Skip to main content
. 2014 Nov 18;5:1304. doi: 10.3389/fpsyg.2014.01304

Table 3.

Chi square difference values, p-, and l-values for the scalar model where the model number refers to the item number of which the thresholds between the two time points is estimated unconstrained (all factor loadings and other thresholds are constrained).

Sample 1 Sample 2 I
Model χ2 p Model χ2 p
M1 77.719 <0.0001* M16 106.308 <0.0001* 0.00085
M2 17.674 <0.0001* M12 29.885 <0.0001* 0.00171
M17 54.284 <0.0001* M15 18.237 <0.0001* 0.00256
M6 48.995 <0.0001* M6 9.874 0.001* 0.00342
M16 45.051 <0.0001* M14 9.741 0.001* 0.00427
M11 15.203 0.001* M4 9.139 0.002* 0.00513
M7 9.590 0.002* M7 7.512 0.006** 0.00598
M4 7.017 0.008** M8 6.412 0.011** 0.00684
M14 6.755 0.009** M9 5.176 0.022** 0.00769
M13 6.493 0.011** M5 4.235 0.039** 0.00855
M8 5.450 0.020** M3 3.935 0.047** 0.00940
M5 3.146 0.076*** M13 3.363 0.066*** 0.01026
M12 2.296 0.130*** M2 2.789 0.094*** 0.01111
M3 1.477 0.224*** M17 1.156 0.282*** 0.01197
M10 1.128 0.288*** M10 0.580 0.446*** 0.01282
M9 1.088 0.297*** M11 0.485 0.486*** 0.01368
M15 0.005 0.942*** M1 0.005 0.941*** 0.01453
*

significant when p ≤ l.

**

significant when p ≤ 0.05.

***

never significant.

l = {0.05/[17*(1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10+1/11+1/12+1/13+1/14+1/15+1/16+1/17)]*c where c = 1,…,17 to obtain a new alpha value for each new test.