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Abstract

Brain morphometry in recent decades has increased our understanding of the neural bases of 

psychiatric disorders by localizing anatomical disturbances to specific nuclei and subnuclei of the 

brain. At least some of these disturbances precede the overt expression of clinical symptoms and 

possibly are endophenotypes that could be used to diagnose an individual accurately as having a 

specific psychiatric disorder. More accurate diagnoses could significantly reduce the emotional 

and financial burden of disease by aiding clinicians in implementing appropriate treatments earlier 

and in tailoring treatment to the individual needs. Several methods, especially those based on 

machine learning, have been proposed that use anatomical brain measures and gold-standard 

diagnoses of participants to learn decision rules that classify a person automatically as having one 

disorder rather than another. We review the general principles and procedures for machine 

learning, particularly as applied to diagnostic classification, and then review the procedures that 

have thus far attempted to diagnose psychiatric illnesses automatically using anatomical measures 

of the brain. We discuss the strengths and limitations of extant procedures and note that the 

sensitivity and specificity of these procedures in their most successful implementations have 

approximated 90%. Although these methods have not yet been applied within clinical settings, 

they provide strong evidence that individual patients can be diagnosed accurately using the spatial 

pattern of disturbances across the brain.
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Morphometry is the study of forms or shapes. It quantifies anatomical features of interest 

and then correlates those features with other characteristics of the individual, including 

clinical, behavioral, and genetic measures.(Bookstein, 1997) Many Magnetic Resonance 

Imaging (MRI) studies have applied the principles of morphometry to understand the 

association of morphological features with various psychiatric disorders (Fig. 1).

MRI generates images of the brain with high signal to noise ratios (SNRs) and exquisite 

contrast between soft tissues to yield definable boundaries for brain regions that have long 

Correspondence to Ravi Bansal, 1051 Riverside Drive, Unit 74, New York NY, 10032. bansalr@nyspi.columbia.edu; Phone: 
212-543-6145; Fax: 212-543-6660.. 

NIH Public Access
Author Manuscript
J Child Psychol Psychiatry. Author manuscript; available in PMC 2014 November 18.

Published in final edited form as:
J Child Psychol Psychiatry. 2012 May ; 53(5): 519–535. doi:10.1111/j.1469-7610.2012.02539.x.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



been hoped would be useful in discriminating patients who have one clinical diagnosis from 

patients who have a differing diagnosis. Each brain region, however, consists of several 

subnuclei that have specific information processing functions and may contribute 

differentially to the disease process of interest. Soft tissue contrast and SNR, moreover, are 

generally insufficient to distinguish visual boundaries of the various subnuclei of most brain 

regions, and therefore initial morphometric studies contented themselves with measuring 

overall volumes of brain regions. Although these rather simplistic approaches of studying 

psychiatric illness using overall conventional volumes of brain regions improved our 

understanding of the anatomical disturbances present in persons who have specific 

psychiatric disorders, opposing volumetric changes in differing subnuclei of a single brain 

region likely substantially reduced the ability of the overall volume of that brain region to 

discriminate diagnostic groups. Recent advances in methods for analyzing MR images, 

however, have provided substantial information about constituent subnuclei and their roles 

in the disease process of interest.(Bansal et al., 2005, Bansal et al., 2007, Csernansky et al., 

2004, Davatzikos et al., 2005, Thompson and Toga, 1996b, Thompson and Toga, 1996a, 

Peterson et al., 2009, Plessen et al., 2006) These advanced imaging techniques permit the 

detection, comparison, and correlation of anatomical disturbances within subnuclei, thereby 

facilitating more accurate diagnoses of psychiatric disorders using MR images.

The accurate diagnosis of patients using clinical interviews and family history can be 

difficult, especially early in the course of illness when the full complex of symptoms have 

yet to become manifest. Overlapping diagnostic criteria, the presence of comorbid disorders, 

and the variable expression of psychiatric disorders further complicates accurate diagnosis. 

