trafficking, we measured surface abundance of endogenous
GluA2 using immunocytochemistry. Using NMDA stimulation
to drive endocytosis of AMPAR, we determined the ratio
of surface GluA2 to internal GluA2 using an aminoterminal
antibody without or with permeabilization, respectively. In
control neurons, NMDA stimulation for 5 min reduced the
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ratio of surface GluA2 to internal GluA2, but pretreatment
with apilimod for 1 h blocked this NMDA-induced decrease
(Fig. 7 A and B). Thus, PIKfyve activity may contribute to GluA2
endocytosis. Alternatively, given that this NMDA regimen induces
only a transient loss of surface AMPARs, these effects could reflect
a situation where inhibition of PIKfyve results in a rapid return of
internalized receptors to the surface.
To determine whether PIKfyve activity has additional roles

in GluA2 trafficking beyond the acute response to NMDA
stimulation, we limited PIKfyve inhibition to time points after
NMDAR activation. Neurons were first stimulated with NMDA
for 5 min without PIKfyve inhibition and then incubated with
1 μM apilimod for 10 or 30 min. In control neurons, the intensity
of sGluA2 after NMDA stimulation compared with unstimulated
sister cultures remained decreased at the 10-min time point but
returned to basal levels by 30 min (Fig. 7 C and D). By contrast,
inhibition of PIKfyve after NMDA stimulation resulted in the
rapid return of sGluA2 to baseline levels within 10 min and
sGluA2 expression remained stable at the 30-min time point.
Together, these results suggest that a target of PIKfyve activity is
the GluA2 subunit of AMPARs and that PIKfyve inhibition has
an impact on multiple AMPAR trafficking steps, which collec-
tively result in enrichment of AMPARs on the cell surface. Thus,
PIKfyve activity is important for GluA2 trafficking during NMDA
stimulation and then continues to play a critical role in the sub-
sequent membrane trafficking of AMPARs during the recycling
of internalized receptor pools.

Discussion
PIPs play crucial roles in membrane trafficking and cell signaling
in eukaryotic cells. Despite their clear biological significance, the
pathways that are regulated by these lipids are largely unknown.
This lack of knowledge is especially true in neurons, where activity-
dependent regulation of PIPs is poorly understood. In this work,
we determined that PIKfyve lipid kinase activity plays a regula-
tory role at synapses and that PI(3,5)P2 is a downstream effector
of neural activity (Fig. S9). PIKfyve activity drives synaptic de-
pression and is critical for two distinct forms of synaptic plas-
ticity: cLTD and homeostatic synaptic weakening. Moreover,
dynamic regulation of PIPs occurs in response to acute and
chronic changes in activity. Changes in levels of PI(3,5)P2 often
result in parallel changes in PI5P (10). Thus, it is notable that
PI5P levels were stable during both cLTD and homeostatic
weakening. Therefore, the impact on synaptic receptors due to
loss of PIKfyve activity is likely due to the loss of PI(3,5)P2.
Although future studies are required to delineate the precise
mechanism by which PIKfyve is activated by neural activity, these
results suggest that this process occurs close to synapses.
We found that prolonged hyperactivation of neural network

activity leads to a sustained increased in PI(3,5)P2 levels (∼1.6-
fold). This result raises the possibility that neural activity alters
PI(3,5)P2 metabolism; however, little is known about the up-
stream activators of PIKfyve even in lower eukaryotes, such as
yeast. The degree of elevation in neurons is similar to increases
found in mammalian cells via induction by EGF [1.5-fold (80)],
IL-2 [1.75-fold (81)], and insulin [twofold (30)]. Interestingly,
in neurons, insulin stimulation causes synaptic weakening (73),
raising the possibility that enhanced PI(3,5)P2 synthesis con-
tributes to this effect. Another potential link to neuronal activity
is that PIKfyve interacts with some L-type calcium channels (32),
suggesting that PIKfyve may be well positioned to respond to
calcium influx. Interactions with other members of the PIKfyve
protein complex may also be important for activation of PIKfyve
at synapses. For example, Vac14 has a motif that interacts with
PDZ domains (82), which are highly abundant protein inter-
action domains found in many scaffolding proteins in the post-
synaptic density.

