Abstract
The exact pathway whereby the initial catabolism of the adenine nucleotides proceeds from AMP and the possibility of a recycling of adenosine were investigated in human erythrocytes. Adenine nucleotide catabolism, reflected by the production of hypoxanthine, is very slow under physiologic conditions and can be greatly increased by suppression of glucose or alkalinization of the medium. Experiments with inhibitors of adenosine deaminase and adenosine kinase demonstrated that under physiologic conditions the initial catabolism of AMP proceeds by way of a deamination of AMP, followed by dephosphorylation of inosine monophosphate, and that no recycling occurs between AMP and adenosine. Under glucose deprivation, approximately 75% of the 20-fold increase of the catabolism of the adenine nucleotides proceeded by way of a dephosphorylation of AMP followed by deamination of adenosine, and a small recycling of this nucleoside could be evidenced. Inhibition of adenosine transport showed that the dephosphorylation of AMP occurred intracellularly. When the incubation medium was alkalinized in the presence of glucose, the 15-fold increase in the conversion of AMP to hypoxanthine proceeded exclusively by way of AMP deaminase but a small recycling of adenosine could also be evidenced. The threefold elevation of intraerythrocytic inorganic phosphate (Pi) during glucose deprivation and its 50% decrease during alkalinization as well as experiments in which extracellular Pi was modified, indicate that the dephosphorylation of red blood cell AMP is mainly responsive to variations of AMP, whereas its deamination is more sensitive to Pi.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht V., Roigas H., Schultze M., Jacobasch G., Rapoport S. The influence of pH and methylene blue on the pathways of glucose utilization and lactate formation in erythrocytes of man. Eur J Biochem. 1971 May 11;20(1):44–50. doi: 10.1111/j.1432-1033.1971.tb01360.x. [DOI] [PubMed] [Google Scholar]
- Askari A. Modifying effects of anions on the alkali-cation-activated AMP deaminase of human erythrocyte. Mol Pharmacol. 1966 Nov;2(6):518–525. [PubMed] [Google Scholar]
- Askari A., Rao S. N. Regulation of AMP deaminase by 2,3-diphosphoglyceric acid: a possible mechanism for the control of adenine nucleotide metabolism in human erythrocytes. Biochim Biophys Acta. 1968 Jan 8;151(1):198–203. doi: 10.1016/0005-2744(68)90174-5. [DOI] [PubMed] [Google Scholar]
- Bontemps F., Van den Berghe G., Hers H. G. Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes. Proc Natl Acad Sci U S A. 1983 May;80(10):2829–2833. doi: 10.1073/pnas.80.10.2829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carson D. A., Wasson D. B. Characterization of an adenosine 5'-triphosphate- and deoxyadenosine 5'-triphosphate-activated nucleotidase from human malignant lymphocytes. Cancer Res. 1982 Nov;42(11):4321–4324. [PubMed] [Google Scholar]
- Crabtree G. W., Henderson J. F. Rate-limiting steps in the interconversion of purine ribonucleotides in Ehrlich ascites tumor cells in vitro. Cancer Res. 1971 Jul;31(7):985–991. [PubMed] [Google Scholar]
- Hartwick R. A., Brown P. R. The performance of microparticle chemically-bonded anion-exchange resins in the analysis of nucleotides. J Chromatogr. 1975 Oct 29;112:650–662. doi: 10.1016/s0021-9673(00)99994-1. [DOI] [PubMed] [Google Scholar]
- Henderson J. F., Brox L., Zombor G., Hunting D., Lomax C. A. Specificity of adenosine deaminase inhibitors. Biochem Pharmacol. 1977 Nov 1;26(21):1967–1972. doi: 10.1016/0006-2952(77)90003-x. [DOI] [PubMed] [Google Scholar]
- Henderson J. F., Paterson A. R., Caldwell I. C., Paul B., Chan M. C., Lau K. F. Inhibitors of nucleoside and nucleotide metabolism. Cancer Chemother Rep 2. 1972 Nov;3(1):71–85. [PubMed] [Google Scholar]
- Henderson J. F., Zombor G., Burridge P. W., Barankiewicz G., Smith C. M. Relationships among purine nucleoside metabolism, adenosine triphosphate catabolism, and glycolysis in human erythrocytes. Can J Biochem. 1979 Jun;57(6):873–878. doi: 10.1139/o79-107. [DOI] [PubMed] [Google Scholar]
- Itaya K., Ui M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta. 1966 Sep;14(3):361–366. doi: 10.1016/0009-8981(66)90114-8. [DOI] [PubMed] [Google Scholar]
