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Uncovering the quantitative laws that govern the growth and
division of single cells remains a major challenge. Using a unique
combination of technologies that yields unprecedented statistical
precision, we find that the sizes of individual Caulobacter cres-
centus cells increase exponentially in time. We also establish that
they divide upon reaching a critical multiple (~1.8) of their initial
sizes, rather than an absolute size. We show that when the tem-
perature is varied, the growth and division timescales scale pro-
portionally with each other over the physiological temperature
range. Strikingly, the cell-size and division-time distributions can
both be rescaled by their mean values such that the condition-
specific distributions collapse to universal curves. We account for
these observations with a minimal stochastic model that is based
on an autocatalytic cycle. It predicts the scalings, as well as specific
functional forms for the universal curves. Our experimental and
theoretical analysis reveals a simple physical principle governing
these complex biological processes: a single temperature-depen-
dent scale of cellular time governs the stochastic dynamics of
growth and division in balanced growth conditions.

single-cell dynamics | cell-to-cell variability | exponential growth |
Hinshelwood cycle | Arrhenius law

uantitative studies of bacterial growth and division initiated
che molecular biology revolution (1) and continue to pro-
vide constraints on molecular mechanisms (1-8). However, many
basic questions about the growth law, i.e., the time evolution of
the size of an individual cell, remain (8-13). Whether cells spe-
cifically sense size, time, or particular molecular features to initiate
cell division is also unknown (14). Answers to these questions, for
individual cells in balanced growth conditions, are of fundamental
importance, and they serve as starting points for understanding
collective behaviors involving spatiotemporal interactions between
many cells (15-18).

Cell numbers increase exponentially in bulk culture in bal-
anced growth conditions irrespective of how the size of an in-
dividual cell increases with time (1). Thus, observation of the
population is insufficient to reveal the functional form of the
growth law for a given condition. Bulk culture measurements
necessarily average over large numbers of cells, which can
conceal cell-to-cell variability in division times, sizes at division,
growth rates, and other properties (19). Moreover, the cell
cycles of different cells in the population are typically at dif-
ferent stages of completion at a given time of observation. Even
when effort is made to synchronize cells at the start of an ex-
periment, so as to have a more tightly regulated initial distri-
bution of growth phases, this dispersion can only be mitigated,
not eliminated. These considerations highlight the importance
of studying growth and division at the single-cell level.

The landmark papers of Schaechter, Koch, and coworkers (2,
20, 21) addressed issues of growth at the single-cell level, but the
(statistical) precision of these measurements was not sufficient to
characterize the growth law(s) under different conditions. There

15912-15917 | PNAS | November 11,2014 | vol. 111 | no. 45

is evidence that the growth laws for various microorganisms
under favorable conditions are exponential (14, 22-25). However,
both linear and exponential growth laws have been previously
proposed (26-29), and it is estimated that a measurement precision
of 6% is required to discriminate between these functional forms
for cells that double in size during each division period (5). This
precision is difficult to achieve in typical single-cell microscopy
studies because cell division leads to rapid crowding of the field of
view (30).

Various experimental approaches have been introduced to ad-
dress this issue (25, 31-34). Conventional single-cell measurements
on agarose pads are limited to about 10 generations, and the age
distribution of the observed cells is skewed toward younger cells
because the population numbers grow geometrically (35). Designed
confinement of cells allows observation of constant numbers of cells
without requiring genetic manipulation (25, 34). The system that we
describe here for Caulobacter crescentus allows tracking constant
numbers of single cells over many generations at constant (and, if
desired, low) number densities. This setup provides the advantages
that contacts between cells can be avoided and the environment can
be kept invariant over the course of an experiment, such that all
cells exhibit equivalent statistics. In fact, in control experiments with
this setup, we observe that cells grow at reduced rates when they
come in contact with each other. Our extensive data provide the
statistical precision needed to transcend previous studies to
establish the functional form of the mean growth law under
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different conditions and to characterize fluctuations in growth
and division.

Results and Discussion

Experimental Design. Determining quantitative laws governing
growth and division requires precise measurement of cell sizes of
growing cells under invariant conditions for many generations. We
achieved these criteria by choosing an organism that permits
control of cell density through molecular biology and microfluidics.
The bacterium C. crescentus divides into two morphologically and
functionally distinct daughter cells: a motile swarmer cell and an
adherent stalked cell that is replication competent. A key im-
provement over our earlier work (7, 36) is that the surface
adhesion phenotype can be switched on-off with an inducible
promoter. This strain, in combination with automated microscopy
in a temperature-controlled enclosure, allows measurement of
~1,000 single stalked cells for >100 generations each at con-
stant low-density (uncrowded) balanced growth conditions (S
Text, section 1 and Fig. S1).

