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Intrinsically disordered protein regions are widely distributed in
the cytoplasmic domains of many transmembrane receptors. The
cytoplasmic domain of a disintegrin andmetalloprotease (ADAM)10,
a transmembrane metalloprotease mediating ectodomain shedding
of diverse membrane proteins, was recently suggested to mediate
the homodimerization of ADAM10. Here we show that a recombi-
nant cytoplasmic domain of ADAM10 (A10Cp) is unstructured as
judged by its susceptibility to limited trypsin digestion and its
circular dichroism spectrum. In comparison, recombinant transmem-
brane-cytoplasmic domain of ADAM10 (A10TmCp) reconstituted in
dodecylphosphocholine (DPC) micelles exhibits much greater re-
sistance to trypsin digestion, with its cytoplasmic domain taking on
a significant ordered structure. FRET analysis demonstrates that,
although A10Cp remains monomeric, A10TmCp forms a tight homo-
dimer (Kd ∼ 7 nM) in DPC micelles. Phospholipid-conjugated A10Cp
dose-dependently inhibits formation of A10TmCp homodimer,
whereas A10Cp achieves only limited inhibition. Placing the
transmembrane and cytoplasmic domains of ADAM10, but not the
transmembrane domain alone, in their native orientation in the inner
membrane of Escherichia coli produces specific and strong dimeriza-
tion signal in the AraC-based transcriptional reporter assay. A chime-
ric construct containing the otherwise monomeric transmembrane
domain of L-selectin and the cytoplasmic domain of ADAM10 produ-
ces a similar dimerization signal. Overall, these results demonstrate
that a transmembrane domain imparts a stable structure to the ad-
jacent and intrinsically disordered cytoplasmic domain of ADAM10 to
form a homodimer in the membrane. This finding advances our un-
derstanding of the regulatory mechanism of ADAMs and has general
implications for membrane–protein interactions in the process of
transmembrane signaling.
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Intrinsically disordered regions are prevalent in proteins (1, 2).
Compared with the structured region, the intrinsically disor-

dered region is flexible, which enables it to interact with a wider
range of binding partners for diverse biological functions (3–5).
The presence of relatively high net charge with a low content of
bulky hydrophobic residues signifies an intrinsically disordered re-
gion (6, 7). For many transmembrane proteins, the cytoplasmic
domain is intrinsically disordered, but it can adopt stable confor-
mation from binding intracellular partners or on posttranslational
modification (8, 9). However, little is known about how the mem-
brane bilayer affects the intrinsic disorder of a nearby cytoplasmic
domain of a membrane protein.
ADAM10, a member of a disintegrin and metalloprotease

(ADAM) family, is expressed in diverse tissues and cells. ADAM10
proteolyzes a broad range of membrane protein substrates in a
process often known as ectodomain shedding (10). ADAM10 plays
a critical role in cell proliferation and tissue development, as its
deficiency in mouse embryo leads to prenatal lethality during the
early development period (11–13). ADAM10 is composed of an
N-terminal signal sequence followed by a prodomain, a metal-
loprotease domain, a disintegrin domain, a cysteine-rich region, an
EGF-like repeat, a transmembrane helix, and a cytoplasmic region.

The proteolytic activity of ADAM10 is tightly regulated by multiple
factors. External stimulations such as ionophore and phorbol ester
can modulate the activity of ADAM10 (14–16), likely through an
inside-out mechanism in which its cytoplasmic region is involved.
Recently, it was suggested that ADAM10 forms a homodimer in
the cell membrane as does ADAM17, a key feature in the pro-
posed regulation mechanism of ADAM activation (17). Because
ADAM10 with a truncated cytoplasmic domain could not form a
homodimer, the cytoplasmic domain was suggested to be important
for dimerization (17). However, the cytoplasmic domain of
ADAM10 appears disordered and does not contain any known
dimerization sequence motifs.
In the current study, we report the characterization of trans-

membrane-cytoplasmic domains of ADAM10. We found that,
although the isolated cytoplasmic domain of ADAM10 is in-
trinsically disordered, the inclusion of a neighboring trans-
membrane domain imparts an ordered structure to it and enables
its dimerization.

