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Algorithms, perhaps together with Moore’s law, compose the en-
gine of the information technology revolution, whereas complex-
ity—the antithesis of algorithms—is one of the deepest realms of
mathematical investigation. After introducing the basic concepts
of algorithms and complexity, and the fundamental complexity
classes P (polynomial time) and NP (nondeterministic polynomial
time, or search problems), we discuss briefly the P vs. NP problem.
We then focus on certain classes between P and NP which capture
important phenomena in the social and life sciences, namely the
Nash equlibrium and other equilibria in economics and game the-
ory, and certain processes in population genetics and evolution.
Finally, an algorithm known as multiplicative weights update
(MWU) provides an algorithmic interpretation of the evolution
of allele frequencies in a population under sex and weak selection.
All three of these equivalences are rife with domain-specific impli-
cations: The concept of Nash equilibrium may be less universal—
and therefore less compelling—than has been presumed; selection
on gene interactions may entail the maintenance of genetic vari-
ation for longer periods than selection on single alleles predicts;
whereas MWU can be shown to maximize, for each gene, a convex
combination of the gene’s cumulative fitness in the population
and the entropy of the allele distribution, an insight that may be
pertinent to the maintenance of variation in evolution.

lens of computation | complexity of equilibria |
multiplicative weights update

Information technology has inundated and changed our world,
as it is transforming the ways we live, work, play, learn, interact,
and understand science and the world around us. One driving
force behind this deluge is quite obvious: Computer hardware
has become more cheap, fast, and innovative over the past half
century, riding as it does on the exponent of Moore’s law (1).
Progress in efficient algorithms—methods for solving com-
putational problems in ways that take full advantage of fast
hardware—is arguably of even greater importance.

Algorithms have been known since antiquity. In the third
century BC Euclid wrote about his algorithm for finding the
greatest common divisor of two integers. The French scholar
G. Lamé noted in 1845 (2) that Euclid’s algorithm is efficient,
because it terminates after a number of arithmetic operations
that grow proportionately to the length of the input—what we
call today the number of bits of the two numbers. [In fact, one of
the very few works on the subject of algorithms that have been
published in PNAS is a 1976 article by Andrew Yao and Donald
Knuth, revisiting and refining that analysis (3).] In the ninth
century CE, the Arab mathematician Al Khwarizmi codified
certain elementary algorithms for adding, dividing, etc., decimal
numbers—the precise algorithms we learn today at elementary
school. In fact, these simple and powerful algorithms were a
major incentive for the eventual adoption of the decimal number
system in Europe (ca. 1500 CE), an innovation that helped
precipitate a social and scientific revolution comparable in im-
pact to the one we are living in now.

The study of efficient algorithms—algorithms that perform the
required tasks within favorable time limits—started in the 1950s,
soon after the first computer, and is now a very well-developed
mathematical field within computer science. By the 1960s,
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researchers had begun to measure algorithms by the criterion of
polynomial time, that is, to consider an algorithm efficient, or
satisfactory, if the total number of operations it performs is al-
ways bounded from above by a polynomial function (as opposed
to an exponential function) of the size of the input. For example,
sorting n numbers can be done with about nlogn comparisons,
whereas discovering the best alignment of two DNA sequences
with n nucleotides can take in the worst case time proportional to
n? (but can be performed in linear time for sequences that do
align well); these are both considered “satisfactory” according to
this criterion.

Search Problems

What are the limits of computation? In his 1936 paper that is
considered the founding act of computer science (4), Alan M.
Turing showed that there are perfectly well-defined computa-
tional tasks for which no algorithms are possible (example: Will
a given program loop forever?). Computer scientists have been
aware of this fundamental limitation of computation from the
very start and became used to steering clear of it. However,
during the 1960s, researchers in algorithms started encountering
“impossible” problems of a different nature. These problems
were search problems, in that they shared the following form:
Given an input, call it x, find a solution y such that x and y stand
in a particular relation to each other that is easy to check. Some
of these problems can be solved satisfactorily by algorithms,
whereas others seem to require exponential time for their solu-
tion. Here are a few illustrious examples of both kinds:

i) Shortest path: Given the pairwise distances in miles be-
tween n cities, find a path from the first city to the last city
that is shorter than M miles (a given integer), or report that
none exists. (An optimization problem, such as this and
several other problems in this list, can be transformed into
an equivalent search problem, by supplying a limit; thus,
the study of search problems encompasses optimization.)