Accumulated evidence strongly suggests that psychiatric disorders have unique spatial 

patterns of anatomical disturbances, and that these disturbances, together with connectivity 

measures, metabolite concentrations, and functional disturbances in the brain are detectable 

even before the overt expression of symptoms. By quantifying brain disturbances in affected 

patients or in persons at increased risk for developing a psychiatric illness and comparing 

those measures with persons without an illness, those patients might be accurately diagnosed 

as having a disorder or not, or as having one disorder rather than another.

Although various computer algorithms have been developed and applied to brain measures 

to attempt to classify the brains of persons who have psychiatric illnesses, the most common 

type of algorithm developed for this purpose has been supervised machine learning. A 

supervised method for machine-based learning and pattern classification learns decision 

rules and classification boundaries using a labeled set of data. Those data are so-called 

“feature vectors”, features of the image captured in the form of multi-dimensional variables 

that encode the location and magnitude of the brain measure of interest. Supervised machine 

learning then associates or links each of these vector variables with a previously known set 

of numerically coded diagnostic labels or classes. The learning algorithm develops decision 

rules and boundaries that classify individual brains as having a given diagnostic label based 

on the imaging feature vectors that are present in each brain. The algorithm that has been 

“trained” using the previously known labels then should, when tested rigorously, apply the 

learned rules and boundaries to the classification of new brains that did not participate in the 

training of the algorithm. The feature vectors can be virtually any brain measure, but in the 
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examples we will provide, they are most commonly measures of cortical thickness or local 

volumes of gray matter or white matter at each point (or “voxel”, a volumetric pixel in three 

dimensions) in the brain. The diagnostic labels are usually previously established clinical 

diagnoses. A decision rule or classification boundary can be represented as a function that 

maps the feature vector to the given diagnostic label. The performance of a classifier is 

typically assessed by dividing labeled data into two sets, a training set in which the classifier 

is trained, and a test set in which the trained algorithm is applied to classify a set of brains 

that were not involved in training the classifier. The correct diagnoses (labels) are known in 

the test dataset, thereby permitting the accuracy of classification to be discerned and 

quantified easily when applying the trained algorithm to the test dataset.

If previously established diagnostic labels are unavailable when developing the classifier, 

other methods can be employed to discover natural groupings in the feature vectors. These 

methods are termed unsupervised learning algorithms (or, alternatively, data mining or 

clustering procedures). The validity of the natural groupings that are identified by these 

unsupervised learning procedures must then be established by applying statistical methods, 

such as linear discriminant analysis, to assess the statistical significance of differences in 

clinical and behavioral measures across the naturalistic groupings.

Extant methods for machine-based classification of an individual brain using imaging 

data(Barnes et al., 2004, Davatzikos et al., 2008, Duchesnay et al., 2007, eFigueiredo et al., 

1995, Fan et al., 2005, Herholz et al., 2002, Jack et al., 2004, Kawasaki et al., 2007, Klöppel 

et al., 2008a, Lao et al., 2004, Lerch et al., 2006, Liu et al., 2004, Lochhead et al., 2004, 

Mourao-Miranda et al., 2005, Teipel et al., 2007, Wahlund et al., 2005) can generally be 

characterized as supervised. Imaging data from all participants are first spatially warped, or 

“normalized”, to a template brain to bring all corresponding points into a common spatial 

register (termed “template space”) and to compute the feature vectors of interest for each of 

the brains. The quantitative features are typically computed from images by applying 

various technical procedures to extract feature vectors from the imaging dataset, procedures 

that include volume preserved warping (VPW)(Xu et al., 2007), mass preserved 

warping(Haker et al., 2001), voxel based morphometry (VBM)(Ashburner and Friston, 

2000), deformation based morphometry(Paus et al., 2001), surface morphometry(Bansal et 

al., 2007, Thompson and Toga, 1996b), and spherical harmonics(Chung et al., 2008). Of 

these various procedures, the most commonly employed has probably been VBM, which 

generates point-wise (or “voxel-wise”) maps of measures at each voxel in the brain. It is an 

automated method that analyzes the nonlinear deformation field used for the spatial 

normalization of one particular brain into a common template space and that then generates 

a voxel-wise map of the local changes in brain volume that are required to normalize the 

brain to the template brain (i.e., to bring all points in one brain into register with the 

corresponding points in the template brain). These measures of local changes needed for 

spatial localization are fine-grained in their spatial resolution (typically on the order of a 

cubic millimeter), and those measures can then be compared across groups of participants.