We determine the area of each stalked cell in our 2D images
with a precision better than 2% (Methods; SI Text, section 2 and
Figs. S1 and S2). Because these cells are cylindrically symmetric
around the curved longitudinal axis, the measured areas account
for the varying width of the cell and faithfully report the cell
volumes (Fig. S3). We thus use cell areas to quantify cell sizes.
Using image processing software that we developed, we obtain
4,000-16,000 growth curves for individual cells in complex me-
dium (peptone yeast extract, PYE) at each of seven temper-
atures spanning the physiological range of the organism: 14, 17,
24, 28, 31, 34, and 37 °C.

Cell Sizes Increase Exponentially to a Relative Threshold; Mean
Growth Rate Determines Mean Division Time. Fig. 1 shows repre-
sentative data for single-cell growth. The fact that the curves are
straight on a semilogarithmic plot indicates that the growth law is
exponential (see also Fig. S4); this relation holds for all tem-
peratures studied. In other words, each growth curve can be well
fit by the form

aj(t; T) =a;(0; T)exp [k (T)t], [1]

where a;;(0; T) is the initial size of the ith stalked cell in the jth
generation, and T is the temperature. Each growth curve yields
a division time, 7;(7T), and a rate of exponential growth, x;(T)
(Fig. 2 and SI Text, section 3.1).

Fig. 2 shows the parameters in Eq. 1 for each growth curve at
each temperature. The growth and division timescales, 11( ) and
7;(T), respectively, vary proportionally (over about a fourfold dy-
namic range; Fig. 24), such that the mean growth rate and mean
division time determine each other. This fact, together with Eq. 1
suggests that the initial and final sizes of the cells should also scale
linearly with each other (with no additive offset), to be consistent
with exponential growth. We confirm experimentally that they do
(Fig. 2B), which further supports the exponential growth law (see
also ST Text, section 3.2, Table S1, and Figs. S5 and S6).

The biological significance of Fig. 2B is that cells divide when
their sizes are a constant multiple of the initial stalked cell size.
The existence of a relative size threshold is further supported
by the fact that the ratio a;(z; T')/a;(0; T) appears more tightly
regulated than a;(7; T) (Fig. S7) as their respective coefficients
of variation (SD divided by mean) are ~8% and ~20%. From
the slope of the best-fit line in black in Fig. 2B, we obtain
(a;j(7;T)/a;(0; T)) ~ exp(0.565) =1.76, where (...) indicates a
population average. This value is consistent with known aver-
age ratios of stalked and swarmer cell sizes for C. crescentus (37),
but prior measurements could not eliminate alternative single-
cell scenarios. For example, one might just as well have expected
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Fig. 1. Cell sizes (areas, a) as functions of time (t). (4) Six phase-contrast images
of a cell, all taken from a single generation at 15-min intervals, starting from
10 min after the previous division, are shown (respectively labeled I-VI). From such
images, the area of each cell as a function of time is inferred from the outlines
indicated. (B) The area is plotted as a function of time for many generations of
a single cell. The generation indicated in teal and by an arrow indicates time
period from which images in A are taken. (C) We plot measured areas on
a semilogarithmic scale to make the growth law evident. The data shown are
from 5 cells over the course of ~300 generations each in an experiment con-
ducted at 24 °C in complex medium. More than 4,000 growth curves were
obtained from ~100 cells in this experiment; only a small subset is shown here
for clarity. The image acquisition rate was 1 frame per minute.

division at constant swarmer cell size, in analogy to budding yeast
(14) or the model proposed in ref. 38 for symmetrically dividing
bacteria; in that case, the points would follow a line with a slope
of 1 and a nonzero intercept, as indicated by the red dashed line
in Fig. 2B. An important implication of the relative size thresh-
old is that there must be growth during the swarmer stage;
whether this growth occurs throughout the swarmer stage or
together with differentiation remains to be demonstrated.