i) Traveling salesman problem: Given the pairwise distances
in miles between 7 cities, find a path from the first city to
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the last city, visiting all other n — 2 cities on the way, that is
shorter than M miles, or report that none exists.

iii) Partition: Given a list of whole numbers, for example 112,
54,224,156, 87, 34, 171, 114, 56, and 162, find a way to split
them into two parts that have the same sum, or report that
no such splitting exists.

iv) Partition into pairs: Given a list of 7 whole numbers, say the
10 numbers 112, 54, 224, 156, 87, 34, 171, 114, 56, and 162,
find a way to split them into 7 /2 pairs so that all pairs have
the same sum, or report that none exists.

v) Clique: Given a large network—perhaps the friendship
graph of a social network connecting 1,000,000 people—
find a clique of m points (that is, m people, any two of
whom are friends), or report that none exists.

vi) Min-cut: Given the same large network, find a cut of m
points, that is, m points whose removal would disconnect
the network, or report that none exists.

vii) Hamilton path: Given a large network, find a path through
the network that visits all points without ever repeating
a point, or report that none exists.

viii) Euler path: Given a large network, find a path that visits all
lines without ever repeating a line, or report that none exists.

ix) Linear programming: Given a set of m linear inequalities in
n variables, find a vector of n reals satisfying them all, or
report that none exists.

x) Integer linear programming: Given a set of m linear inequal-
ities in » variables, find a vector of » integers satisfying them
all, or report that none exists.

Nondeterministic Polynomial Time, Polynomial Time, and
Nondeterministic Polynomial Time Completeness

There is an important mystery clouding search problems: Of the
10 problems presented above, 5 (problems i, iv, vi, viii, and ix)
can be solved by efficient—that is to say, polynomial time—
algorithms, and so can a plethora of other search problems. In
and x, but many others as well) seem to be “immune” to efficient
algorithms. Some of these problems have been attacked for
decades by algorithms researchers, albeit without success. Nat-
urally, all of these 10 problems, as well as all search problems,
can be solved in exponential time by exhaustively enumerating all
possible solutions for the given input.

A momentous question arises: Are there search problems that
cannot be solved in polynomial time? Or can all search problems,
however complex, be somehow solved efficiently? Can exhaustive
search always be telescoped? Most computer scientists strongly
suspect that the answer is “no” (see ref. 5 for a recent exposi-
tory book on this subject). That is, we believe that the dividing
line illustrated in the case of the 10 search problems above is
real, and problems ii, iii, v, vii, and x cannot be solved in poly-
nomial time.

In computer science one argues about the capabilities and
limitations of algorithms by considering classes of problems and
contemplating the relationships between such classes. For ex-
ample, NP denotes the class of all search problems. (The his-
torical term NP stands for “nondeterministic polynomial time.”
Nondeterminism is a fictitious ability of a computing machine to
guess correctly, a formalism that had origins in automata theory
and was quite mainstream in computer science during the 1960s
and 1970s. Nondeterministic polynomial time delimits precisely
the search problems, because a machine with this ability, given
an input, can guess the correct solution, if it exists, and verify it,
all in polynomial time.) In contrast, P (polynomial time) denotes
the class of all search problems that can be solved efficiently.
Looking back at the 10 search problems, they all lie in NP, but
only problems i, iv, vi, viii, and ix are known to be in P.
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One can now state the widespread suspicion that not all
search problems can be solved in polynomial time as a mathe-
matical conjecture:

Conjecture 1. NP # P.

Proving this important conjecture has eluded computer sci-
entists and mathematicians for almost half a century and remains
one of the deepest and most fundamental open problems in
mathematics, and science more broadly, today.

During the long wait for the proof of this grand conjecture,
almost all computer scientists have been proceeding with the
working hypothesis that NP#P, and therefore certain search
problems must require exponential time. However, exactly which
problems require exponential time? And how can one tell?

