
The responsibilities of the specialized surface epithe-
lium of the cornea require it to maintain tightly regulated 
differentiated properties. There are numerous examples of 
ocular surface diseases in which the corneal-specific epithe-
lial qualities are not maintained and significant anterior eye 
physiologic perturbations occur resulting in dramatic loss of 
vision. Thus, much attention has been focused on the molec-
ular mechanisms central to establishing and maintaining the 
corneal epithelial phenotype [1-8]. Recent work has focused 
on the role of the nuclear protein, Pinin (Pnn/DRS/memA), a 
140 kDa phosphoprotein associated with splicing apparatus 
within the nuclei of epithelia, which appears to play a key role 
in the establishment and maintenance of epithelial phenotypes 
[9-15]. We previously reported that Pax6-Cre (Le-Cre)–medi-
ated deletion of Pnn in the ocular surface ectoderm resulted 
in severe malformation of lens placode-derived tissues 
including the cornea and the lens [11]. Interestingly, deletion 
of Pnn in the corneal epithelium resulted in the loss of corneal 
epithelial identity, with downregulation of corneal keratins 

(K12), enhancement of epidermal keratins (K10 and K14), 
elevated β-catenin activity, and misregulated p68 levels [11]. 
These data indicated that Pnn is essential for the activities 
of major developmental factors of the anterior eye segment.

mRNA splicing assays and nuclear-complex proteomic 
analyses have revealed that Pnn is involved in transcriptional 
repression complexes and spliceosomal complexes, specifi-
cally the exon junction complex (EJC) and the apoptosis- and 
splicing-associated protein complex (ASAP) [10,13,16-20]. 
These data place Pnn at the fulcrum point between chromatin 
and mRNA splicing. We suggest that Pnn may function 
through its integral connection between the chromatin and 
splicing machinery; thus, Pnn may affect crucial alternative 
splicing (AS) decisions and, in turn, impact cell-type specific 
gene expression.

Genome-wide studies revealed the astonishing perva-
siveness and complexity of eukaryotic alternative splicing 
[21–28]. It is now appreciated that nearly all human pre-
mRNAs undergo alternative splicing, yielding about ten to 
12 isoforms per gene in a highly tissue- and stage-specific 
manner, resulting in tremendous expansion of the transcrip-
tomic repertoire from a limited genome [29-32]. Coordi-
nated control of AS of transcripts allows differential gene 
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Purpose: GG-H whole transcriptome array analysis suggested involvement of PININ (PNN) in the alternative splicing 
of multiple long non-coding RNAs (lncRNAs). To further investigate PNN’s role in regulating the alternative splicing 
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expression in specific cell lineages through mRNA isoform 
switching, resulting in the so-called isoform specialization 
[33]. Interestingly, many genes that encode critical regulators 
of eye development (for example Oct4/Oct4a, Foxp1, Fgf4/
Fgf4si, FgfR2, and Pax6/Pax6–5a) exhibit mRNA splicing 
isoform-switching phenomena [33-36].

Our recent efforts focused on the role of Pnn in alter-
native pre-mRNA splicing in the corneal epithelial context. 
We created two cell lines of human corneal epithelial cells 
(HCET) that harbor doxycycline-inducible shRNA against 
PNN or epithelial splicing regulatory protein 1 (ESRP1), 
one of PNN’s interaction partners, which has been shown to 
modulate alternative splicing in an epithelial-specific manner 
[10,28,35,37-39]. Transcriptome array analysis of ESRP1 
or PNN knockdown cells revealed clear and reproducible 
changes in the transcript profiles and splicing patterns of 
specific subsets of genes, including PAX6, ENAH, ECT2, 
FOXJ3, ARHGEF11, NCSTN, and PEN2 [10]. Importantly, 
the changes in AS do not appear random; instead, they are 
highly specific and seem to target a subset of genes that 
would significantly impact the epithelial cell phenotype.