The pleiotropic effects caused by defects in PI(3,5)P2 syn-
thesis (3) suggest that multiple pathways are regulated by
PI(3,5)P2. A complete understanding of PI(3,5)P2 signaling
requires identification of the downstream protein effectors.
However, the motifs that interact specifically with PI(3,5)P2 are
not known, thus limiting the utility of bioinformatic approaches.
In neurons with chronically reduced PIKfyve activity, stimulus-
dependent endocytosis of AMPARs is impaired (33). Here, we
found that brief PIKfyve inhibition during NMDA stimulation
blocks internalization of GluA2 and that PIKfyve inhibition
immediately following NMDA stimulation hastens the recovery
of surface GluA2 levels after internalization. The GluA2 subunit
plays an instructive role in homeostatic plasticity induced by
chronic changes in activity (67, 69, 78, 79, 83, 84), thereby pro-
viding a potential link between PI(3,5)P2 synthesis during sus-
tained activity changes and the regulation of AMPAR expression
at the cell surface. Our results are consistent with up-regulation
of PI(3,5)P2 levels driving AMPAR internalization and PI(3,5)P2
acting by delaying or diverting internalized receptors from
recycling back to the plasma membrane. Impairment of AMPAR
trafficking toward the late endosome favors receptor recycling
and attenuates synaptic depression (48). Therefore, PIKfyve
blockade may also cause defects in the late endosome/lysosome
that result in accumulation of GluA2 on the plasma membrane.
In metazoans, PIKfyve is found on early endosomes, late endo-
somes, and lysosomes (3). This diverse localization strongly sug-
gests that PIKfyve regulates multiple trafficking steps.
Removal of synaptic AMPARs involves lateral diffusion

(reviewed in ref. 85), constitutive cycling, regulated endocytosis
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and exocytosis, and intracellular trafficking (reviewed in refs. 64,
65, 86). Although both NMDAR-cLTD and downscaling result
in a decrease in AMPARs, different signaling cascades are thought
to mediate these forms of synaptic depression. Thus, PIKfyve
activity may be a point of convergence in these mechanisms. In
addition to the finding that maintenance of homeostatic synaptic
weakening requires PIKfyve activity, we found that disruption of
PI(3,5)P2 synthesis results in a specific loss of the ability to
downscale, but not to upscale, synapse strength. This unidirec-
tional role is consistent with a growing literature suggesting that
distinct mechanisms underlie homeostatic synaptic strengthening
and weakening (reviewed in refs. 53, 58). Candidate pathways
that may regulate PIKfyve or may be regulated by PIKfyve are
mechanisms known to be important for homeostatic synaptic
weakening (reviewed in refs. 53, 58, 87). These include PSD-95,
Polo-like kinase 2 (Plk2), cyclin-dependent kinase 5 (CDK5),
and L-type voltage-gated calcium channels.
The focus on PI(3,5)P2 metabolism in this study does not

preclude roles for other PIPs in regulation of synapses. Indeed,
there are crucial roles for PIPs in regulation of both basal syn-
aptic strength and activity-dependent modifications to synaptic
efficacy. For example, clathrin-mediated endocytosis of AMPARs,
which is regulated by PI(4,5)P2 and the 5-phosphatase synapto-
janin (43), are critical for internalization of AMPARs during
synaptic depression (88). Dynamic changes in the metabolism of
PI(4,5)P2 (88, 89) and PI(3,4,5)P3 (46, 90, 91) are critical for
LTD and other forms of synaptic plasticity (reviewed in ref. 92).
We found that PI(3,4,5)P3 levels are detected under basal con-

ditions, which is consistent with the hypothesis that PI(3,4,5)P3
is required continuously for maintaining synaptic AMPARs (45)
and AMPAR trafficking (93). Collectively, these results illustrate
the complexity and importance of PIP signaling in neurons and
raise the possibility that therapies targeted at PIP metabolism
and signaling may be beneficial for treatment of neurological
disorders characterized by aberrant synapse function.

Materials and Methods
All experiments with animals were performed in compliance with guidelines
of the University Committee on the Use and Care of Animals of the University
of Michigan and the NIH. Details of experimental procedures are provided in
SI Materials and Methods. Cell culture, transient transfection, lentivirus
shRNA knockdown, and measurement of PIPs (10), as well as electrophysi-
ology experiments, immunocytochemistry, fluorescent recovery after NMDA
stimulation, image quantification, and statistical analysis (33), were per-
formed as described. Additional details, as well as details on the generation
of the Flp-In cell lines generated from T-Rex 293 cells (Life Technologies) are
presented in SI Materials and Methods.
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