Results
The Intrinsically Disordered Cytoplasmic Domain of ADAM10 Takes on
Ordered Conformation in the Presence of Its Adjacent Transmembrane
Domain. The cytoplasmic domain of ADAM10 is enriched with
proline and positively charged residues (Fig. S1), which are sig-
natures of intrinsic disorder (2). To assess the intrinsic disorder of
the ADAM10 cytoplasmic domain, the sequence of human
ADAM10 transmembrane and cytoplasmic domains was analyzed
using SPINE-D, a program that predicts disordered regions based
on a single neural network (18). In the program, each residue is
assigned a score that denotes the probability of being disordered.
Except for the juxtamembrane region (residues Lys697–His702),
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most residues in the cytoplasmic domain were assigned a disorder
score >0.5, suggesting that they are highly disordered (Fig. 1).
In contrast, most residues in the transmembrane domain were
assigned a disorder score <0.5, consistent with the expectation of
ordered α-helical conformation.
Consistent with the assessment by SPINE-D, recombinant

cytoplasmic domain of human ADAM10 (A10Cp-6H, containing
residues Lys697–Arg748 and a C-terminal hexahistidine tag) in
the dodecylphosphocholine (DPC) micellar solution (10 mM
DPC, 20 mM Tris·HCl, 100 mM NaCl, and 1 mM DTT, pH 8.0)
contained little stable secondary structure as indicated by its
circular dichroism (CD) spectrum (Fig. 2A and Fig. S1). Neither
removal of the hexahistidine tag from A10Cp-6H (i.e., A10Cp)
nor DPC from the solvent significantly altered the CD spectrum
(Fig. S2). However, recombinant transmembrane-cytoplasmic
domains of human ADAM10 (A10TmCp-6H, containing residues
Leu666–Arg748 and a C-terminal hexahistidine tag) recon-
stituted in the same DPC micelles contained significant amount of
α-helical structure (Fig. 2A and Fig. S1). Deconvolution of its CD
spectrum (α helix: 87%, β strand: 1%, coil: 12%) suggested that
most residues in A10TmCp-6H adopt the α-helical conformation
(19). Because the transmembrane domain constitutes only 30%
of the residues in A10TmCp-6H, significant amount of helical
structure should be present in the cytoplasmic domain.
The susceptibility to trypsin digestion is widely used to confirm

the lack of stable structure in a protein (20, 21). There are mul-
tiple trypsin cleavage sites in the cytoplasmic domain of ADAM10.
Limited trypsin digestion of A10Cp-6H or A10TmCp-6H in DPC
micelles was carried out. Subsequent HPLC analysis of the di-
gestion products indicated that, whereas less than 20% of
A10TmCp-6H was cleaved after 1 h of trypsin digestion, A10Cp-
6H was completely cleaved (Fig. 2B). Removal of DPC from the
solution did not improve the resistance of A10Cp-6H to trypsin
digestion (Fig. S3). A similar difference in trypsin digestion re-
sistance was observed when both proteins were reconstituted in
or mixed with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) liposomes (Fig. S3). Collectively, these results indicate
that the cytoplasmic domain in A10TmCp-6H is more stable
than the same sequence in A10Cp-6H. In other words, the cy-
toplasmic domain of ADAM10 is intrinsically disordered, but in
the presence of its neighboring transmembrane domain, it takes
on an ordered conformation.