Furthermore, our previous transcriptomic analyses [10] 
also revealed Pnn-knockdown-induced changes in the alter-
native splicing of lncRNAs. lncRNAs are a highly diverse 
family of transcripts of more than 200 nucleotides (NTs), with 
low protein coding potential. Tens of thousands of lncRNAs 
have been identified thus far. Some lncRNAs overlap with 
or are transcribed antisense to protein coding genes, while 
other lncRNA genes are found within intronic sequences 
or within the intergenic regions of the genome (lincRNA) 
[40-45]. It is now well documented that some lncRNAs may 
exert broad influence over the regulation of stem cell main-
tenance, cell lineage commitment, and differentiated cellular 
phenotype [43,46-51]. lncRNAs have been reported to func-
tion as molecular scaffolds, site-specific sequence recruiters 
of transcriptional and epigenetic regulatory factors, decoys 
that sequester key factors, and signals for integration spatial/
developmental stimuli [40]. Intriguingly, lncRNA may regu-
late the chromatin state [52-56], and some are preferentially 
located within the large gene deserts that flank transcription 
factor genes, particularly those with roles in development 
and differentiation [55,57-62]. The processing of lncRNAs 
appears to be similar to that of protein-coding mRNAs. 
lncRNAs are transcribed by RNA polymerase II, exhibit 
polyadenylation, and undergo splicing through canonical 
splice sites (GT and AG).

In the present study, we first study lncRNAs of the 
corneal epithelium by focusing on a small subset of lncRNAs, 
which exhibited splicing changes in response to PNN 

knockdown. We demonstrate in vivo expression of lncRNAs, 
significant alternative splicing of corneal epithelial lncRNAs 
in primary epithelial explant cultures, and broadening of this 
AS with the depletion of PNN, both in vitro and in vivo.

METHODS

Cells and experimental animals: For doxycycline-
inducible PNN or ESRP1 knockdown HCET cells, human 
TRIPZ shRNAmir clones (V2THS_170187 for PNN and 
V3THS_400802 for ESRP1) were purchased from Open 
Biosystems (Lafayette, CO). HCET cells transfected with 
either shRNAmir clone were then selected with 10 μg/ml 
of puromycin (Cellgro, Manassas, VA). To induce shRNA 
expression, the cells were treated with doxycycline at a 
concentration of 1 μg/ml with daily change of fresh doxycy-
cline medium.

Specific methods for generating Pnn-floxed conditional 
mice and conditional knockouts were previously reported 
[11,63]. The Pax6-Cre (Le-Cre) mouse line was kindly 
provided by Ed Levine (University of Utah) and Peter Gruss 
(Max-Planck Institute of Biophysical Chemistry). For timed 
matings, the presence of a vaginal plug was checked in the 
morning (embryonic day 0.5; E0.5). All mice used in the 
study were described previously [11]. Animal procedures 
adhered to the ARVO Statement for the Use of Animals in 
Ophthalmic and Vision Research and were approved by the 
Institutional Animal Care and Use Committee at University 
of Florida.