Mean Division Time Decreases as Temperature Increases. We plot
the logarithm of the growth rate against the inverse temperature,
as is common for bulk culture studies (39-41), in Fig. 34. For
bulk culture studies, such plots typically deviate from a strict
Arrhenius law (a straight line in Fig. 34, corresponding to
(k) < (z(T)) ™' =A exp[-AE /kpT], where A is a temperature-
independent constant, AE is the activation energy, and kg is
Boltzmann’s constant) (40, 41) and exhibit a turnover in the
growth rate. We do not observe a turnover in the single-cell
growth rate over the temperatures studied, which span the
physiological range—the mean division time decreases as the
temperature increases over the full range (although see Ex-
treme Temperatures Reinforce the Scaling Laws for a discussion
of mortality).

The points in the range 17-34 °C fall sufficiently near
a straight line that one can use the data to estimate an effective
AFE, also known as the “temperature characteristic” (39-41). We
find AE =54.0 kJ/mol (12.9 kcal/mol), which is consistent with
previous estimates from bulk culture measurements for several
bacteria (42-44). Empirical relations have been proposed to cap-
ture the negative curvature in Fig. 34, and we show the best fit of
the form suggested by Ingraham, Ratkowsky, and coworkers (39—
41), (r)™' ~ (T =Ty)?% in Fig. 34. In that model, the “minimum
temperature” T sets the energy scale; for our data, 7 =270 K. A
series expansion shows that values in the range 260-280 K, as
tabulated for other microorganisms (40, 41), are consistent with
AE ~54 kJ/mol (see SI Text, section 4.1 for further discussion).
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Fig. 2. Proportionality of the growth and division timescales; cell size at di-
vision is a critical multiple of its initial size. Superposition of data from tem-
peratures across the physiologically relevant range (purple, 34 °GC; green, 31 °G;
orange, 28 °C; blue, 24 °C; gray, 17 °C). There are 4,000-16,000 data points for
each temperature. (A) Points are obtained by identifying division periods z;; and
fitting single-cell growth trajectories to the exponential growth law, Eg. 1. The
slope of the best-fit line (shown in black) is 0.565, which is equivalent to division
occurring when (a(r; T)/a(0; T)) ~exp(0.565) =1.76. The coefficient of de-
termination for the fit is R2 =0.98 for all temperatures. (The faint banding is
a visualization artifact rather than a feature of the data.) (B) The final area just
before division, aji(z; T), is plotted against the initial area, a;;(0), of each cell.
The data from all five temperatures are scattered around the black dashed
straight line a(z; T) =1.76 a(0). R? =0.99 for all temperatures. The red dashed
line represents division at constant swarmer cell size for comparison.

The precise values of parameters of course depend on the tem-
perature ranges used for the fits, but it is important to note that AE
is of the order of a typical enzyme-catalyzed reaction’s acti-
vation energy (45, 46).

Model for Exponential Growth. Motivated by our observations for
the mean behaviors, we consider a simple kinetic model that was
introduced by Hinshelwood in 1952 to describe exponential
growth (47). This model consists of an autocatalytic cycle of N
reactions, in which each species catalyzes production of the next
(Fig. 4). An important feature of this model is that the overall
rate constant for growth (k) is the geometric mean of the rate
constants of the elementary steps (k;) (47) (Fig. S8):

k= (kiky .. k)N, 121

Therefore, if the rates of the elementary steps vary in an
Arrhenius fashion, the overall rate constant for growth must
vary similarly. To see this, substitute k;(T) =A; exp[—AE; /kpT]
(where A; and AE; are, respectively, the collision frequency and
activation energy of reaction i) into Eq. 2:

AE + ... +AEN

1N _
An) ' exp NisT 3]

k(T)=(A4; ..
= A exp|-AE/kpT).

This equation shows that AFE is the arithmetic mean of the ele-
mentary activation energies. Therefore, if each step has an acti-
vation energy of the order of a typical enzyme reaction’s, then so
does the effective growth rate. This idea is consistent with our
measurements (Fig. 34), and is independent of the chemical
identities of X; and the value of N.

It is important to stress that the validity of the model and its
conclusions are not contingent on a specific form for the tem-
perature dependence. Although it is arguably easiest to see the
averaging of the rate in the Arrhenius case considered above, it is
generally true that the overall rate varies like the constituent
rates. For example, if the constituent rates follow the Ratkowsky
form (41), then the composite rate does as well, to leading order,
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so long as the energy scales of the individual steps are not very
disparate (SI Text, section 4.1).

Fluctuations in Cell Sizes Scale with Their Means. Given that the
Hinshelwood cycle captures the mean behaviors that we observe,
it is of interest to understand its implications for the fluctuation
statistics that we can obtain from our extensive single-cell growth
data. To this end, we recently generalized the model by assuming
that the reactions in the cycle have exponential waiting-time
distributions and showed analytically that its dynamics reduces to
those of a single composite stochastic variable (48). We term this
model the stochastic Hinshelwood cycle (SHC).