Recombinant ADAM10 Transmembrane-Cytoplasmic Domain, but Not
ADAM10 Cytoplasmic Domain, Forms a Strong Homodimer in DPC
Micelles. We next analyzed the homo-association of A10Cp-6H
and A10TmCp-6H in DPC micellar solutions using FRET. Tri-
nitrilotriacetic acid (tri-NTA) was synthesized (22) and conju-
gated to fluorescein (FS) and tetramethylrhodamine (TMR) as
fluorescent donor and acceptor, respectively (Fig. 3A and Fig.
S4). The fluorophore-tri-NTA bound the hexahistidine tag in
A10Cp-6H or A10TmCp-6H by nanomolar-affinity chelation to
Ni2+ ions (Fig. 3B and Fig. S5). The dissociation constants for the
fluorophore/protein pairs needed were measured by fluorescence

anisotropy and listed in Table 1. Little FRET was observed be-
tween 100 nM FS-tri-NTA and TMR-tri-NTA that were equally
mixed in the DPC micellar solution (Fig. S6A). Adding 200 nM
A10TmCp-6H to the fluorophore mixture, which induced binding
of all fluorophore-tri-NTA to the protein, resulted in significant
quenching of FS fluorescence emission and concurrent increase
of TMR fluorescence (Fig. 3 C and E). The FRET was abolished
by addition of EDTA, which dissociated fluorophores from
A10TmCp-6H (Figs. S5 and S6). In comparison, adding 200 nM
A10Cp-6H did not induce quenching of FS fluorescence (Fig.
3D). These results indicate that A10TmCp-6H, but not A10Cp-
6H, forms homo-oligomers in DPC micelles. It is noteworthy that
the protein/detergent molar ratio in this experiment was 1/50,000
(200 nM protein/10 mM DPC). It is much lower than 1/200–1/
1,000, a range typically used in the studies of homo-association
of transmembrane helical peptides (23–26), suggesting that
homo-association of A10TmCp-6H is not mediated by its trans-
membrane domain.
To determine the oligomeric state of A10TmCp-6H, quench-

ing of FS fluorescence was measured as a function of the mole
ratio of TMR-tri-NTA/FS-tri-NTA. The quenching should in-
crease with the acceptor/donor mole ratio, the extent of which is
dependent on the degree of protein association (24, 27). A linear
increase indicates a monomer-dimer association (27). In this
study, the concentrations of A10TmCp-6H and FS-tri-NTA were
kept constant at 200 and 100 nM, respectively. The total tri-NTA
concentration was also kept constant at 200 nM by adding un-
conjugated tri-NTA along with TMR-tri-NTA. Fig. 4A shows that
quenching of the FS fluorescence increased linearly with the TMR/
FS mole ratio, indicating that A10TmCp-6H forms a homodimer.
Consistently, the quenching of FS fluorescence reached the maxi-
mum when the TMR/FS ratio reached 1, and it did not change
further at higher ratios (Fig. 4A).
To determine the dimerization constant of A10TmCp-6H

(Kd), the FRET efficiency (E) was recorded as a function of
A10TmCp-6H concentration (1–200 nM), whereas the molar
ratio of A10TmCp-6H/FS-tri-NTA/TMR-tri-NTA was kept at
2/1/1. As shown in Fig. 4B, E increased with the A10TmCp-6H
concentration but leveled off at higher concentrations (∼200
nM). Because only when both FS and TMR fluorophores were
bound to the A10TmCp-6H dimer did FRET occur, equations
were derived to describe the dependence of E on the linked
equilibria of A10TmCp-6H dimerization and its association with
fluorophores (see SI Materials and Methods for details). To
simplify the equation, the dissociation constant for the binding of
fluorophore-tri-NTA with A10TmCp-6H (KNTA) was considered
as a constant of 10 nM for both FS and TMR fluorophores
(Table 1). The plot of E vs. A10TmCp-6H concentration was
fitted globally to the following equation:
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Fig. 1. Prediction of intrinsic disorder in the transmembrane (Tm) and cy-
toplasmic (Cp) domains of ADAM10 by the SPINE-D program. The protein
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Fig. 2. The intrinsically disordered cytoplasmic domain of ADAM10 takes on
stable helical conformation in the presence of its adjacent transmembrane
domain. (A) CD spectra of A10Cp-6H (brown) and A10TmCp-6H (red) in
10 mM DPC, 20 mM Tris·HCl, 100 mM NaCl, and 1 mM DTT, pH 8.0 at 20 °C.
(B) HPLC traces of A10Cp-6H (brown) and A10TmCp-6H (red) before and
after (black) 1-h trypsin digestion at 37 °C.
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where x is the concentration of A10TmCp-6H and also that of
total tri-NTA, Eint is the intrinsic FRET efficiency in this system,
and A is a constant used to denote the distribution of FS-tri-NTA
in all of the complexes. The best fit produced a Kd of 7.2 ± 2.0
nM and EintA of 0.47 ± 0.02 (Fig. 4B). Therefore, A10TmCp-6H
formed a strong homodimer in the DPC micellar solution.