GG-H human transcriptome array analyses: The transcrip-
tome array analyses of parental HCET, shRNA-PNN HCET, 
and shRNA-ESRP1 HCET cells, cultured for 3 days with/
without doxycycline, are described in Joo et al. [10]. Most 
relevant to the present investigation, the exon- and transcript-
level intensities were determined with APT according to 
probe set definitions and annotations provided by Affymetrix, 
and expression levels of junction probes were calculated as 
the expression of the corresponding probe sets. To detect the 
alternatively spliced transcripts, the probe sets were filtered 
out if the signal was near the background noise (detection 
above background (DABG) <0.01; the DABG p value was 
used to filter the nonexpressing transcript and exons). A 
DABG p value below 0.05 was considered expressed. All 
statistical analyses were performed using the Bioconductor 
statistical environment [31]. The Junction and Exon array 
Toolkits for Transcriptome Analysis (JETTA) software was 
used [64]. Our array data can be accessed at the NCBI Gene 
Expression Omnibus (GEO) data repository with the acces-
sion number GSE41996.
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Semiquantitative RT–PCR, sequencing, and quantitative 
RT–PCR: Total RNA was isolated from corneas, which had 
been microdissected from embryonic day 17.5 (E17.5) mice, 
as described previously [11], or cultured HCET cells, and 
semiquantitative RT–PCR was performed as described previ-
ously [10], with NucleoSpin RNA II kit (Clontech, Mountain 
View, CA) and treated with RNase-free DNase I. One μg 
of total RNA was reverse transcribed with Superscript III 
First-Strand Synthesis kit (Invitrogen, Carlsbad, CA) using 
oligo- dT primers. Subsequent PCR steps were performed 
with GoTaq Flexi DNA Polymerase (Promega, Madison, WI) 
according to manufacturer’s specifications at 55 °C annealing 
temperature for 25 PCR cycles. Quantitative real-time RT- 
PCR assays were carried out by standard curve method with 
iQ SYBR Green Supermix on MyiQ single color real-time 
PCR detection system or CFX96 Real-Time PCR Detection 
System (Bio-Rad, Hercules, CA). Quantification of PCR 
products of alternatively spliced transcripts was performed 
with ChemiDoc XRSfl and Image Lab Software Version 
4.0 (Bio-Rad) according to the manufacturer’s suggestion. 
Inclusion of specific exons/introns was determined as a 
percentage among all PCR products. For sequencing the 
PCR products, the individual band was gel extracted with the 
QIAEX II Gel Extraction Kit (Qiagen, Valencia, CA), cloned 
into pCRII-TOPO vector (Invitrogen, Carlsbad, CA), and 
sequenced. Quantitative real-time PCR (qRT-PCR) assays 
were performed by the relative standard curve method with 
RT2 SYBR Green ROX qPCR Mastermix (Qiagen) on a 7500 
Fast Real-Time PCR System (Applied Biosystems, Foster 
City, CA). Sequences were mapped with the most current 
genome release for humans (Homo sapiens; Ensembl).

In situ hybridizations: In situ hybridizations were performed 
using QuantiGene ViewRNA Assays (Affimetrix), which 
enabled visualization of multiplex mRNA expression. The 
in situ assays for cultured cells and tissue samples were 
conducted according to the manufacturer’s protocols.

RESULTS

In addition to the profound impact on AS of mRNAs, 
shRNA-mediated PNN knockdown in HCET cells changed 
the expression of a collection of ncRNAs (Figure 1A). Inter-
estingly, the doxycycline-inducible shRNA-mediated PNN 
knockdown in HCET cells resulted in the changed expres-
sion and splicing of a specific and small subset of lncRNAs, 
totaling six, of which we have independently confirmed five 
(Table 1). One lncRNA, Linc00085, demonstrated an increase 
in expression subsequent to PNN knockdown in HCET cells; 
this increase was independently validated with semiquantita-
tive RT–PCR (Figure 1B). These results are consistent with 