A major advance in this front has been a strikingly compre-
hensive answer to these questions:

the following sense: Either they can all be solved in polynomial time
or none of them can. Furthermore, they can be solved in polynomial
time if and only if NP = P.

This result was proved in 1972 by Richard Karp (6), building
on work by Stephen Cook (7); Leonid Levin (8) had independently
arrived at similar results. Search problems that have this property
(that is, can be solved in polynomial time only if NP = P) are called
NP-complete.

To establish that a particular problem is NP-complete entails
the use of a specialized kind of algorithm called a reduction: A
reduction R from search problem A to search problem B is a
polynomial algorithm R, which, given an input x to problem A,
transforms it into an equivalent input R(x) to problem B.
“Equivalent” here means that any solution of R(x) can be easily
transformed to a solution of the original input x to problem A.

Total Search Problems

It has been known almost since the inception of NP-complete-
ness that, in principle, there are many search problems that lie
between P and the NP-complete problems (9)—unless, of
course, NP = P, in which case there is nothing between P and the
NP-complete problems. And yet the vast majority of search
problems one encounters in practice can be classified as either
belonging to P or being NP-complete. During the past four
decades, literally thousands of search problems originating from
diverse areas of computer science; mathematics; engineering;
and the natural, social, and life sciences have been shown
through appropriate reductions to be NP-complete, and there-
fore, presumably, intractable, whereas many others have been
successfully solved by polynomial time algorithms. This meth-
odology for classifying search problems has been a key ingredient
of our computational way of understanding the world.

Only a few search problems have resisted such classification;
most of them are of a variety known as “total.” A total search
problem is a search problem for which it is known a priori that at
least one solution of the kind sought always exists, for any pos-
sible input—and hence the only challenge is to find it. One im-
portant example of a such a problem is Factoring: Given an
integer, find its factorization into prime factors; once such a list
of prime factors is provided, it can be readily checked in poly-
nomial time whether they are indeed prime (10) and whether
their product is the input integer. The search problem Factoring
is total because a solution (prime factorization) exists for any
input (integer). It is a well-known difficult problem—in fact,
widely used cryptographic systems are based on the presumption
that it is intractable (11). And yet, it is not known to be NP-
complete, and in fact researchers do not expect it to be. The
reason is that, informally, NP-complete problems such as Clique
draw much of their difficulty from the fact that a solution may
fail to exist (a network may or may not possess a clique of the
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desired size). As a result, there seems to be no way to reduce an
NP-complete problem such as Clique to a total problem such as
Factoring. A completely different way is needed to establish the
difficulty of hard total search problems.

During the 1980s and 1990s, a principled way was developed
for classifying total search problems in terms of their proofs of
totality. Every total search problem is in essence an existence
theorem stating that, for every input, there exists a solution that
stands in a special relationship to that input, and this existence
theorem must possess a proof. Unless the total search problem is
easily solvable in polynomial time, this existence proof must
contain at least one particular step that is “not polynomially
constructive,” typically a simple combinatorial argument on an
exponentially large object such as a graph. Thus, one can group
together search problems according to the nature of this non-
constructive step in their proofs of totality. As it turns out, there
are a fairly small number of nonconstructive steps one encoun-
ters in the known total search problems, giving rise to a few
complexity classes lying somewhere between P and NP: These
classes are known as polynomial parity argument (PPA), the
polynomial pigeonhole principle (PPP), polynomial parity argu-
ment for directed graphs (PPAD), and polynomial local search
(PLS); see, for example, ref. 12.

One of these nonconstructive arguments is the PPAD. Recall
that a directed graph is a finite set of points connected by arrows.
A point in this graph is balanced if the number of outgoing
arrows equals the number of incoming arrows; otherwise it is
unbalanced. Suppose now that one is presented with a directed
graph, and one notices that one of its points is unbalanced. It is
clear that there must be another unbalanced point somewhere in
the graph—simply because the sum of incoming arrows over all
points must equal the sum of outgoing arrows. The question is,
How does one find this other unbalanced point? Naturally, one
can inspect every other point until one discovers a point that is
unbalanced. However, what if this graph is huge? What if it is
an exponentially large graph, and the arrows are provided by
an algorithm?

