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Antiretroviral therapy (ART) reduces the infectiousness of HIV-
infected persons, but only after testing, linkage to care, and success-
ful viral suppression. Thus, a large proportion of HIV transmission
during a period of high infectiousness in the first few months after
infection (“early transmission”) is perceived as a threat to the impact
of HIV “treatment-as-prevention” strategies. We created a mathe-
matical model of a heterosexual HIV epidemic to investigate how
the proportion of early transmission affects the impact of ART on
reducing HIV incidence. The model includes stages of HIV infection,
flexible sexual mixing, and changes in risk behavior over the epi-
demic. The model was calibrated to HIV prevalence data from South
Africa using a Bayesian framework. Immediately after ART was in-
troduced, more early transmission was associated with a smaller re-
duction in HIV incidence rate—consistent with the concern that
a largeamountof early transmission reduces the impact of treatment
on incidence. However, the proportion of early transmissionwas not
strongly related to the long-term reduction in incidence. This was
because more early transmission resulted in a shorter generation
time, in which case lower values for the basic reproductive number
(R0) are consistent with observed epidemic growth, and R0 was neg-
atively correlated with long-term intervention impact. The fraction
of early transmission depends on biological factors, behavioral pat-
terns, and epidemic stage and alone does not predict long-term in-
tervention impacts. However, early transmissionmaybean important
determinant in the outcome of short-term trials and evaluation
of programs.
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Recent studies have confirmed that effective antiretroviral
therapy (ART) reduces the transmission of HIV among stable

heterosexual couples (1–3). This finding has generated interest in
understanding the population-level impact of HIV treatment on
reducing the rate of new HIV infections in generalized epidemic
settings (4). Research, including mathematical modeling (5–10),
implementation research (11), and major randomized controlled
trials (12–14), are focused on howARTprovisionmight be expanded
strategically to maximize its public health benefits (15, 16).
One concern is that if a large fraction ofHIV transmission occurs

shortly after a person becomes infected, before the person can be
diagnosed and initiated on ART, this will limit the potential impact
of HIV treatment on reducing HIV incidence (9, 17, 18). Data
suggest that persons are more infectious during a short period of
“early infection” after becoming infected with HIV (19–22), al-
though there is debate about the extent, duration, and determinants
of elevated infectiousness (18, 23). The amount of transmission that
occurs also will depend on patterns of sexual behavior and sexual
networks (17, 24–27). There have been estimates for the contri-
bution of early infection to transmission frommathematical models
(7, 17, 21, 24–26) and phylogenetic analyses (28–31), but these vary
widely, from 5% to above 50% (23).
In this study, we use a mathematical model to quantify how the

proportion of transmission that comes from persons who have

been infected recently affects the impact of treatment scale-up
on HIV incidence. The model is calibrated to longitudinal HIV
prevalence data from South Africa using a Bayesian framework.
Thus, the model accounts for not only the early epidemic growth
rate highlighted in previous research (5, 9, 18), but also the
heterogeneity and sexual behavior change to explain the peak
and decline in HIV incidence observed in sub-Saharan African
HIV epidemics (32, 33).
The model calibration allows uncertainty about factors that

determine the amount of early transmission, including the relative
infectiousness during early infection, heterogeneity in propensity
for sexual risk behavior, assortativity in sexual partner selection,
reduction in risk propensity over the life course, and population-
wide reductions in risk behavior in response to the epidemic (32,
33). This results in multiple combinations of parameter values that
are consistent with the observed epidemic and variation in the
amount of early transmission. We simulated the impact of a
treatment intervention and report how the proportion of early
transmission correlates with the reduction in HIV incidence from
the intervention over the short- and long-term.

Results
Model Calibration and Transmission During Epidemic Stage. The
mathematical model was calibrated to the time series of HIV
prevalence among pregnant women in South Africa from 1990
through 2008 (34) and HIV prevalence among adult men and
women aged 15–49 y in three national household surveys in 2002,
2005, and 2008 (Fig. 1A). The HIV incidence rate grows rapidly
in the early 1990s, peaking in 1997 and declining by around
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37% (95% credible interval 30–43) over the next decade
(Fig. 1B). The decline in incidence is the result of two factors:
infection saturation in the higher-risk groups and a reduction
in the unprotected sexual contact rate over time. It is esti-
mated that the contact rate declines by 28% (95% CI, 11–43;
parameter posterior distributions in Fig. S1).
The fraction of transmission occurring from individuals in each