many protein coding genes that change total expression after 
PNN knockdown [10]. However, other changes in lncRNA 
expression involved the change in splicing isoforms of 
lncRNAs. lncRNA, which is located on the opposite DNA 
strand of hyaluronate synthase 2, HAS2-AS1, demonstrated 
an obvious change in splice isoforms via transcriptomic 
arrays. These changes were verified with isoform-specific 
RT–PCR and sequencing analyses (Figure 1C). The changed 
observed in Has2-AS1 is of particular interest. HAS2-AS1 
is an example of lncRNA that is transcribed from the anti-
sense strand of a protein-coding gene (HA synthase-2), and 
HAS2-AS1 has been shown to influence the expression of 
the HAS2 gene [65]. Although lncRNAs may have functional 
and RNA-structural orthologs, in general, lncRNAs seem to 
lack clear sequence conservation between species [57,66]. 
Fortunately, HAS2-AS1 has a clear ortholog in the mouse 
genome (mHAS2-AS), thus, allowing us to address whether 
similar changes in the splicing of mHAS2-AS1 exist in the 
corneal epithelia of conditional (Pax6-cre) PNN-knockouts. 
Indeed, mHas2as clearly exhibited a differential splicing 
pattern among three major splice variants in Pnn-deficient 
mouse cornea. Although the gene organization and intron 
lengths varied markedly between human HAS2-AS1 and 
mouse HAS2-AS orthologs, the splicing patterns were similar 
(Figure 1D and Appendix 1). These data also tempt one to 
speculate that the change in HAS2-AS1 may be associated 
with the change in epithelial phenotype seen in the PNN 
knockout corneal epithelial [11,12,63], since hyaluronic 
acid (HA) has been closely implicated in the formation of 
persistent lens stalk, which has been consistently observed 
in Pnn-deficient mouse embryos [63]. The significant extent 
tissue-specific isoform-switching of mHAS2-AS1 can be 
appreciated by examining the splicing pattern of mHas2as in 
multiple different normal mouse tissues (Figure 1E). The WT 
mouse tissues tested clearly exhibited a differential splicing 
pattern among three major splice variants, perhaps suggesting 
the tissue-specific roles of each splice isoform. It will be of 
considerable interest to drive Pnn knockout with tissue-
specific Cre expression and to then examine if the isoform 
ratios are shifted after PNN is deleted.

Changes in the RNA splicing of RP11–18I14.1 after Pnn 
knockdown in HCET cells were also identified through the 
array analyses. lncRNA RP11–18I14.1, found in the corneal 
epithelium, contains a distinct pattern of exons, which varies 
slightly from the predicted full-length lncRNA from lncRNA 
databases [67]. RT–PCR in combination with sequencing 
revealed the dominant spliced isoform in WT epithelial 
contained exons 1,2 and 5, with the exclusion of exon 3, and 
only the 3′ half of exon 5 (Figure 2A and Appendix 2). In 
addition, the PCR products included a larger more and more 
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Figure 1. Induced knockdown 
of Pnn in HCET cells resulted 
in altered expression of an array 
of non-coding RNAs, including 
long-non-coding RNAs. A: Doxy-
cycline-inducible shRNA-mediated 
PNN knockdown in human corneal 
epithelial cells led to the altered 
expression of specific subsets of 
ncRNAs, including a subset of 
lncRNAs, along with snRNA -U 
RNA, snoRNA, small non-coding 
components of Ro60 ribonucleo-
protein particle (y RNA), rRNA, 
tRNA, miRNA microRNA, and 
scRNA small cytoplasmic RNA 
(7S). B: The increased expres-
sion level of Linc00085, seen in 
the transcriptomic array, was 
independently validated in RNA 
from PNN-knockdown human 
corneal epithelial (HCET) cells 
with real-time–PCR (RT–PCR). 
C: The change in splicing isoforms 
of lncR NA, HAS2-AS1, as 
demonstrated on the Affimetrix 
transcriptome-arrays, was verified 
through isoform-specific RT–PCR 
and sequencing analyses. D: Condi-
tional knockout of Pnn in devel-
oping mouse cornea epithelium led 
to specific changes in the splicing 
pattern of mHas2as, the mouse 
ortholog of human HAS2-AS1. The 
epithelia from the lens-Cre knock-
outs demonstrated a decrease in the 

mHAS2AS1 isoform containing exon 1–5 and isoform containing exons 1, 2, and 5 (see Appendix 1). D: Splicing patterns of mHas2as 
was examined in multiple different mouse tissues. All tissues tested exhibited a differential splicing pattern across the three major splice 
variants, suggesting significant normal variations on mHAS2-AS1 across differing tissues and cell types, suggestive of tissue-specific 
splicing regulation.

Table 1. Long non-coding RNAs with altered expression following PNN knock-down in HCET cells. 