We will first review the principles and procedures for machine learning and how they can be 

applied to the diagnosis of psychiatric illnesses. Each of the various components of these 

procedures is relatively independent of the others and can be modified to influence 
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significantly the accuracy of classification. We will also review several previous attempts at 

localizing and associating disturbances in the brain with specific psychiatric disorders and 

the specific components of machine learning procedures that best exploit these disturbances 

for more accurately diagnosing illness. Finally, we will discuss the strengths and limitations 

of extant machine learning algorithms. These methods provide sufficient preliminary 

evidence that morphometric data adequately localize disturbances in a specific disorder and 

that machine learning procedures in the foreseeable future will likely yield useful tools for 

aiding the clinical diagnosis of patients.

A: Machine Learning

Machine learning can be partitioned into components and procedures, including participants, 

imaging modality, brain regions, brain measures, classifiers, and statistical validations. Each 

of these components is described briefly in the subsections below.

I: Selection of Participants to which the Machine Learning Procedures are applied

The participants recruited into an imaging study are undoubtedly the most crucial 

determinant of how generalizable the performance of a machine learning-based 

classification will be in the larger population of individuals affected with the disorder that is 

being characterized and classified. Machine learning techniques are usually applied to 

imaging data that have been acquired in case-control studies(Stolley and Schlesselman, 

1982, MacMaster et al., 2008, Plant et al., 2010, Klöppel et al., 2008b, Patel et al., 2008, 

Piven et al., 1995), which usually group-match participants on demographic characteristics 

such as age, sex, handedness, ethnicity, and socioeconomic status in the affected and healthy 

participants. In addition to matching groups on these variables, these studies also usually 

control for the effects of these demographic variables on imaging measures by controlling 

statistically for them and other potential confounders. Controlling for these effects, either by 

the selection of subjects who enter the study or statistically, is expected to allow the findings 

to generalize to the entire population of affected individuals. Imaging studies are expensive 

to conduct, however, and therefore the number of participants who can be included is 

usually limited to a few dozen participants – indeed, the largest imaging studies have had at 

most only a few hundred affected and healthy participants combined. The limited number of 

participants limits the ability to stratify across the key demographic features of the 

population, and if those demographic influences on brain structure and function overlap 

those features that are the basis for classification within the machine learning algorithms, or 

if they influence performance of those algorithms, then the trained machine classifications 

will likely be unable to diagnose accurately a new person from the larger population of 

affected individuals. To take an extreme example, if the classification boundary and decision 

rules were learned using data only from females(Savio et al., 2009) and if the features that 

enter the classifier include female-specific features that differ from males, then the classifier 

might not reasonably be expected to generalize to classify males. Thus, the selected 

participants on whom the classifier is trained should be as representative as possible of 

affected individuals in the larger population if the algorithm is to generalize to provide 

accurate classification of new individuals.
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II: Imaging Modality

In vivo brain imaging data are acquired using one or more imaging modalities, including 