The Transmembrane-Cytoplasmic Domain but Not the Transmembrane
Domain of ADAM10 Self-Associates in a Cell Membrane. The AraC-
based transcriptional reporter assay (AraTM) (28) was used to test
whether the transmembrane and cytoplasmic domains of ADAM10
self-associate in a cell membrane. In this assay, transmembrane and
cytoplasmic domains of the target protein are fused N-terminally to
maltose binding protein (MBP) to enable its native placement in
the inner membrane of Escherichia coli. The C terminus of the
chimera is fused to the AraC transcriptional factor, the di-
merization of which activates the PBAD promoter and induces
expression of eGFP in the engineered bacteria. The eGFP fluo-
rescence can be quantitated directly from culture and is correlated
with the extent of dimerization of inserted transmembrane and
cytoplasmic domains in the membrane (28). The MBP-TmCp-
AraC constructs containing the ADAM10 transmembrane domain
(a10Tm), the ADAM10 transmembrane and cytoplasmic domains
(a10TmCp), the L-selectin transmembrane and cytoplasmic do-
mains (lselTmCp), and a chimeric L-selectin transmembrane and
ADAM10 cytoplasmic domains (lselTm-a10Cp) were transformed

into the AraC-deficient E. coli strain SB1676 (Fig. 5A). Each chi-
meric protein was inserted into the inner membrane of E. coli with
the native topology, and each was expressed at a level comparable
with that of the positive control construct (containing a tightly
dimerizing integrin αIIb transmembrane sequence; Fig. 5B and C).
The GFP fluorescence intensity in transformed bacteria was re-
corded and normalized with the cell density as previously described
(28). Comparison of the GFP fluorescence intensities indicated
that, although MBP-a10Tm-AraC exhibited little dimerization in
the membrane, MBP-a10TmCp-AraC dimerized as strongly as the
positive control (Fig. 5C and Fig. S7). Furthermore, coexpression
of MBP-a10TmCp-AraC with MBP-a10TmCp-DNAraC, a domi-
nant negative construct with a loss-of-function mutation in AraC
(29), produced significantly lowered GFP fluorescence, confirming
the specificity of a10TmCp-mediated dimerization (Fig. 5D and
Fig. S7).
Consistent with recent reports that the transmembrane and

cytoplasmic domains of L-selectin or full-length L-selectin are
monomeric in membrane conditions (30, 31), expression of
MBP-lselTmCp-AraC induced little GFP fluorescence in the
AraTM assay (Fig. 5C). In comparison, expression of MBP-
lselTm-a10Cp-AraC produced as strong a GFP fluorescence as
the positive control or MBP-A10TmCp-AraC. These results in-
dicate that the cytoplasmic domain of ADAM10, when placed
next to an unrelated transmembrane domain, can mediate strong
dimerization of the host protein.