Name Alias Ensembl reference Genomic Location
Linc00085 SPACA6P ENSG00000182310 19:15693340–51712387 (forward strand)
HAS2-AS1 ENSG00000248690 8:121639293–121644693 (forward strand)

RP11–18I14.1 RPARP-AS1 ENSG00000269609 10:102449817–102461106 (forward strand)
RP11–295G20.2 ENSC00000233461 1:231522388–231528556 (reverse strand)
RP11–322M19.1 NUTM2a-AS1 ENSG00000223482 10:87203875–87342612 (reverse strand)
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diffuse band, which when sequenced revealed three addi-
tional isoforms containing two small segments of exon-4. Pnn 
knockdown in HCET cells resulted in a shift in RP11–18I14.1 
isoforms, with a lower amount of the predominant 1-2-5 
isoform and a relative increase in the RP11–18I14.1: 1-2-4-5 
isoform.

Similar to RP11–18I14.1, the lncRNA RP11–295G20.2 
(Figure 3 and Appendix 3) the corneal epithelial cells 
exhibited a discrete subset of exons that comprise the full 

length RP11–295G20.2, which include exon 1, only part of 
exon 4, and full lengths of exon 5 and 6. Exons 2 and 3 of 
RP11–295G20.2 were not detected from RNA from corneal 
epithelial cells (Figure 3A). The induction of PNN knock-
down in the HCET cells resulted in increased inclusion of 
exon-5 (Figure 3B). Interestingly, a similar splicing pattern 
of RP11–295G20.2 was observed in RNA from primary 
epithelial explant cultures of the central cornea and limbal 
regions (Figure 3C). In situ hybridizations of corneal sections 

Figure 2. Changes in the RNA splicing of RP11–18I14.1 subsequent to Pnn-knockdown in HCET cells. A: RP11–18I14.1 contains six 
exons spanning 11 kb. RP18I14.1 from corneal epithelia cells contains exons 1–2, partial 4, partial 5, and 6. See Appendix 2. B: Induced 
knockdown of Pnn resulted in a change in the isoform pattern of RP18I14.1, with a decrease in the predominant exon 1, 2, and 5 isoform and 
the corresponding increases of isoforms containing one or two stretches of exon 4. 
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showed strong nuclear localization of RP11–295G20.2 in the 
cells comprising the corneal epithelium, with some signal 
within underlying fibroblasts, and vascular endothelial cells.

The most complicated corneal epithelial lncRNA exam-
ined was RP11–322M19.1 (Figure 4 and Appendix 4). This 
lncRNA spans more than 100 kb and includes 16 exons and 
many splice isoforms. Similar to that seen for RP11–18I14.1 
and RP11–295G20, the corneal epithelial cells expressed a 
specific subset of exons from RP11–322M19.1. Of the 16 
known exons of RP11–322M19.1, 11 are found within corneal 
epithelial lncRNA, and many of those are truncated (Figure 

4A). The induced depletion of Pnn resulted in the increase 
on alternate exons, and Pnn depletion also resulted in the 
inclusion of two transcribed regions within intron 13 (Figure 
4B, exons a, b, and bb’), previously unreported. It will be of 
significant interest to determine whether other tissues and/or 
other environmental contexts of the corneal epithelia (with or 
without Pnn depletion) express these alternative exons. Exam-
ination of RNA from corneal and limbal epithelial explant 
cultures revealed a similar pattern of RP11–322M19.1 to the 
WT HCET cells. Interestingly, fluorescence in situ hybridiza-
tions of human cornea revealed strong, albeit heterogeneous 
labeling of epithelial nuclei, with some labeling of underlying 