This is the essence of the class PPAD: search problems whose
existence of solution is guaranteed by virtue of an exponentially
large directed graph, implicitly represented through an algo-
rithm, plus one given unbalanced point of the graph (formal
definition in SI Text). Many problems are known to be PPAD-
complete; perhaps the most fundamental such problem is related
to Brouwer’s theorem: Every continuous function from a convex,
compact set to itself has a fixed point. The question is, If one is
given such a function, how does one find this fixed point, even
approximately? This problem was shown in ref. 12 to be PPAD-
complete. As we shall see in the next section, fixed-point argu-
ments lie in the basis of fundamental results in economics.

The class PLS, on the other hand, is a genre of total search
problems whose proof of totality is based on another elementary
property of directed graphs: Either a finite directed graph has
a cycle or else it must have a sink, a point with no outgoing
arrows. The reason is again elementary: If there is always an
arrow out of every point we encounter, then by following arrows
we must sooner or later close a cycle (because the graph is fi-
nite). The absence of cycles can be guaranteed by a potential
function p mapping points to the real numbers. If every arrow
from point a to point b satisfies p(a) >p(b), then clearly a cycle
cannot exist. A problem in PLS is presented by such a directed
graph, again implicitly represented by an algorithm that encodes
the arrows and the function p (precise definitions in SI Text). Any
sink is sought. This class captures local energy minima in physics
or local maxima of fitness landscapes in evolution. Whereas
physicists and evolutionary biologists often speak about a process
“getting stuck” at a local optimum, from the algorithmic point of
view it turns out that, by all available evidence, getting stuck at
a local optimum may be an exponentially difficult task.

Papadimitriou

We are now ready to articulate two hypotheses that are our
point of departure:

Conjecture 2. PPAD # P.

Cop{jecture 3.PLS #P. ) )
hese two conjectures are stronger than Conjecture 1, in that

they may fail to hold even if NP # P. The reasons why we believe
them true are similar to the grand conjecture: Many researchers
have tried hard for a long time to develop polynomial time
algorithms for many problems in these classes, albeit without
success. Besides, exponential lower bounds for very natural kinds
of algorithms for these problems are actually known (13, 14).
And it seems counterintuitive that there is always a way to
telescope the search through all points of an exponentially large
directed graph, to zero in the other unbalanced node, or the sink,
that is sought.

Complexity in Economics

In the balance of this paper we focus on one particular mode of
application of the theory of algorithms and complexity reviewed
in the previous sections, namely on its role in enhancing our
understanding of phenomena and problems in the natural, social,
and life sciences; this role has often been termed “the lens of
computation.” In this section we consider game theory and
economics.

Games. Games are mathematical thought experiments used in the
study of rational strategic behavior in the social sciences; here we
briefly recall the basic concepts and notation of the theory of
games, which are useful in this and the next section. A game
consists of a finite number of players; for each player, a finite set
of actions or strategies; and a utility function assigning to each
choice of actions, one by each player, a real number corre-
sponding to the gain obtained (or loss suffered, if negative) by
player i if the players choose these actions. For example, the
game shown below involves two players, the row player R and the
column player C, each with two strategies. This game is of a
simple kind known as two-player zero-sum games; the utilities
shown are those of R, whereas the utility of C at each action
combination (entry of the table) is the negative of that shown. In
other words, once the two players choose an action, the column
player pays the row player the amount shown:

What would two rational players do in this situation? Game
theory has a rather sharp prediction for two-player zero-sum games,
first stated by John von Neumann in 1928 (15): In this particular
example, it turns out that R will play row 1 with probability
x1=3/7 and row 2 with probability x, =4/7. This is her maxmin
mixed strategy, a randomized action that “exposes her” as little
as possible to C’s minimizing choice. Player C will play with
probabilities y; =2/7, y,=>5/7 (his minmax strategy). The value
of this game—that is to say, the expected amount of money that
will change hands if both players play as predicted—can now be
easily calculated to 1/7.