Phospholipid-Conjugated A10Cp, but Not Unconjugated A10Cp,
Inhibits Dimerization of A10TmCp in DPC Micelles. To test whether
the proximity to a membrane surface is sufficient for the ADAM10
cytoplasmic domain to adopt ordered structure and to form
homodimer, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-
N-[4-(p-maleimidomethyl)cyclohexane-carboxamide] was conju-
gated to Cys699 of A10Cp and A10Cp-6H to produce DiPal-
A10Cp and DiPal-A10Cp-6H, respectively (Fig. S8). Neither
conjugated protein was water soluble. Appending the hex-
ahistidine tag did not affect the structure of the ADAM10 cy-
toplasmic domain because little difference was noted between
the CD spectra of DiPal-A10Cp and DiPal-A10Cp-6H in DPC
micelles (Fig. 6A and Fig. S9). With a single minimum at 207 nm,
both CD spectra were significantly different from that of A10Cp,
suggesting that the ADAM10 cytoplasmic domain in DiPal-
A10Cp-6H took on a different conformation than the disordered
one adopted by A10Cp-6H (Fig. 6A). They were also different
from that of A10TmCp in DPC micelles. Additional feature of
this conformation could not be ascertained from the CD spectra,
partly because the contribution from the chiral atoms in the lipid
moiety was unclear. After 1 h of trypsin digestion, all of DiPal-
A10Cp-6H reconstituted in DPC micelles was cleaved, but sev-
eral intermediate digestion products were still present (Fig. S9B).
Overall, these results indicate that attachment of a phospholipid
molecule imparted some ordered structure to the ADAM10 cy-
toplasmic domain, although the structure is not as stable as that
in A10TmCp.
Under the same condition as described above for A10TmCp-

6H and A10Cp-6H, FRET was clearly observed for 200 nM
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Fig. 3. A10TmCp-6H, but not A10Cp-6H, forms an oligomer in DPC
micelles. (A) Illustration of the FRET experiment. Fluorophore (FS, TMR)-
conjugated tri-NTA noncovalently associates with the hexahistidine (6H)
tag in the target protein. When the protein self-associates, FRET will
occur between the bound FS and TMR. (B) Binding of A10TmCp-6H to FS-
tri-NTA dissolved in the DPC micellar solution containing 1 μM NiSO4

monitored by FS fluorescence anisotropy. The binding curve was fitted to
a hyperbolic binding equation with a binding affinity of 8 ± 2 nM (Table 1).
A10TmCp-6H induced little change in FS anisotropy in the presence of 10 mM
EDTA (filled diamond), indicating that FS-tri-NTA bound specifically to the 6H
sequence in A10TmCp-6H. (C and D) Fluorescence emission spectra of 10 nM
FS-tri-NTA (green), 100 nM TMR-tri-NTA (pink), and the mixture of both in
complex with 200 nMA10TmCp-6H (red) or A10Cp-6H (brown) in DPC micelles.
(E) Comparison of fluorescence quenching for the noted proteins that were
added to the mixture of FS- and TMR-tri-NTA.

Table 1. Binding affinity of tri-NTA to A10Cp and A10TmCp in
10 mM DPC, 20 mM Tris·HCl, 100 mM NaCl, 1 mM DTT, and 1 μM
NiSO4, pH 8.0

Fluorophore Protein KNTA (nM)

FS-tri-NTA A10Cp-6H 18 ± 2
TMR-tri-NTA A10Cp-6H 16 ± 3
FS-tri-NTA A10TmCp-6H 8 ± 2
TMR-tri-NTA A10TmCp-6H 12 ± 4
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DiPal-A10Cp-6H in 10 mM DPC (Fig. 6B). The F/F0 value was
0.85 ± 0.03, close to that observed for A10TmCp-6H (0.75 ± 0.02)
and distinct from that for A10Cp-6H (1.03 ± 0.02) (Fig. 3E).
Considering the protein/DPC molar ratio of 1/50,000 in the ex-
periment and the usual aggregation number of 50–60 for the DPC
micelle (32), the average number of DiPal-A10Cp-6H molecules
per DPC micelle is significantly lower than 1/900. By comparison,
in our earlier study of tje recombinant L-selectin transmembrane-
cytoplasmic domain at a protein/DPC molar ratio of 1/500, no
fluorescence quenching (F/F0 ∼1.0) was observed between co-
valently conjugated FS-selectin and TMR-selectin (30). There-
fore, the FRET observed for DiPal-A10Cp-6H indicates that it
forms an oligomer in DPC micelles, although the extent of homo-
association is less than that of A10TmCp-6H.
To test whether dimerization of A10TmCp is mediated by its