Figure 3. Changes in alternative splicing of RP11–295G20.2 were observed in Pnn-knockdown cells, and RT–PCR and in situ hybridization 
confirmed in addition to tRP11–295G20.2 expression in the human corneal epithelia. A: RP11–295G20.2 contains six exons spanning just 
greater than 6 kb. Corneal epithelial cells express RP11–295G20.2 isoforms containing exons 1, 4, 5, and 6. See Appendix 3. B: Knockdown 
of Pnn resulted in relative decreases in the expression of the two predominant isoforms containing exons 1–6 or 1, 4, and 6, and increased 
levels of isoforms containing 1, 4, 5, and 6. C: Real-time PCR (RT–PCR) of RNA from explant cultures from central corneal epithelia and 
limbal epithelia demonstrated robust expression of RP11–295G20.2. D: In situ hybridization analyses on human cornea sections revealed 
that a lncRNA RP11–295G20.2 is expressed in corneal and limbal epithelium with a nucleus-restricted pattern.
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corneal fibroblasts. The most superficial epithelial cells 
demonstrated significant and consistent labeling. Extending 
the in situ hybridizations to cultured cells for enhanced reso-
lution revealed predominantly nuclear labeling, as opposed 
to protein-coding RNA, as shown with Pnn probes. However, 
in addition, low but significant cytosolic labeling with RP11–
322M19.1 probes was observed, which suggests that some 
RP11–322M19.1 RNA may be exported from the nucleus, at 
least transiently.

An overarching examination of the lncRNA splice 
isoforms seen for mHAS2-AS, RP11–295G20.2, RP11–
295G20, and RP11–322M19.1 in the PNN-depleted cells 
revealed a pattern of alternate (minor) exon inclusions. Thus, a 
shift away from the predominant spicing patterns seen in WT 
cells to a pattern that included a higher proportion of minor 
isoforms appeared. However, the exon inclusions involve the 
utilization of previously described exon splice sites, as well 
as novel splice sites (as observed for RP11–322M19.1 exon a 
and bb’). Importantly, most of the splice sites conform to the 
canonical splice site signatures (GT and AG). Therefore, the 
data from the current study clearly demonstrate that corneal 
epithelial lncRNAs undergo a complex array of alternative 
splicing processes as seen in the coding transcripts, and 
indicate that PNN, in addition to its role in mRNA splicing, 
plays a role in regulating the alternative splicing of specific 
lncRNAs.

DISCUSSION

The intensive genomic sequencing efforts, reported by the 
consortium under the moniker ENCODE [25, 68], changed 
the way we think about genome organization and gene 
expression. The outcome of that enormous accomplishment 
in data collection and integration has significant relevance for 
this project. First, protein-coding genes account for just 1–2% 
of the genome; however, more than 90% of the nucleotides 
that comprise the human genome can be transcribed [68]. 
Second, in spite of this potential pervasiveness of transcrip-
tion, at any one time in human cells only 15% of the genome 
expresses stable transcripts [25]. Finally, genomic regions 
previously thought to be transcriptionally silent give rise to a 
wide range of processed transcripts, the lncRNAs, in a tightly 
regulated fashion [40,69,70]. The current estimates for the 
total number of lncRNAs, although varied, range between 
20,000 and 50,000. The long non-coding RNA transcripts 
(lncRNAs, ranging from 200 nucleotides to 10,000 residues), 
although not destined to encode proteins, are alternatively 
spliced and processed in a manner similar to that for protein-
coding genes. The ENCODE project indicated that the anno-
tated lncRNAs exhibit two to 40 isoforms per lncRNA locus. 

Predictive structural modeling of lncRNA isoform suggests 
a tremendous range of RNA structures may result from AS 
of lncRNAs (Lincipedia) [67]. However, further identification 
and detailed characterization of lncRNA isoforms are needed 
to fully appreciate the functional relevance of alternative 
splicing of lncRNAs.

There is significant debate about what proportion of 
lncRNA represents merely transcriptional noise as opposed 
to biologic functional moieties. This debate has been fueled 
by the lack of clear sequence conservation between species 
[57,66]. However, it is now well documented that some 
lncRNAs may influence cell lineage commitment and differ-
entiated cellular phenotype [18,23-28]. There is also substan-
tial and growing evidence of cell- and tissue-specific expres-
sion of lncRNAs [40,69,70]. Most interestingly, lncRNAs 
have also been shown to play multiple, fundamental, and 
profound roles in cancer progression and metastasis in colon 
and liver cancer [45,71-76]. lncRNAs may represent key 
regulatory mechanisms for epithelial homeostasis, and abro-
gation of lncRNAs may be related to loss of key epithelial 
characteristics associated with carcinoma development. Our 
early studies revealed a correlation of loss of Pnn expres-
sion and cancer progression [77]. It is tempting to speculate 
that the changes phenotype changes seen in Pnn knockouts 
and knockdowns may reflect fundamental changes in the 
lncRNA-mediated regulation of the epithelial program.