How does one compute the maxmin/minmax pair of a large
zero-sum game? It has been known for a long time that this can
be done through linear programming (16); see also ref. 17 for the
latest on this equivalence. Here we explain a very simple and
intuitive alternative method, known as the multiplicative weight
update (MWU) algorithm: Imagine that the two players play the
game shown above repeatedly, say starting with the uniform
distribution where all strategies are played with probability
1/2. Suppose that, at each repetition, R computes the expected
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payoff of each of her two strategies and then boosts the
probabilities of strategies that do better than average, while
diminishing the probabilities of the others, whereas C plays his
best response to that. Concretely, assume that, if player R plays
her ith strategy at repetition ¢ with probability x; and gets from
playing it expected payoff U! (a positive or negative number,
a linear function of the opponent’s probabilities), then R will
play next time the ith strategy with probability x/*! given by the
formula

xf+l=%x’-(l+e-Ui’), [1]

where €>0 is a small parameter and Z'=) ,x- (1+€-U) is a
normalizing term selected to keep the probabilities adding to

one. Player C chooses the strategy with smallest expectation:

t 1 2 3 10 20 29 30

xi 04950 0.4900 0.4850 0.4502 0.4352 0.4253 0.4375

We show in the above table a few repetitions of MWU with
€=.01. Note that the process seems to converge to R’s maxmin
strategy x; =3/7 ~0.4285. Indeed, MWU, a seemingly very primi-
tive and common-sense method, can be proved to solve this
problem (along with many other more sophisticated problems
in computer science; for example, ref. 18). (However, MWU is
not, strictly speaking, a polynomial time algorithm for the two-
player zero-sum game problem according to our criteria, but a
compromise termed the polynomial time approximation scheme.)

We have so far discussed two-player zero-sum games, one of
the simplest kinds of games. Coordination games are even sim-
pler: In a coordination game the utilities of the players are
identical (instead of opposite). That is, whereas zero-sum games
model situations of total conflict, in a coordination game there is
no conflict whatsoever, and the players need only to agree on an
advantageous action combination. Such games are interesting
when the players cannot communicate or are cognitively weak;
they turn out to be important in the next section, when games are
played by genes.

Nash Equilibrium. In games with more than two players, or games
with two players whose utilities are not exactly opposite, von
Neumann’s theorem no longer applies and a minmax/maxmin
mixed strategy pair is not guaranteed to exist. In 1950, John F. Nash
introduced a somewhat weaker prediction, which, however, is
also very stable and compelling and turned out to be extremely
influential: A Nash equilibrium in a game is a mixed strategy by
each player, such that none of the players can attain a better
expected payoff by changing the corresponding mixed strategy.
Note that the minmax/maxmin pair of a zero-sum game is a Nash
equilibrium, and so Nash equilibria generalize maxmin/minmax
pairs. However, and in contrast to the situation in zero-sum
games, a game may have several distinct Nash equilibria resulting
in different payoffs for the players.

The Nash equilibrium is the central solution concept (that is to
say, prediction of behavior) in game theory, the golden standard
against which all others are judged (for example, the discussion
in ref. 19, chap. 12). Furthermore, as Roger Myerson argued
(20), the Nash equilibrium and the conception of rationality that
it entails lie at the foundations of all of modern economic thought.
Remarkably, John F. Nash showed in 1951 (21) the following
important result, considered by many the beginning of modern
game theory:

Theorem 2. All games have a Nash equilibrium.

Before Nash’s result, only two-person zero-sum games were
known to be so endowed, by virtue of von Neumann’s minmax
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theorem, as we have seen. The universality imputed by Theorem 2
is a crucial part of the importance and impact of the Nash
equilibrium: Again according to Myerson (22), no solution
concept can be taken seriously if it is vacuous for some games.

It is natural then to ask whether one can compute a Nash
equilibrium for a given game and do so efficiently, that is, in time
polynomial in the game’s description. Because groups of players
are supposed to attain this pattern of play in real life, there should
be a way to simulate the process by a computer in less than astro-
nomical time. Unfortunately, unlike in two-player zero-sum games,
there is no known polynomial time algorithm for finding a Nash
equilibrium in a general game; for example, the MWU does not
converge to a Nash equilibrium in games that are not zero sum (23).
Researchers have been trying for decades to develop algorithms
for this problem [in fact, the first paper published in PNAS
bearing the term “algorithm” in its title is an article by the mathe-
matician H. W. Kuhn in 1954—not too long after Nash’s theorem—
proposing an algorithm for this problem, which, however, turned
out to be exponential (24)], and yet the question has been open:
Can this important object be computed efficiently?