cytoplasmic domain, A10Cp, DiPal-A10Cp, or lysozyme (as
control) was added, in varying doses, to 200 nM A10TmCp-6H in
the DPC micellar solution that also contained appropriate tri-
NTA fluorophores. None of the added peptides contained the
hexahistidine tag; thus, their effects on the observed quenching
of FS fluorescence were attributed to their abilities to inhibit
dimerization of A10TmCp-6H. Compared with addition of ly-
sozyme that caused no change, DiPal-A10Cp dose-dependently
reduced quenching in apparently two stages (Fig. 6C). Complete
inhibition of fluorescence quenching, and thus A10TmCp-6H
dimerization, was achieved when DiPal-A10Cp was added to
a molar ratio of 12. In comparison, addition of A10Cp to molar
ratios of 10–20 failed to inhibit dimerization of A10TmCp-6H
(Fig. 6C). It is noteworthy that addition of A10Cp at a lower
molar ratio (2–5) reduced quenching to a similar extent as DiPal-
A10Cp, but the underlying mechanism was not clear. Overall,
these results indicate that the dimerization of A10TmCp is me-
diated by its cytoplasmic domain.

Discussion
It was reported recently that ADAM17 and ADAM10, both of
which are important members of the ADAM protease family,
form homodimers on the cell surface (17). Deletion of the cyto-
plasmic domain significantly reduced the presence of ADAM10
dimer. ADAM17-B, the ADAM17 variant without its cytoplasmic
domain, is a monomer; however, appending the ADAM10 cyto-
plasmic domain to ADAM17-B confers its ability to form a
homodimer (17). In the current study, we elucidated the molec-
ular mechanism underlying the cytoplasmic domain-mediated
dimerization of ADAM10. A10Cp, representing the cytoplasmic

domain of ADAM10 in isolation, is intrinsically disordered and
monomeric (Figs. 2 and 3). This result is not surprising because it
is enriched with prolines and polar residues (2). However, when
adjoined to the neighboring transmembrane domain (i.e., within
its native context), the cytoplasmic domain of ADAM10 in
A10TmCp-6H takes on an ordered conformation and A10TmCp-
6H forms a strong homodimer (Figs. 3 and 4). Furthermore, the
transmembrane domain of ADAM10 does not dimerize in a cell
membrane, and fusing the cytoplasmic domain of ADAM10 to an
unrelated monomeric transmembrane sequence from L-selectin
induces dimerization of the chimera (Fig. 5). Finally, dimerization
of A10TmCp-6H is inhibited by DiPal-A10Cp, in which the cyto-
plasmic domain of ADAM10 is attached to a phospholipid molecule
and thus located at the membrane surface (Fig. 6), demonstrating
that the dimerization sequence motif resides entirely in the cyto-
plasmic domain of ADAM10.
Understanding the molecular basis for ADAM10 dimerization

will facilitate characterization of the dimerization of closely related
ADAM17 and elucidation of the ADAM activation mechanism. It
was recently reported that TIMP-3 preferably bound ADAM17
dimer to its monomer form and thus inhibited the activity of
ADAM17 in a dimeric form (17). Phosphorylation of residue
Thr735 in the cytoplasmic domain of ADAM17 by activated p38
MAPK was considered a crucial step for activation of ADAM17
induced by anisomycin or IL-1β (33). However, it was also re-
cently reported that the cytoplasmic domain of ADAM17 or its
phosphorylation at Thr735 was not required for ADAM17 acti-
vation (34). In this study, we established, to our knowledge, the
first system that quantitatively measures the dimerization of an
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ADAM cytoplasmic domain. Applying this system to ascertain
the effect of Thr735 phosphorylation, as well as phosphorylation
at other sites in the cytoplasmic domain (35), on the dimerization
of ADAM17 cytoplasmic domain may help to reconcile the above
observations. Comparison of the difference between ADAM10
and ADAM17 dimerization may also provide insights on the
mechanism underlying differential activation of these two shed-
dases (14, 15, 36, 37).
What is unique and intriguing about our finding is that di-