MRI, computed tomography (CT), positron emission tomography (PET), and single photon 

emission computed tomography (SPECT). Of these modalities, MRI is usually preferred for 

studies of machine learning-based classification because it is noninvasive and provides 

exquisite detail of brain structure and function, including high resolution, high contrast, and 

excellent SNR, at relatively low cost. In addition, MRI is perhaps the most versatile among 

the various imaging modalities because it can probe differing aspects of the tissue within the 

same scanner: anatomical MRI provides detailed information about the structure and shape 

of various brain regions(Naidich et al., 2009); functional MRI (fMRI) quantifies the change 

in concentration of oxygenated hemoglobin in the blood as a proxy for changes in neural 

activity(Buxton, 2009); diffusion tensor imaging (DTI) measures the diffusion of water 

molecules in the brain, which can be used to infer connectivity along the axons that connect 

one brain region to another(Mori, 2007); magnetic resonance spectroscopy (MRS) quantifies 

the concentration of various chemicals and metabolites in the brain(Atlas, 2008); and arterial 

spin labeling (ASL) measures perfusion of the blood in the brain by tagging the water 

molecules as they flow into the brain(Salvolini and Scarabino, 2006). These MR modalities 

provide complementary information about the brain, which may be differentially affected by 

disturbances in the brain associated with specific neuropsychiatric disorder.(Hao et al., 

2011) Therefore, simultaneous use of brain measures from these modalities in principle 

should diagnose an individual more accurately than using measures only from a single MR 

modality. However, investigators thus far have used data from either anatomical MRI or 

fMRI alone, but not both together, for diagnostic classification. The accuracy of diagnostic 

classification using data from a single modality compared to other modalities, or to data 

from all modalities simultaneously, is unknown.

III: Methods for Delineating Brain Regions

Because morphometry is the study of shapes and forms, and because machine learning 

algorithms are applied to measures of regional brain morphology, the accurate delineation of 

brain regions is an important prerequisite for the accurate measure of feature vectors that the 

algorithm classifies. Inaccurate delineation of brain regions will ultimately undermine the 

accuracy of diagnostic classification using machine learning algorithms, and in many 

instances will prove fatal to those efforts. Delineation of a brain region by an expert in brain 

anatomy remains the gold-standard for definition of brain regions, but manual delineation is 

tedious and can be prone to drifts in measures over time and to variability across experts. 

Studies(Peterson, 2000, Peterson et al., 2007, Peterson et al., 2001a, Peterson et al., 2000, 

Peterson et al., 1993a, Peterson et al., 1993b, Peterson et al., 2001b, Peterson et al., 2003, 

Peterson et al., 2009, Plessen et al., 2006) that employ manual delineation should ensure 

accurate definition by extensively documenting all protocols for region definition, 

maintaining high reproducibility of measures across experts and across time by reassessing 

the reliability of the expert at predefined time intervals, and employing quality control 

checks on the definitions of each expert by an independent rater.

Because of the time, training, and expense required to implement gold-standard manual 

delineations of brain regions, most studies employ automated tools for region delineations. 
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For example, the automated labeling pathway (ALP) platform combines a series of publicly 

available software packages, including Analysis of Functional Neuro-Images (AFNI), Brain 

Extraction Tool (BET)(Smith, 2002), FMRIB’s Linear Image Registration Tool (FLIRT), 

and Insight Segmentation and Registration Toolkit (ITK)(Yoo, 2004) to isolate brain from 

non-brain tissue(Wu et al., 2006), to spatially co-register each brain to a template brain using 

nonlinear deformations (in the ITK(Chen et al., 1999) algorithm), to segment brain tissue 

into gray and white matter, and to label brain regions. Labeling of brain regions can be aided 

using either the automated anatomical labeling (AAL) atlas containing 90 manually traced 

regions(Tzourio-Mazoyer et al., 2002), the Brodmann atlas that has 82 regions(Rorden and 

Brett., 2000) or locally generated regions defined from functional MRI studies(Carter et al., 

2000). Automatically delineated regions, however, typically have large errors when 

compared with gold-standard manual definitions, especially near the outer boundary of the 

brain region being delineated, and they therefore tend to increase variance in the computed 

morphometric feature on which the classifier usually operates. These errors in region 

definition undermine the statistical power to detect brain features that discriminate groups 

when participant numbers are relatively small, as they usually are in imaging studies.