The following relatively recent result (25) has devastating
implications in this regard:

Theorem 3. Finding a Nash equilibrium for a given game is
PPAD-complete.

Thus, if one assumes Conjecture 2, there are families of games
for which finding a Nash equilibrium requires time growing
faster than any polynomial—that is to say, games in which the
equilibrium promised by Nash’s theorem is not realistically ac-
cessible. The important universality property of the Nash equi-
librium becomes suspect on computational grounds. In fact,
Theorem 3 holds even if there are only two players (26) or if one
wants to find only an approximate Nash equilibrium; finding an
exact equilibrium is even harder (27). Nash proved his theorem
by invoking Brouwer’s fixed-point theorem; the PPAD-complete-
ness proof in ref. 25 goes in the opposite direction, in that it exhibits
a reduction from the problem of finding a Brouwer fixed point to
that of finding a Nash equilibrium; see ref. 28 for an accessible
exposition of the result and the proof.

Market Equilibria and Complexity. Nash’s 1951 proof provided in-
spiration for a celebrated result in economics, the Arrow-Debreu
theorem (29), establishing the existence of price equilibria in
economies with perfect competition, thus resolving a fundamen-
tal problem first articulated almost a century before by Walras
(30). A price equilibrium is a set of prices, one for each good,
which, intuitively, motivates all producers and all consumers to
behave in such a way that the market clears (there is no excess
supply or excess demand). It implies that in such economies
there are allocations that are Pareto efficient, a coveted concept
of optimality in economics, meaning that there is no other al-
location in which all agents fare better. Like Nash’s, the proof of
the Arrow—Debreu theorem also relies on Brouwer’s theorem
[more precisely, on a variant known as Kakutani’s theorem (31)].

Again, no efficient algorithms are known for actually finding
these prices, despite important algorithmic work by Herbert
Scarf (32) and many others. Recently the following result was
shown (33):

Theorem 4. Finding equilibrium prices in an economy is PPAD-
complete even for an exchange economy (no production) with concave
constant elasticity of substitution consumer utilities (a class of
simple and well-behaved utility functions).

The Arrow-Debreu theorem assumes an economy of perfect
competition between producers as well as consumers of goods. It
also assumes that both consumer preferences and production
constraints have a crucial convexity property. Convexity of con-
sumer preferences is a reasonable assumption, as it predicts that
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a consumer’s appetite is saturated with increased consumption.
In contrast, the convexity assumption in production is unrealistic,
because it rules out a feature of most industries and production
technologies, namely economies of scale. In markets exhibiting
economies of scale in production—that is to say, in any realistic
market—the Arrow-Debreu theorem does not hold: A price
equilibrium, or a Pareto-efficient allocation, may fail to exist.

By using the theory of NP-completeness, it was shown in ref.
34 that such markets may harbor a different—sinister—kind of
equilibrium: A complexity equilibrium is an allocation in the
economy (production levels for the industries, consumption
levels for the consumers) that clears the market, but has the
following inauspicious properties: (i) the allocation is not
Pareto optimum, in that there is a better allocation in which
all agents have much better utility; (ii) however, finding this or
any other better allocation is an NP-complete problem—and
therefore, unless P=NP, no market mechanism, price or other-
wise, can discover it.

Theorem 5. There are infinite families of markets with convex con-
sumer utilities, but with economies of scale in production, which
have complexity equilibria.

Finally, in ref. 35 a complexity result is shown concerning price
adjustment mechanisms in an exchange economy (the special
case of a marketplace without production). A price adjustment
mechanism is any function that sets the prices of goods by taking
into account the observed excess demand, but also the past
history of prices and excess demands. There is an extensive lit-
erature proposing price mechanisms that eventually attain a
price equilibrium (36-40). The results in ref. 35 establish that
such mechanisms cannot converge in any feasible number of
iterations. In particular, the following is shown, among other
results in the same vein:

Theorem 6. For any price adjustment mechanism A and any func-
tion f from the reals to the integers, there is an exchange economy
with three goods and a unique price equilibrium on which A takes
more than f(€) iterations to find prices that are within & of the
price equilibrium.