stage of infection evolves over the course of the epidemic (Fig.
1C). During the early growth phase of the epidemic, most infected
persons have been infected recently, and so most new infections
result from highly infectious persons in early HIV infection (early
transmission). As the epidemic matures, the contribution of early
transmission declines whereas the contribution of advanced stages
of infection grows.
In the absence ofART scale-up, early transmission was estimated

to account for 17% (95%CI, 12–24) of all transmission in 2010 (Fig.
2A). Much of the variation in early transmission was explained by
the relative infectiousness during early infection compared to
chronic infection (R2 = 56%; Fig. 2B). Adjusting for the influence of
infectiousness during early infection, higher rates of moving from
higher- to lower-risk groups resulted in more early transmission
because faster movement to low-risk groups results in more
transmission occurring early after infection. These two parame-
ters together explained 89% of the variation in early transmission
in 2010 (Fig. S2A).

Early Transmission and the Impact of Treatment as Prevention. We
explored how the proportion of early transmission in 2010 af-
fected the impact of ART on reducing HIV incidence. We simu-
lated an intervention in which infected persons are eligible for
treatment when their CD4 cell count falls below 350 cells/μL. Eli-
gible persons initiated ART at a rate of 0.23 per year, such that
80% will initiate treatment before death. The intervention was in-
troduced into an ART-naïve epidemic in 2010, and the intervention
was simulated for 30 y. We calculated the percentage reduction in
incidence rate with reference to the model projection without ART.

Fig. 3 illustrates the correlation between the proportion of early
transmission at the start of the intervention and the reduction in
incidence over time. In the first year of the intervention, the re-
duction in incidence was negatively correlated with the fraction of
early transmission (Pearson’s r = −0.49) (Fig. 3A). This is con-
sistent with the conventional wisdom that more early transmission
will result in less impact of treatment on reducing incidence.
However, in the long term, the proportion of early transmission

was not strongly predictive of the reduction in incidence, ex-
plaining only about 5% of the variation in intervention impact. In
fact, after the 10th year, there was a modest positive correlation
(r = 0.24; Fig. 3A), which persisted as the epidemic with ART
stabilized at a lower equilibrium level (Fig. 3B).
Both the strong negative initial correlation between early

transmission and intervention impact and the poor long-term
predictive power of early transmission on intervention impact
were robust to assumptions about ART eligibility (all HIV+
adults, CD4 ≤350 cells/μL, CD4 ≤200 cells/μL), about treatment
coverage (20–95%), and that all treated persons would initiate
treatment more rapidly after becoming eligible (Fig. S3).

R0, Early Transmission, Epidemic Growth, and Intervention Impact.
We calculated the basic reproductive number (R0; the average
number of new infections that one infected individual would
create in a wholly susceptible population) over the course of the
epidemic. The posterior mean for R0 at the start of the epidemic
was 4.9 (95% CI, 3.8–6.2) (Fig. 4A). After the estimated re-
duction in contact rate, R0 during the intervention period was
3.5 (2.4–5.0).
There was a strong negative relationship between the initial R0

and early transmission in 2010 (Fig. 4B) (9, 18). Eighty-six percent
of the variation in the proportion of early transmission is explained
by the reciprocal of R0 (1/R0; red line in Fig. 4B). This was be-
cause when there is more early transmission, on average onward
transmissions occur sooner after an individual becomes infected—
that is, the “generation time” is shorter. With shorter generation
times, the observed rapid epidemic growth rate in HIV prevalence
may be achieved with lower values of R0 (18, 35).
The variation in R0 at the start of the epidemic is explained

predominantly by two parameters—the relative infectiousness
during early infection and the rate of risk group movement—
which jointly accounted for 92% of the variation (Fig. S2B). The
reduction in the contact rate also is an important determinant of
R0 during the intervention period, and together those three
parameters accounted for 95% of the variation in R0 during the
intervention period (Fig. S2C).
The lack of association between the proportion of early trans-