Here, we present the first glimpse of the complexity and 
potential relevance of lncRNAs in the corneal epithelium. We 
have previously demonstrated that Pnn plays a central role in 
the establishment and maintenance of epithelia [11,12], and 
because Pnn is found within transcriptional and spliceosomal 
complexes, we speculated that Pnn may impact tissue-specific 
mRNA splicing [10]. However, as the data included in this 
study demonstrate, that was not the entire story. In addition 
to RNA processing of protein-coding genes, we noted a small 
number of lncRNAs that exhibit significant and reproducible 
changes in expression and RNA processing subsequent to 
perturbation of PNN expression.

Although the extent of AS and the resultant complexity 
of lncRNA isoforms within the WT corneal epithelia were 
intriguing, perturbation of Pnn expression, both in vitro 
and in the Pax6-Cre animals, resulted in a decrease in the 
predominant isoforms and an increase in the minor isoforms. 
These results suggest that normal levels of Pnn may be impor-
tant for selecting appropriate splice sites and, importantly, the 
skipping of incorrect splice junctions.

Unlike the impact of Pnn knockdown on mRNA 
processing, which demonstrated an entire array of changes 
including exon inclusions, exon exclusions, intron retentions, 
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Figure 4. The long and complex lncRNA, RP11–322M19.1, also showed splicing alterations after Pnn knockdown. A: The reported gene 
for RP11–322M19.1 spans nearly 106 kb and contains at least 16 exons. Corneal epithelial cells express a complex array of isoforms of 
RP11–322M19.1 containing 11 of the known exons and two previously unreported exons (labeled a and bb’) were discovered through our 
RT–PCR and sequencing analyses. See Appendix 4. B: Subsequent to Pnn knockdown, the complexity of RP11–322M19.1isoforms further 
increased. C: Real-time PCR (RT–PCR) analyses reveal the presence of multiple splice variants of RP11–322M19.1 in corneal and limbal 
epithelial cells. D: The presence of RNA RP11–322M19.1 in human corneal epithelium is examined through QuantiGene ViewRNA ISH 
tissue assays. Transcripts of RP11–322M19.1 are visualized with fluorescence in situ hybridization (RNA FISH). RP11–322M19.1 displays 
a typical nuclear distribution pattern in human corneal epithelial cells. E: RNA distribution pattern of PNN and RP11–322M19.1 transcripts 
is examined with RNA FISH through QuantiGene ViewRNA ISH cell assay in human corneal epithelial cells (HCET) cells. Although PNN 
mRNAs are mainly detected in cytoplasm (typical of protein-coding genes), transcripts of lncRNA RP11–322M19.1 are predominantly 
observed within the nucleus.
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alternative 5′ or 3′ splice sites, alternative promoters and 
starts, and an intriguing abundance of alternative splicing 
changes that lead to alternative 3′UTR [10], the changes in 
lncRNA splicing were largely restricted to alternative exon 
usage. These data may indicate a role of Pnn in exon recogni-
tion in lncRNAs.

Recent studies have shown that alternative splicing is 
differentially regulated in many different contexts, such 
as cell or tissue type, signaling, developmental state, and 
diseases. The establishment of regulated AS of RNA is 
achieved through the variable expression/interaction of 
splicing proteins or the expression of context-specific regu-
latory factors, or both. Examples of such factors are the cell 
type-specific splicing proteins, such as Nova, nPTB, MBNL, 
and ESRPs [28,78–80]. Recent data suggest epigenetics, 
specifically chromatin markings, have an integral role in 
regulating AS. Bickmore and colleagues found Pinin in 
complex with Psip1/Ledgf p52. Psip1, a PWWP protein, 
binds methylated histone H3K36 and splicing factors and 
contributes to the regulation of alternative splicing [81]. It is 
tempting to speculate that loss of Pnn may lead to incorrect 
exon recognition.