merization of the cytoplasmic domain of ADAM10 requires
attachment to a transmembrane domain, yet the attached trans-
membrane domain does not directly mediate dimerization. MBP-
a10Tm-AraC produced little dimerization signal in the AraTM
assay, but MBP-a10TmCp-AraC produced as strong a dimerization
signal as MBP-lselTm-a10Cp-AraC (Fig. 5C). Consistently, di-
merization of A10TmCp-6H could be completely inhibited by
DiPal-A10Cp that does not contain a transmembrane domain (Fig.
6). It appears that a role of the transmembrane domain is to anchor
the cytoplasmic domain of ADAM10 in proximity to a membrane
surface. What such proximity effect entails is not clear, because
A10Cp is disordered in the presence of DPC micelles (Fig. S2B).
It is possible that only by placing the cytoplasmic domain of
ADAM10 in proximity to the membrane surface does it interact
with the surface and take on a more structured conformation.
This possibility is supported by our observation that DiPal-A10Cp
is more structured than A10Cp and it self-associates in DPC
micelles (Fig. 6). However, the ADAM10 cytoplasmic domain in
DiPal-A10Cp is less structured and less resistant to trypsin di-
gestion than that in A10TmCp, which is consistent with a lower
FRET observed for the former. The comparison of DiPal-A10Cp
and A10TmCp suggests an additional role of an adjoining
transmembrane domain in imparting the ordered structure to
the ADAM10 cytoplasmic domain.
Cytoplasmic domains of many transmembrane receptors, es-

pecially the juxtamembrane region in the cytoplasmic domain,
have been reported to associate with the membrane surface. For
instance, the juxtamembrane region in the transmembrane-jux-
tamembrane fragment of EGFR associates with the anionic
membrane surface and assumes a nonhelical structure, and the
membrane association can be reversed by the competing binding
of calmodulin (38). Similarly, the juxtamembrane region in a
transmembrane-cytoplasmic fragment of L-selectin associates
with the anionic membrane surface, but it cannot be competed
off the surface by calmodulin binding (39, 40). In addition, the
cytoplasmic domains of CD3e, CD3ζ, and PECAM-1 bind the

membrane surface, shielding the tyrosine residues therein from
phosphorylation (41–43). In contrast to these reports in which
the membrane association impedes the biological function of the
cytoplasmic domain, the cytoplasmic domain of ADAM10 acquires
its ordered conformation and function (i.e., dimerization) when
placed in proximity to the membrane surface. This feature is akin
to the membrane-dependent acquisition of a stable structure by the
Nogo-66 domain (44), although the cytoplasmic domain of ADAM10
is shorter than Nogo-66 and shares little sequence homology with
the latter. Understanding the biophysical and energetic basis for
the membrane-enabled dimerization of ADAM10 cytoplasmic
domain will provide important insights on the relationship of the
protein–lipid interaction and transmembrane signaling.
To assess the interaction between a cytoplasmic domain with

intracellular binding proteins, it is a widely adopted practice to
fuse the target cytoplasmic sequence to GST for pull-down
studies. The absence of the target binding protein in the pull-
down as detected by Western blot is interpreted as the lack of
interaction between the said cytoplasmic domain and the protein
in the cell. In this study, the clear difference between A10Cp and
A10TmCp indicates that an isolated cytoplasmic domain without
its neighboring transmembrane domain may not retain its en-
dogenous binding function. Therefore, caution should be exer-
cised regarding the interpretation of negative pull-down results
of GST-cytoplasmic fusion proteins.

Materials and Methods
Detailed methods can be found in SI Materials and Methods.