Note that, unlike all other complexity results presented here,
Theorem 6 is an unconditional complexity result, in that it does
not rely on complexity assumptions such as Conjecture 1.

Algorithms, Complexity, and the Theory of Evolution
Evolution is today a powerful, mature, and comprehensive the-
ory, articulating rigorously many of Darwin’s brilliant ideas (41)
and informed not only by a deluge of molecular data, but also by
modern population genetics, mathematics, and statistics; see, for
example, ref. 42. Still, there are several important facts about
evolution that lack a thorough explanation within the theory. For
example, (i) sex and recombination are nearly ubiquitous in life,
even though they bring concrete disadvantages to individuals and
populations (such as the dilution of genetic inheritance from
each parent and the breakup of successful combinations), and
there is no agreement on how these disadvantages are counter-
balanced (43, 44); and (ii) current theory predicts that het-
erozygosity (the probability that two genomes will differ at a
particular genetic locus) should be small and roughly proportional
to the effective population size, a prediction not confirmed by ge-
netic evidence (45). We next review recent and current research
pointing out some interesting connections between the theory of
algorithms and complexity and the theory of evolution, which may
have some relevance to these questions.

Evolution as an Algorithm. One of the cornerstones of the modern
theory of evolution is the mathematical model proposed by
Ronald Fisher and Sewall Wright almost a century ago and now
broadly established as the standard mathematical formalism of
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evolution (46). It assumes a population of genotypes, in which
the genotype frequencies evolve under selection. The latter is
modeled by a fitness function that assigns to each genotype g a
nonnegative real number wy, its fitness, standing for the expected
number of offspring by individuals of this genotype. We make
here some common assumptions that simplify the mathematics:
infinite population, discrete generations, random mating, and
free recombination. Finally, we assume a haploid population; we
briefly discuss diploidy later. It is then straightforward to write
equations that calculate the genotype frequencies in the next gen-
eration from the genotype frequencies in the current generation.

Let us further assume that the fitness coefficients w, for ge-
notype g are of the form w, =1+ 56, for some very small positive
number s < 1 called the selection strength and J, s satisfying
|6,| <1; we call §, the differential fitness of genotype g. This
weak selection assumption is the mathematical articulation of
the broadly held belief by evolutionary biologists that selection
forces are typically small, and thus evolution is nearly neutral
(47). In weak selection, a theorem due to Nagylaki (48) estab-
lishes that evolution proceeds within O(s) of linkage equilib-
rium, that is, the regime in which the genotype frequencies
are a product distribution: The frequency f; of genotype
g=(1,-..,jm), where m is the number of genes, is equal to
[T i), where x;(7) =37, 4z fiir...) 18 the frequency of allele
i of the first gene in the population. It is shown in ref. 49 that,
suppressing O(s) additive terms (recall our assumption that
s < 1), the equation governing the change in the frequency
x;(j) of the allele j of gene i in the population from generation
t to generation ¢+ 1 becomes

X7 ) = () (1 +a{(7). !

where Al(j) is the expected differential fitness among genotypes
that contain allele j at locus i.

Note now the remarkable similarity between Eq. 2 and the
multiplicative updates algorithm in Eq. 1:

Theorem 7. Under weak selection and as s — 0, the Fisher-Wright
equations become identical to the equations of a repeated co-
ordination game, in which the players are the loci, rounds of play
correspond to generations, the actions available to each player/locus
are its alleles, the current probability of play of an allele by its locus
is the frequency of the allele in the population at the current gen-
eration, the utility of each locus is the organism’s fitness, and the
probabilities of play are updated by each locus at each generation by
the MWU algorithm, where the parameter ¢ is equal to the selection
strength s.