- Lian C. Y., Harkness D. R. The kinetic properties of adenylate deaminase from human erythrocytes. Biochim Biophys Acta. 1974 Mar 21;341(1):27–40. doi: 10.1016/0005-2744(74)90062-x. [DOI] [PubMed] [Google Scholar]
- Lichtman M. A., Miller D. R. Erythrocyte glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration in uremic subjects: relationship to extracellular phosphate concentration. J Lab Clin Med. 1970 Aug;76(2):267–279. [PubMed] [Google Scholar]
- Lichtman M. A., Miller D. R., Freeman R. B. Erythrocyte adenosine triphosphate depletion during hypophosphatemia in a uremic subject. N Engl J Med. 1969 Jan 30;280(5):240–244. doi: 10.1056/NEJM196901302800504. [DOI] [PubMed] [Google Scholar]
- MILLS G. C., SUMMERS L. B. The metabolism of nucleotides and other phosphate esters in erythrocytes during in vitro incubation at 37 degrees. Arch Biochem Biophys. 1959 Sep;84:7–14. doi: 10.1016/0003-9861(59)90548-x. [DOI] [PubMed] [Google Scholar]
- Mills G. C., Goldblum R. M., Schmalstieg F. C. Catabolism of adenine nucleotides in adenosine deaminase deficient erythrocytes. Life Sci. 1981 Oct 26;29(17):1811–1820. doi: 10.1016/0024-3205(81)90193-4. [DOI] [PubMed] [Google Scholar]
- Paglia D. E., Valentine W. N. Characteristics of a pyrimidine-specific 5'-nucleotidase in human erythrocytes. J Biol Chem. 1975 Oct 25;250(20):7973–7979. [PubMed] [Google Scholar]
- Rapoport I., Rapoport S., Elsner R. Accumulation of phosphate esters and decline of ATP in red cells incubated in vitro is caused by lack of pyruvate. Acta Biol Med Ger. 1981;40(2):115–121. [PubMed] [Google Scholar]
- Rose I. A., Warms J. V., O'Connell E. L. Role of inorganic phosphate in stimulating the glucose utilization of human red blood cells. Biochem Biophys Res Commun. 1964 Feb 18;15(1):33–37. doi: 10.1016/0006-291x(64)90098-1. [DOI] [PubMed] [Google Scholar]
- Schraufstätter I., Born G. V. Dependence of purine loss from human erythrocytes on external pH. Br J Haematol. 1981 Nov;49(3):349–354. doi: 10.1111/j.1365-2141.1981.tb07236.x. [DOI] [PubMed] [Google Scholar]
- TSUBOI K. K., FUKUNAGA K. INORGANIC PHOSPHATE AND ENHANCED GLUCOSE DEGRADATION BY THE INTACT ERYTHROCYTE. J Biol Chem. 1965 Jul;240:2806–2810. [PubMed] [Google Scholar]
- Valentine W. N., Fink K., Paglia D. E., Harris S. R., Adams W. S. Hereditary hemolytic anemia with human erythrocyte pyrimidine 5'-nucleotidase deficiency. J Clin Invest. 1974 Oct;54(4):866–879. doi: 10.1172/JCI107826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van den Berghe G., Bontemps F., Hers H. G. Purine catabolism in isolated rat hepatocytes. Influence of coformycin. Biochem J. 1980 Jun 15;188(3):913–920. doi: 10.1042/bj1880913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vincent M. F., Van den Berghe G., Hers H. G. The pathway of adenine nucleotide catabolism and its control in isolated rat hepatocytes subjected to anoxia. Biochem J. 1982 Jan 15;202(1):117–123. doi: 10.1042/bj2020117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watts R. W., Watts J. E., Seegmiller J. E. Xanthine oxidase activity in human tissues and its inhibition by allopurinol (4-hydroxypyrazolo[3,4-d] pyrimidine). J Lab Clin Med. 1965 Oct;66(4):688–697. [PubMed] [Google Scholar]
- Whelan J. M., Bagnara A. S. Factors affecting the rate of purine ribonucleotide dephosphorylation in human erythrocytes. Biochim Biophys Acta. 1979 Jul 26;563(2):466–478. doi: 10.1016/0005-2787(79)90065-0. [DOI] [PubMed] [Google Scholar]
- Yawata Y., Hebbel R. P., Silvis S., Howe R., Jacob H. Blood cell abnormalities complicating the hypophosphatemia of hyperalimentation: erythrocyte and platelet ATP deficiency associated with hemolytic anemia and bleeding in hyperalimented dogs. J Lab Clin Med. 1974 Nov;84(5):643–653. [PubMed] [Google Scholar]
- Yun S., Suelter C. H. Human erythrocyte 5'-AMP aminohydrolase. Purification and characterization. J Biol Chem. 1978 Jan 25;253(2):404–408. [PubMed] [Google Scholar]
- van den Berghe G., Bronfman M., Vanneste R., Hers H. G. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J. 1977 Mar 15;162(3):601–609. doi: 10.1042/bj1620601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van den Berghe G., van Pottelsberghe C., Hers H. G. A kinetic study of the soluble 5'-nucleotidase of rat liver. Biochem J. 1977 Mar 15;162(3):611–616. doi: 10.1042/bj1620611. [DOI] [PMC free article] [PubMed] [Google Scholar]