mission and the long-term reduction in HIV incidence due to ART
therefore may be understood with reference to R0. If a larger
fraction of transmission occurs during early transmission—before
individuals receive ART, limiting the impact of ART—then it also
will be true that R0 is lower, which means any intervention may
have a greater long-term impact on incidence (Fig. 4C) (36). These
two opposing influences appear to counterbalance each other,
resulting in the lack of association between early transmission and
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Fig. 1. Epidemiologic outputs for baseline model calibration and projection
without ART. (A) Posterior model calibration to adult male and female HIV
prevalence and HIV prevalence among pregnant women attending ANC.
(B and C) Posterior distribution in counterfactual simulation with no ART
provision: (B) HIV incidence rate among adult men and women; (C) mean
percentage of transmission from each stage of infection.
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Fig. 2. (A) Distribution in the percentage of transmission during early in-
fection in 2010. (B) Correlation between the relative infectiousness during
early infection (on the log scale) and the proportion of early transmission.
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the long-term impact of treatment interventions on incidence
(Fig. 3).

The Influence of Elevated Infectiousness During Early Infection. The
extent to which individuals in early infection are more infectious is
highly uncertain. However, we observe no relationship between the
parameter determining the increased infectiousness during early
infection and the long-term impact on HIV incidence of treatment
interventions. (R2 = 0%; Fig. 5A). In a secondary analysis, we
calibrated model parameters conditional on fixed values of the
relative early infectiousness, assuming that persons in early in-
fection were (i) 26 times more infectious (21), (ii) 9.2 times more
infectious (37); and (iii) had the same average infectiousness (as
assumed by ref. 5) compared with persons with CD4 >350 cells/μL
(calibration, Fig. S4; posterior distributions, Fig. S5). These dif-
ferent fixed levels for relative early infectiousness did not affect the
impact of the ART intervention on reducing incidence after 30 y
(Fig. 5B). The reason is the same as above: higher relative in-
fectiousness resulted in more early transmission in the model
and therefore lower R0 values after calibration to observed
epidemic data (Table 1).

Discussion
The share of HIV transmission during early infection and the
implications for epidemic control have attracted substantial
empirical and theoretical attention. Examining these issues
within a flexible mathematical model of a heterosexual HIV
transmission and calibrating this to the growth, peak, and decline
of a well-documented HIV epidemic have illuminated several
important concepts.
First, the fraction of transmission during early infection should be

considered a quantity that emerges from a complex interaction of
behavioral and biological factors rather than a fixed epidemiological

characteristic of a given epidemic setting (38). This quantity
changes with epidemic stage, epidemiological context, and the
stage of the HIV treatment scale-up. Empirical measurement and
comparisons of the contribution of early transmission over time
and across epidemic settings must be interpreted with these fac-
tors in mind.
Second, over the short term, the model predicted that more

early transmission would be associated with a smaller reduction
in incidence rate following the scale-up of an intervention. Thus,
the proportion of new infections arising from early infection may
be useful in interpreting the results of community-based trials of
treatment, which will measure impact on cumulative incidence
over a 2–3-y period.
Third, the proportion of transmission occurring during early in-

fection is surprisingly not predictive of the long-term impact of
treatment interventions in model simulations. This is because,
through calibration to observed data, epidemiologic parameters that
created a larger amount of transmission in early infection also gen-
erated lower values of R0. Lower values of R0 mean that the same
intervention may have a larger impact. This counterbalances the
effect that more transmission in early infection interventions weak-
ens interventions that block transmission during chronic infection.
This analysis has focused on whether the proportion of early

transmission during the current endemic stage is predictive of
the short- and long-term impact of a given intervention strategy
in a generalized, predominantly heterosexually transmitted HIV
epidemic setting. It did not evaluate what level of intervention
would be required to eliminate HIV using treatment, and so our
results are not directly comparable to studies that have evaluated
thresholds for HIV elimination using ART [e.g., Granich et al.
(5), Powers et al. (17), Hontelez et al. (8), Kretzschmar et al.
(9)]. The results also may not apply to different epidemiological
contexts; for example, concentrated epidemic settings in which
transmission occurs primarily among men who have sex with men
or persons who inject drugs. In reality, HIV incidence trends
during the ART era will depend on many other factors, including
changes in risk behavior (39, 40). The abstract representation of
sexual risk, mixing, behavior change, and future epidemiologic
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Fig. 3. Correlation between percentage of early transmission in 2010 (when
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changes may limit the usefulness of this model for projecting
specific intervention impacts and allocating resources in specific
settings compared with other models with detailed demographic,
spatial, and risk group structures.
Finally, although it is unknown by how much transmission is