Materials. Recombinant proteinsA10Cp,A10TmCp-6H, and their derivativeswere
produced following previously published protocols (40, 45). Synthesis of tri-NTA
was carried out as previously described (22) and its identity was confirmed byMS.

Characterization of ADAM10 Fragments. A10TmCp-6Hwas reconstituted in DPC
micelles and POPC liposomes as detailed in SI Materials and Methods. CD
spectra were collected on a JASCO J810 instrument as described previously
(39). For limited trypsin digestion, the protein was mixed with trypsin to a mass
ratio of 20/1 and incubated at 37 °C for 1 h, followed by LC-MS analysis using
a reverse phase C4 column. The change in fluorescence anisotropy during the
titration of ADAM10-derived fragments was monitored using a polarizer-
equipped PTI QuantaMaster spectrometer, and the binding isotherms were
fitted to a hyberbolic equation as described previously (25, 39).

FRET Measurements. For steady-state FRET, FS-tri-NTA and TMR-tri-NTA were
added separately or together in the DPCmicellar solution (10mMDPC, 20mM
Tris·HCl, 100 mM NaCl, and 1 mM DTT, pH 8.0) containing 1 μM NiSO4 to the
final concentration of 10 and 100 nM, respectively. The protein stocks were
diluted to the same DPC solution containing the fluorophores to the final
concentration of 200 nM. Fluorescence emission spectra of these samples
were recorded with excitation at 494 nm. To determine the association state
of A10TmCp-6H, unlabeled tri-NTA and TMR-tri-NTA, both of which were
prepared in the same DPC micellar solution and had a stock concentration of
10 μM, were added in various combinations to a solution that contained 200
nM A10TmCp-6H and 100 nM FS-tri-NTA. The overall tri-NTA concentration
was kept constant at 200 nM. Quenching of FS emission intensity in each
sample was recorded and plotted vs. the TMR/FS mole ratio as described
previously (24, 27). To determine the Kd of the A10TmCp-6H dimer, 200 nM
A10TmCp-6H, 100 nM FS-tri-NTA, and 100 nM TMR-tri-NTA in the DPC mi-
cellar solution were serially diluted while the FS fluorescence intensity was
recorded. The solution containing the same fluorophores but not the pro-
tein was used as the nonquenching control. Data fitting of the plot of FRET
efficiency vs. A10TmCp-6H concentration to estimate Kd are described in
detail in SI Materials and Methods. For inhibition of dimerization, peptides
without the hexahistidine tag were mixed with A10TmCp-6H in the DPC
micellar solution containing appropriate fluorophores to various molar ra-
tios. After incubation, FS emission intensity was measured, and the extent
of fluorescence quenching was calculated as described in SI Materials
and Methods.

AraTM Assay. Expression plasmids encoding various MBP-TmCp-AraC proteins
were cloned largely as described previously (28, 30). The a10Tm construct
contained ADAM10 residues Leu666–Lys697, a10TmCp contained ADAM10
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residues Leu666–Arg748, lselTmCp contained L-selectin residues Pro295–
Tyr334, and lselTm-a10Cp contained L-selectin residues Pro295–Ala317 followed
by ADAM10 residues Lys697–Arg748. Each plasmid was cotransformed
with pAraGFP plasmid into E. coli strain SB1676, which were selected with
100 μg/mL ampicillin and 50 μg/mL kanamycin (28). For the DN-AraTM test,
vectors encoding the AraC and DNAraC proteins were mixed equally and
transformed into E. coli (29). The topology of the fusion protein was
checked by its expression in E. coli MM39 cells on maltose-only growth media

(28). The expression level of the MBP-TmCp-AraC protein was measured by
Western blot using an anti-MBP monoclonal antibody (Sigma) as described
previously (25). Measurement of GFP fluorescence in the bacterial culture was
performed largely as described (28), and the results were plotted as the ratio of
fluorescence emission at 530 nm to optical density at 600 nm.
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