A key result of the model is that, asymptotically, fluctuations
in all chemicals in the SHC (Fig. 4) become perfectly correlated
with each other (48). Thus, the SHC makes a strong prediction
for the scaling of size fluctuations in the asymptotic limit: the cell-
size distributions from all times should collapse to a universal curve
when they are rescaled by their exponentially growing means (48).
In other words, in balanced growth conditions, the width of the size
distribution grows exponentially at the same rate as the mean
growth rate, k. This prediction is validated by our data in the
Arrhenius range, as shown in Fig. 54 (see also SI Text, section 4.2).

The SHC also makes predictions for dynamics of growth noise
in individual growth trajectories. To enable comparison with our
data, we derived the equivalent Langevin description from the
Master equation for the SHC. It is (48)

%:K(T)a(t; T)+n(t;T)\/at;T), 4]

where 7 is Gaussian white noise satisfying (y(t1; T)n(t2, T)) =
B(T)5(t; —t2), which defines B(T) (48). The first term on the
right-hand side of Eq. 4 represents the systematic exponential
growth (the “drift”) and the second term is the noise (the “dif-
fusion”). Eq. 4 shows that the noise increases in magnitude with
the area (i.e., it is “multiplicative”), and it does so in proportion
to the square root of the area. This Langevin equation contrasts
with the well-known Black-Scholes equation for multiplicative
noise (also known as geometric Brownian motion), which has
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Fig. 3. Scaling of the division-time distribution with temperature. (A) Var-
iation of the mean division time with temperature (brown, 37 °C; purple,
34 °C; green, 31 °C; orange, 28 °C; blue, 24 °C; gray, 17 °C, cyan, 14 °C; “In" is
natural logarithm). The error in the mean is less than the size of the symbols.
We estimate the effective activation barrier to be AE=54.0 kJ/mol (12.9
kcal/mol). This estimate comes from the slope of the black line, which is fit to
the data over the temperature range 17-34 °C (R? =0.97). The red dashed
line is a fit of the Ratkowsky form, (1)'1 ~(T—To)2 (41), over the entire
temperature range studied; Ty is inferred to be 270 K. We also provide
a Celsius scale (Top) for convenience; note that this scale is not linear. (B)
Probability distributions of division times from different temperatures (col-
ors are the same as in A), rescaled by the respective temperature-dependent
mean values in A, collapse to a single curve (coefficient of variation, COV,
~13%). The invariant shape of the distribution indicates that a single time-
scale, expressible in terms of the mean division time, governs stochastic di-
vision dynamics.
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Fig. 4. Hinshelwood model for exponential growth. (A) Schematic showing
the autocatalytic cycle, in which each species activates production of the
next. (B) Corresponding reactions. The size of a cell is assumed to be pro-
portional to a linear combination of the copy numbers of the species in the
cycle. In the SHC, the dwell times are assumed to be exponentially distrib-
uted; reaction propensities are indicated above the arrows in B. Note that
the effective growth rate, x, depends only on the rate constants, k;.

been invoked to explain cell-size distributions (49). In the Black—
Scholes equation, both the drift and diffusion terms scale linearly
with the dynamical variable. The square root multiplicative noise in
Eq. 4 results in the observed scale invariance of the cell-size
distribution, and the corresponding mean rescaled asymptotic
cell-size distribution is a gamma distribution (48). In contrast,
the Black-Scholes equation does not yield the observed con-
stancy of the coefficient of variation of cell sizes, and instead
predicts a lognormal cell-size distribution with a coefficient of
variation that increases as /7.

For a given initial cell size, Eq. 4 predicts that the square of the
coefficient of variation of cell sizes should fall on a straight line
when plotted against time; additionally, dimensional analysis
dictates that the slope of this straight line should be independent
of temperature when we rescale B(T') by «(T) and ¢ by (z(T)):

B(T 1 [B(T
t {() ! (5]

aT) N }
~ "a(0;T) [(x(T))] ((T))

(a(t; T))* a(0;7)

In Fig. 5B we show that this prediction is also validated by our
data, and that B(T)/{x(T))=0.0011. This value indicates that
the fluctuations around each individual exponential growth curve
are small compared with its time constant. To the best of our
knowledge, the SHC is the only microscopic model of stochastic
exponential growth to capture the statistics of individual growth
trajectories that we measure (Fig. 5 4 and B).