elevated during early infection, this does not materially add to
uncertainty about the impact of treatment on incidence. Uncer-
tainties about other factors (especially sexual behavior and mixing)
mean that the observed epidemic may be “explained” in many ways
whatever the value for the increased level of infectiousness. It is
this latitude that drives uncertainty in estimates. Therefore, further
measurement of infectiousness during early-stage infection would
not be a priority from the perspective of informing projections of
the long-term impact of treatment.
Previous work illustrated how different patterns of heterogeneity

in sexual mixing and assumptions about changes in individual risk
behavior may give rise to very different endemic prevalence for the
same average contact rates or biological assumptions about in-
fectiousness (24, 25, 27, 41–43). This analysis considers similar ideas
from a different angle; it treated the prevalence as known and ex-
plored consistent combinations of behavioral and biological
parameters. Two behavioral parameters—the rate of transition
fromhigher- to lower-risk groups and the population-level reduction
in unprotected contact rate over time—were particularly important
for simulating the observed prevalence trend inmany different ways,
as well as determining the intervention impact. There is evidence
that reductions in risk have contributed to changes in HIV both in
South Africa (8, 33) and elsewhere (32, 44, 45). The value of R0

during the intervention period was much more predictive of the
reduction in incidence thanR0 at the start of the epidemic (Fig. 4).
This finding suggests thatmodels that appeal solely to estimates of
R0 based on initial epidemic growth rate to estimate intervention
impact or consider only uncertainty about biological determinants
of transmission, without accounting for any changes in behaviors
required to explain the peak and stabilization of the epidemic,
may not provide robust insights about the likely impact of HIV
prevention programs today, including ART.
On the other hand, the influence of calibrating the model to the

historical epidemic data for identifying plausible combinations of
parameter values that were used for projecting the long-term
consequences of the intervention suggests that predictions based
on models that simulate a plausible current epidemic level but do
not simulate a credible epidemic growth (24, 25, 46, 47) should be
treated with caution. It is not feasible to measure R0 directly in an
endemic HIV setting, but continued surveillance of all the factors
that determine R0—biological and behavioral determinants of
transmission—will be critical for understanding and projecting the
implications of control strategies, rather than relying on a single
metric, such as the proportion of early transmission.

Conclusion
Modeling illustrated that a large fraction of transmission during
early infection resulted in a smaller impact of treatment on HIV
incidence in the first few years after the intervention was introduced.
However, neither the proportion of early transmission nor the bi-
ological level of increased infectiousness was independently pre-
dictive of the long-term impact of treatment interventions. Both the
long-term intervention impact and the amount of early transmission
are dictated by the fundamental drivers of transmission—risk
behaviors in the population and how they interact with the pathogen
to determine R0.

Materials and Methods
We developed a mathematical model of heterosexual HIV transmission in
a two-sex population by using ordinary differential equations. The model
incorporates heterosexual mixing between three sexual risk groups, a realistic
representation of the natural history of HIV progression and infectiousness,
and the effect of ART on survival and HIV infectiousness. Individuals may
move among sexual risk groups, and sexual behavior may change over the
course of the epidemic.

The model was calibrated to data about HIV prevalence and ART scale-up
in South Africa by varying parameters controlling sexual behavior and in-
fectiousness during early infection in a Bayesian statistical framework. This
results in parameter combinations representing different underlying patterns
of sexual behavior that are consistentwith theobservedHIV epidemic, allowing
us to investigate how uncertainties about model parameters affect the impact
of HIV treatment interventions. Full details and model equations are available
in SI Appendix.

Mathematical Model. Population structure and sexual mixing. The model simu-
lates a two-sex adult population aged 15 and older (Fig. S6). The population
was divided into two age groups: 15–49, presumed to be a sexually active
age group, and 50 and older, assumed not to form new sexual contacts but
to possibly receive ART. Individuals enter the 15–49 population at a rate α =
0.0226 per year, move to the 50+ age group at a rate ν = 1/35 per year, and
experience natural mortality from the age 50+ population at a rate μ = 1/11.45

Table 1. Estimates of early transmission, R0, and intervention impact for fixed values for increased infectiousness during early infection

R0

Relative
infectiousness
during early infection

Transmission during
early infection when ART is

introduced (2010), % At epidemic start

During intervention
period (after

behavior change)

Reduction in HIV incidence
rate after 31 y from an ART
intervention (CD4 ≤350), %