This equivalence, pointed out recently in ref. 49, has some
intriguing implications. First, MWU is well known in computer
science to be a simple, common-sense, and yet astonishingly pow-
erful algorithm, able to solve many sophisticated problems (18).
Therefore, it is quite telling that it appears to capture the evolution
of the genetic statistics of populations under sex. Second, as pointed
out in ref. 49 there is a dual view of MWU as an algorithm through
which, at each generation, each locus acts as if it were seeking to
maximize the sum of two objectives: One is the cumulative expected
fitness over all past generations, and the other is the entropy of
the current allele distribution of the locus. In other words, main-
tenance of genetic diversity is a large part of what this process
seems to be about. (Of course, at equilibrium all diversity will be
lost; however, it is quite intriguing that its maintenance is center
stage in this interpretation.) Finally, because it is recombination
that brings MWU into play, this point of view may be of some
relevance to the role of sex in evolution.

What if the organism in question is diploid (like all of us)? The
MWU point of view is still valid, but the dual interpretation
changes in an interesting direction: Each gene seeks to optimize the
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sum of three terms. The first two are, as before, the population’s
cumulative expected fitness and the entropy of the gene’s allele
distribution. The third term is new: the population’s expected cu-
mulative fitness conditioned on this gene being heterozygous, that
is, having two different alleles.

Selection on Allele Combinations Across Loci. We conclude with
a brief account of current work with Costis Daskalakis and Adi
Livnat relating the speed of allele fixation with the complexity
class PLS defined in Total Search Problems (more detailed ex-
position in SI Text). Continuing in the model of the previous
section, in the literature it is often assumed further that the loci
contribute additively to fitness. This means, if for simplicity we
assume that there are two loci, that there are numbers g; and &;
associated with the alleles of the two loci in our model (standing
for the contribution to fitness of allele i of the first locus and of
allele j of the second, respectively) so that f; =g; +A;. Similarly
for more loci, this assumption of additivity implies that selection
acts on individual alleles and simplifies the analysis of evolution
considerably. For example, it follows easily from additivity that, if
the allele i of a locus has the highest fitness contribution #;, with
an advantage of A over the second-highest allele fitness, then allele
will be fixed after O(1/A) generations. This calculation is used
often in the study of evolution.

Sewall Wright believed that combinations of alleles are key
to evolution, whereas recent consideration of the nonaccidental
nature of mutations suggests that selection on allele combina-
tions may be a more realistic model of evolution (50). To go
one small step beyond the additivity assumption, let us assume
that the fitness of a genotype is the sum of fitness contributions
associated not with single loci, but with pairs of loci (precise
formulation of the model is in SI Text). The following can be
shown [a similar result was shown independently by Artem
Kaznatcheev (51)]:

Theorem 8. Under Conjecture 3, there are fitness functions that are
additive on pairs of loci such that alleles are fixed only after a
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number of generations that grow faster than any polynomial in the
number of loci.

Thus, variation may persist in selection exponentially longer
than predicted by arguments based on individual gene contributions
to fitness. In view of this result, it is of interest to determine how
“common”—likely to arise in nature—are fitness functions such as
these, and this is at present an interesting open problem.

Discussion

Computation is barely seven decades old, and yet its spirit is
much older. Latent computational processes underlie much of
the world—and certainly the models we have built over the
centuries for understanding it. The methodology, techniques,
and mindset developed by computer scientists during the past
century for the express purpose of grasping the capabilities and
limitations of computers have yielded unexpectedly apt insights
in a broad spectrum of scientific endeavors. Phase transitions in
statistical physics have been usefully linked to the speed of
convergence of certain randomized algorithms (52), and even
quantum mechanics are presently revisited and revised with
computation in mind (53). Here we focused on how the theory of
computational complexity developed over the past four decades
to help us comprehend why so many practical problems seem to
be resistant to efficient solution by computer can be relevant to
important questions in the social and life sciences, such as the
meaning of equilibria in economics and game theory,and the
paradox of heterozygozity in evolution. Further, the evolution of
the allele frequencies in a population can be reinterpreted as a
game played by genes through a powerful and well-known learning
algorithm. I expect that computational insights will continue to
prove relevant and useful to more areas of science, even to the
scientific field that motivated the beginning of computation (4) and
whose object of study is undoubtedly the most explicitly computa-
tional of all: understanding the brain.
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