Fluctuations in Division Times Scale with Their Means. Next, we ex-
amine fluctuations in cell division times and their variation with
temperature. We show in ref. 48 that treating stochastic division
of cells as a first passage time problem for the cell size to reach
a critical value gives rise to additional scaling forms. The mean-
rescaled division-time distributions from all temperatures should
collapse to the same curve, because the single timescale (x(T))™,
which is proportional to (z(T)) (Fig. 2), governs stochastic di-
vision dynamics (48). This prediction is validated by our observed
division-time distributions from all temperatures (Fig. 3B). Spe-
cifically, the SHC model predicts a beta-exponential distribution of
division times for an absolute cell-size threshold and a given initial
size (48). By convolving this result with the observed initial size
distribution (Fig. 5), we can determine the expression for the di-
vision-time distribution for the observed relative size thresholding
(Fig. 2B; see SI Text, section 4.3 for details). This form provides
a good fit of the data (Fig. 3B and SI Text, section 4.3) for all
temperatures in the Arrhenius range (17-34 °C).

Extreme Temperatures Reinforce the Scaling Laws. Finally, we dis-
cuss the behavior outside of the Arrhenius range. At 37 °C, there
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is significant cell mortality. The probability of a cell surviving is
a decaying exponential function of time, corresponding to a con-
stant probability per unit time of dying of ~7% per mean cell
lifetime (see SI Text, section 5 and Fig. S9 for details). At all other
temperatures (in PYE medium), cell mortality is less than 1% for
up to 100 generations, and we do not observe any senescence
(i.e., systematic decrease in reproductive output with time) (50).
Bulk-culture measurements cannot separate the contributions
to decreased reproductive output from increased mortality and
decreased growth rates of surviving cells.

Remarkably, at both 14 °C and 37 °C, the single-cell growth
law for surviving cells continues to be exponential (Fig. S10), and
the exponential growth timescale (x(7))” continues to scale
proportionally with the mean division time (Fig. S11). In other
words, both growth and division slow together. Consequently, the
final size at division also scales proportionally with the initial size
of the cell and thus a relative cell-size thresholding scheme for
cell division continues to hold at these temperatures. The scaling
laws for mean-rescaled cell-size and division-time distributions
also continue to hold for these two temperatures (SI Text, section 5
and Fig. S11). Our results for growth at extreme temperatures
further validate the scaling predictions and show that they continue
to hold even when the growth rate deviates from the Arrhenius law.

Applicability to Other Microorganisms. Although the results pre-
sented here are for C. crescentus in complex medium, we expect
them to apply to growth and division of other microorganisms in
different balanced growth conditions. In ref. 48, we show that the
size scaling laws follow directly from exponential growth, and, as
noted in the Introduction, there is evidence of exponential
growth in several microorganisms (14, 22-25). We thus expect
the cell-size distributions of these organisms to collapse to a
single curve when rescaled by their means. The premise that
size scaling generally holds for bacteria in balanced growth
conditions was put forth long ago (51); however, it is important
to note that the size distribution in earlier studies was a con-
volution of our size distribution with the cell-cycle-phase dis-
tribution (related to our division-time distribution) because
the data were taken from images at single laboratory times for
asynchronous populations.

The fact that effective activation energies for population
growth are generally in the range of individual enzyme-catalyzed
reactions’ (45) suggests that the SHC applies broadly. Stochastic
exponential growth implies growth dynamics with a single time-
scale. The division-time distribution scales with its mean when
the exponential timescale is proportional to the mean division
timescale (48). Clearly this need not always be the case: the DNA
replication time is distinct from the doubling time for E. coli
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Fig. 5. Scaling of cell-size fluctuations within each division period. (A) The
size (area) distributions at all temperatures (purple, 34 °C; green, 31 °C; or-
ange, 28 °C; blue, 24 °C; gray, 17 °C) are plotted for three different rescaled
time points, at t/(z(T))=0,0.2, and 0.6 (marked |, II, and lll, respectively).
“In" is natural logarithm. The area distributions at each time have been
rescaled by their exponentially growing mean sizes. See also Fig. $12. (B) Re-
laxation of the COV of cell size (area) after division. The slope of the black
dashed line, which is fitted to data for all temperatures simultaneously, is 0.0011.
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under favorable nutrient conditions, as recently modeled (38). It
remains to be determined if these two timescales change propor-
tionally when temperature is varied. However, a single timescale
could still characterize growth and division of E. coli in minimal
medium, where replication and division frequency are approxi-
mately equal. The relative size threshold for division is a pre-
viously unidentified paradigm for how cell size can inform cell
division. For exponential growth, this feature is related to the
growth rate and the division time varying linearly with each other
as the temperature changes; the ratio of the joint size of the
daughter cells to the mother cell sets the proportionality constant.