No increase 1.9 (1.3–2.6) 8.2 (6.7–10.5) 4.1 (2.8–6.1) 21.4 (16.9–26.9)
9.2 times 11.4 (8.4–14.5) 5.8 (4.7–7.3) 3.6 (2.5–5.2) 21.8 (16.5–29.0)
26 times 18.8 (14.9–23.3) 4.6 (3.8–5.7) 3.5 (2.4–4.9) 21.2 (14.6–28.9)

Values in parentheses indicate 95% credible intervals.
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Fig. 5. The relationship between relative infectiousness during early infection
and the reduction in HIV incidence rate after 30 y. (A) Results based on sample
from posterior distribution of relative infectiousness parameter. (B) Results
from calibration of sexual behavior parameters conditional on fixed value of
relative infectiousness. In B, horizontal lines represent posterior mean.
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per year, calibrated to match the composition of the South African population
in 1990 and growth over time between 1990–2010 (48).

The sexually active population was divided into three sexual risk groups
(termed “low,” “medium,” and “high”). As a crude means of simulating
variability in sexual behavior over the life course, individuals may move from
higher- to lower-risk groups at an annual rate ψ. Each sexual risk group has
a different rate of forming new sexual contacts. A proportion of sexual
contacts is reserved to be formed within the same sexual risk group
according to an “assortativity” parameter e∈ ð0:2,  0:8Þ, and the remaining
1− e proportion of partnerships is formed randomly across the risk groups
(49). The sexual contact rate in each risk group changed over time according
to the logistic function

cg,rðtÞ = cg,rð0Þ · ð1−ΔcÞ + cg,rð0Þ ·Δc ·
1

1+ exp
�
t − ðtc +dc=2Þ

dc=10

�,

where cg,rðtÞ is the contact rate for sex g and risk group r at time t, cg,rð0Þ is
the contact rate at the start of the epidemic, Δc is the overall proportion re-
duction in contact rate, tc is the time behavior change begins, and dc is the
duration over which it occurs (Fig. S7). The rate of HIV transmission for con-
tacts between susceptible and infected persons depends on the stage of HIV
infection and ART status of the infected partner (see below) and partnership
intensity parameter depending on the risk group of each partner. The pro-
portion in each risk group, rate of movement among risk groups, relative
contact rates, partnership intensity, and change in contact rate over time were
varied in the model calibration.
HIV progression and infectiousness. HIV infection was divided into fives stages
(Fig. S8): early infection (mean 2.9 mo), CD4 >350 cells/μL (4.56 y), CD4 200–
350 cells/μL (4.60 y), CD4 100–200 cells/μL (4.17 y), and CD4 ≤100 cells/μL
(1.03 y to HIV death) (21, 50). Individuals progressed sequentially through
these five stages before experiencing HIV mortality. The baseline HIV
transmission rates per 100 person-years for the last four CD4 count stages are
4.4 (CD4 >350), 7.2 (CD4 200–350), 27.1 (CD4 100–200), and 5.1 (CD4 ≤100) (2).
For early infection, we defined a lognormal prior distribution for the relative
infectiousness during early infection compared with CD4 >350, with a mean
of 26.0 times greater infectiousness and 95% prior mass between 12.6 and
47.8 (21).
ART model. Individuals may initiate ART from any stage of HIV infection. ART is
divided into a multistage process (Fig. S9). Upon initiation, all individuals enter
a “virally suppressing” stage during which the viral load is not yet fully sup-
pressed [mean of 3 mo (51)]. Infectiousness was assumed to be reduced by half
during this stage compared with the CD4 stage from which treatment was
initiated (Table S1). Following this stage, a proportion (0.189 for CD4 ≤100,
0.067 for CD4 100–200, 0.025 for CD4 200–350, 0.0 for CD4 >350) moves to
a “very sick” stage lasting for a mean of 6.2 mo before death, reflecting ele-
vated early mortality for patients starting treatment with low CD4 cell counts
(52). The remainder of patients enter a long period of “effective ART,”
during which infectiousness is reduced by 92% compared with untreated
individuals with CD4 between 200 and 350 cell/μL (2). Individuals fail treat-
ment (rate 0.03 per year for baseline CD4 ≤200, 0.026 for CD4 200–350, 0.022
for CD4 >350) and enter a viremic stage in which they have the same in-
fectiousness as persons with CD4 100–200 (mean 2.3 y), followed by a very
sick stage before HIV death (mean 6.2 mo).