There is of course the possibility that Pnn may be 
involved in the more rapid turnover of aberrant RNAs, and 
lower levels of Pnn thus allow the accumulation of these tran-
sient RNAs. Pnn has been reported to be present in the ASAP 
complex, which interacts with the exon-junction complex 
(EJC), a messenger ribonucleoprotein complex involved in 
post-transcriptional regulation [20]. Other ASAP subunits 
(Acinus, RNPS1, and SAP18) have been individually impli-
cated in transcriptional regulation, pre-mRNA splicing, and 
mRNA quality control. The exon-junction complex itself has 
fundamental roles in RNA transport and nonsense-mediated 
decay of aberrant RNAs [82,83].

In situ hybridizations of lncRNAs (RP11-295G20 and 
RP11–322M19.1) in human corneal epithelia and cultured 
HCET cells revealed that both exhibited strong nuclear 
labeling. Interestingly, our first attempts at isoform-specific 
in situ hybridizations exhibited no substantial difference in 
tissues or cells. However, these studies are preliminary, and 
far more isoforms must be examined to make a more defini-
tive statement.

We explored several candidate lncRNAs identified in the 
corneal epithelium and searched for the biologic significance 
of these newly emerging key players in a corneal epithelial 
identity. Our studies, insomuch that they address fundamental 
processes and mechanisms controlling cell- and tissue-
specific splicing decisions on lncRNAs, have relevance for 
all differentiating systems within the eye.

APPENDIX 1.

To access the data, click or select the words “Appendix 1.” 
Exon map and transcript sequence of HAS2-AS1 of HCET 
cells, and exon map and transcript sequence mHas2as of 
day 17.5 mouse cornea. At the top of human and mouse 
transcript sequence is a gene diagram depicting relative size 
and position of the exons of HAS2-AS1 and mHas2-as. The 
corresponding sequences of each exon are identified. Esembl 
URls for the reference sequences are provided.

APPENDIX 2.

To access the data, click or select the words “Appendix 2.” 
Exon map and transcript sequence of RP11–18I14.1 of HCET 
cells. At the top is a diagram of the full-length RP11–18I14.1 
depicting relative size and position of the exons. The diagram 
immediately beneath demonstrates the relative size and 
position of the exons found within the corneal epithelial 
RP11–18I14.1. Corresponding sequences of each exon are 
identified. Esembl URls for the reference sequences are 
provided.

APPENDIX 3.

To access the data, click or select the words “Appendix 3.” 
Exon map and transcript sequence of RP11–295G20.2 of 
HCET cells. At the top is a diagram of the full-length RP11–
295G20.2 depicting relative size and position of the exons. 
The diagram immediately beneath demonstrates the relative 
size and position of the exons found within the corneal epithe-
lial RP11–295G20.2. The corresponding sequences of each 
exon are identified. Esembl URls for the reference sequences 
are provided.

APPENDIX 4.

To access the data, click or select the words “Appendix 4.” 
Exon map and transcript sequence of RP11–322M19.1 of 
HCET cells. At the top is a diagram of the full length RP11–
322M19.1 depicting relative size and position of the exons. 
The diagram immediately beneath demonstrates the relative 
size and position of the exons found within the corneal epithe-
lial RP11–322M19.1. The corresponding sequences of each 
exon are identified. In addition to the previously identified 
exons, we have identified two exons in the corneal epithelial 
transcripts, labeled; Exon a and Exon bb’. Esembl URls for 
the reference sequences are provided.

http://www.molvis.org/molvis/v20/1629
http://www.molvis.org/molvis/v20/appendices/mv-v20-1629-app-1.docx
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