Molecular Basis. How molecular interactions set the growth rate,
how they couple to the divisome and cell wall synthesis ma-
chinery, and how the associated network gives rise to SHC dynamics
remain to be determined for each exponential growth condition.
We caution against interpreting exponential growth of cell size as
necessitating a spatially uniform distribution of active growth sites on
the cell because polar growth of single Agrobacterium tumefaciens
cells has been observed to be superlinear and is potentially ex-
ponential (52). In ref. 48, we show that complex autocatalytic
networks can be systematically reduced to effective SHC models.
Therefore, the scaling laws discussed here should persist in other
conditions, even when additional molecular pathways contribute to
setting the growth rate. Previous studies argued for an N =2 cycle
composed of the global production of metabolic proteins at a rate
proportional to the numbers of ribosomal RNA and vice versa (2,
43), leading to a constant ratio of the two species (8). However, one
should not take this model literally because metabolic proteins do
not directly produce ribosomes. Judicious use of antibiotics and
alternative growth media, as in refs. 4, 9, together with our single-
cell technology, could provide important clues to contributing bio-
chemical reactions for a given condition.

Conclusions

The preponderance of recent work on bacterial growth in single-
cell studies has focused on bottom-up explorations of specific
regulatory networks (53), and some simple empirical laws con-
necting global gene expression patterns with the growth state of
the cell have emerged (9, 10). The complementary, top-down
approach of using observations at the organismic level to deduce
constraints on microscopic models (2, 3, 20, 21) has been less
popular in the last few decades. In this paper we have taken the
latter approach but now with the advantage of being able to
acquire and analyze large datasets. We have observed robust
scaling laws for cell growth and division, in addition to the ob-
servation of exponential growth of mean single-cell sizes. To
summarize, these single-cell scaling laws are as follows. i)
The growth law is exponential during balanced growth under
favorable nutrient conditions. ii) The mean division time is
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proportional to the inverse of the mean growth rate. iii) The size
of the cell at division is proportional to the initial size of the cell.
iv) The mean-rescaled division-time distribution is temperature
invariant. v) The mean-rescaled cell-size distribution from all
times and temperatures is invariant. vi) The coefficient of vari-
ation of cell sizes, for a given initial cell size, scales as the square
root of time.

To the best of our knowledge, the SHC is the simplest model
that captures all these behaviors, not just the trends of the means
but also those of the fluctuations. Additionally, we showed that
the averaging of the rate constants in the Hinshelwood cycle can
account for the energy scale implied by the temperature de-
pendence of the mean growth rate, which is on the order of
a single enzyme-catalyzed reaction’s activation energy. However,
we emphasize that the variation in Fig. 34 is not itself a scaling
law and only serves to “calibrate” how the absolute unit of time
(the mean division time) varies with the external parameter
(temperature); the scaling laws enumerated above are insensitive
to the form of the temperature dependence. Our data and the
SHC (48) show that stochastic growth and division are governed by
a single timescale, which, in turn, depends on the growth conditions.
This simple design principle is unexpected given the complexity of
a whole organism.

Methods

The experimental techniques developed here enable studies of individual
noninteracting cells in well-controlled environments for >100 generations.
We have generated a strain in which the only functional copy of the holdfast
synthesis A (hfsA) gene, which controls features required to adhere to sur-
faces, is integrated at a single chromosomal locus under the control of an
inducible promoter. As a result, we can initially induce holdfast production
until we have the desired numbers of cells sticking to the glass surface of the
microfluidic device and then flow away the remaining cells. Once the ex-
periment commences, the inducer is removed and newborn daughter cells,
upon differentiation, do not express functional hfsA and are thus unable to
stick and are flowed away. This prevents the crowding of the fields of view
that occurs in typical experiments with exponential growth.

We use phase-contrast imaging to accurately measure growth frame-by-
frame, instead of just division events. In a typical experiment, data from 20
unique fields of view are acquired at a rate of each field per minute (roughly
100,000 images in 3 days). Finally, we have developed custom software using
a combination of MATLAB and Python for automated image processing,
which is necessary for extracting quantitative information from these ex-
tensive data (~10° images for each temperature studied). See S/ Text, section
1 for further details.
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