Persons on ART drop out at a rate of 0.12–0.168 per year, increasing with
CD4 count at initiation (53) (Table S2), during the first 2 y and a rate of
0.088 thereafter (54). After dropping out from treatment, persons reenter
a CD4 stage at or above that at which they initiated treatment, depending
on their duration on treatment (Table S3), but progress at twice the rate of
a treatment-naïve person. They may reinitiate treatment once. See SI
Appendix, section 1.5 for further details.

Statistical Methods. Data and likelihood. The model was calibrated to national
HIV prevalence data among pregnant women attending antenatal care (ANC)
from 1990 through 2008 (34), and HIV prevalence among men and women
aged 15–49 y was estimated in nationally representative household surveys in
2002, 2005, and 2008 (55–57) (Fig. 1A). Prevalence from the household surveys
was assumed to be an unbiased estimate of true HIV prevalence for adult men
and women. The difference between prevalence in women attending ANC
and the general female population was described by an antenatal-bias pa-
rameter γ assumed to be constant over time on the logit scale, that is

E
�
logit

�
ζA,t

��
= logit

�
ζF,t

�
+ γ;

where ζF,t is the HIV prevalence among all women aged 15–49 y at time t
and ζA,t is the prevalence among women attending ANC. The likelihood was
specified as a normal distribution around the logit-transformed prevalence
estimates with the error variance estimated by the survey SE, accounting for the
complex survey design of the ANC and household seroprevalence surveys (58).

The influence of the existing ART scale-up in South Africa on prevalence and
incidence was incorporated in the model calibration by simulating the per-
centage of adults (age 15+ years) on ART at midyear from 2005 through 2010
reported by the South African Department of Health (59) (Fig. S10). During this
period, persons with CD4 ≤200 cells/μL were eligible to initiate ART. In the
model calibration, persons with CD4 ≤100 cells/μL initiated ART at a rate eight
times higher than those with CD4 100–200 cells/μL, and women initiated ART
at rate 1.8 times higher than men to capture the median CD4 count and sex
differential observed in patients initiating ART (60).
Estimated model parameters and prior distributions. Seventeenmodel parameters
and the ANC bias parameter γ were estimated in the model calibration.
Parameters related to the natural history of infection, the effects of ART, and
demographicswere fixed basedon values from the literature as described above
(Table S4). Parametersdetermining sexualbehavior and sexualmixing,whichare
not easily relatable to directly observed measures, were estimated (Table S5).
Estimated model parameters included the increased infectiousness during early
infection relative to persons with CD4 >350 cells per μL, proportion in each sexual
risk group, mean sexual contact rate and relative contact rates for each risk
group, degree of assortativity, rate of movement among risk groups,
partnership transmission intensities, and start time of the epidemic (Table
S5). The prior distribution for the relative infectiousness during early in-
fection was lognormal (3.2, 0.34), resulting in a prior mean of 26.0 times
increased infectiousness and 95% of the prior mass between 12.6 and 47.8,
based on ref. 21. The assortativity parameter determining the proportion of
partnerships formed exclusively within the same sexual risk group was re-
stricted to between 0.2 and 0.8. The joint posterior distribution was esti-
mated by using an incremental mixture importance sample (61). See SI
Appendix, section 3.3 for further details; Fig. S1 for the marginal prior and
posterior distributions of all parameters; and Table S6 for bivariate corre-
lations between parameters in the posterior distribution.

R0 Calculation. We calculated R0(t) as the spectral radius of the next-gener-
ation matrix at time t (62). The next-generation matrix was calculated for
a given set of parameter values by using the formalism described for com-
partmental systems in ref. 63, following which eigenvalues were solved
numerically. Because the only time-varying parameter is the change in
contact rate cg,rðtÞ (described above), the value of R0 during the intervention
period, after behavior change has occurred, may be expressed as R0 at the
start of the epidemic scaled by the proportion reduction in contact rate Δc

(see SI Appendix for details):

Rinterv:
0 = Rstart

0 ·
�
1−Δc

�
:

The mathematical model was implemented in C++, and statistical calibration
was implemented in C by using the GNU Scientific Library (64). Intervention
analyses were conducted using R (65). Computer code to reproduce pa-
rameter estimation and model analyses is available for download from
github.com/jeffeaton/tasp-and-early-infection.
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