IV: Brain Measures

Feature vectors are morphological measures that can be compared statistically across groups 

of participants. The features that typically have been used to study persons with psychiatric 

disorders include volumes of entire brain regions, voxel-wise maps of thickness of the 

cortical mantel, voxel-wise maps of gray matter density (i.e., amount of gray matter per unit 

volume), local volumes of gray and white matter, and measures of local variation in the 

deformation fields that spatially normalize a brain to the template brain. Although the 

dimensionality of a feature vector (i.e. the number of features in the vector) in voxel-wise 

maps is typically on the order of hundreds of thousands, an imaging study comprises 

imaging data from at most several hundred participants. Because imaging data are available 

for only a limited number of participants, the probability distribution of features in a high-

dimensional Euclidean space, called the feature space, cannot be discerned reliably. If the 

dimensionality of the feature space is not reduced using some sort of data reduction 

procedure, then data from an exorbitantly large number of participants would be required to 

learn accurate classification boundaries. For example, to estimate a multivariate Gaussian 

distribution of 10 features, data from more than 800,000 participants are required to ensure 

that at the mode the estimated distribution is close the true distribution.(Silverman, 1986) 

The dimensionality of the feature space therefore must be reduced significantly to learn the 

decision rules and classification boundaries that are valid in the affected population. Some 

of the popular methods for dimensionality reduction include (a) principal component 

analysis (PCA), which generates components that are uncorrelated with one another(Jolliffe, 

2002), and (b) independent component analyses (ICA), which generates components that are 

statistically independent(Hyvarinen et al., 2001). Although statistically independent 

components are uncorrelated, components that are uncorrelated may not necessarily be 

statistically independent. In the reduced feature space, a machine learning algorithm 

compares two feature vectors using either their Euclidean distance, which computes the 

dissimilarity between feature vectors as the length of the line segment connecting them in 

the feature space, or the Mahalanobis distance, which accounts for the correlation among 
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features and their variances to compute the distance between the feature 

vectors(Mahalanobis, 1936).

V: Choice of a Classifier

We now briefly review the various classifiers that have been used to diagnose patients as 

having one of several psychiatric disorders.(Mitchell, 1999) The last decade has witnessed 

an explosion in the use of classifiers in a wide range of disciplines that includes economics, 

astronomy, molecular biology, and diverse medical specialties such as cardiology and 

radiology. The use of classifiers in neuroimaging, however, is just beginning. A classifier is 

a computer algorithm that learns the most concise and accurate decision rules that best 

discriminate data among classes and applies the learned rules to data that it has not yet seen 

(Fig. 2).

Decision Tree Classifiers—Decision trees are a popular tool for classifying data.(Hunt 

et al., 1966) They create a model tree that best predicts the diagnosis of a patient based on a 

feature vector in the patient’s brain. In a decision tree, a node represents a feature, an edge 

between two nodes represents a combination of the features at the two nodes, and a leaf 

represents a diagnosis. A new patient is diagnosed by first computing its features and then 

using the computed features to traverse the tree from the root node to a leaf that determines 

the diagnosis for that individual (Fig. 3).

A decision tree is learned by assigning a feature to a node that best partitions the set of 

brains into two or more subsets, such that the majority of the brains in each subset belong to 

one or the other diagnostic labels. The feature assigned to the node is removed from the 

feature vector, and then each subset is recursively partitioned into further subsets using the 

remaining features in the vector. The recursive partitioning stops when all brains in a subset 

have the same diagnosis.

Decision tree algorithms have several limitations, including: (1) the learning algorithm may 

not generalize well to the larger population of affected people, (2) the optimal tree can be 

learned only by searching over all possible feature assignments to the nodes, and (3) small 

changes in the feature values of the training set may affect partitioning of the set into 

subsets, thereby producing large changes in the structure of the learned tree. Therefore, 

noise in the feature vectors can significantly affect the performance of the classifier. 

Decision tree classifiers, however, become increasingly stable and more accurate with an 

increasing number of participants in the training set, thereby producing a more accurate 

diagnostic classification of new participants.

Naive Bayes’ Classifiers—A naive Bayes’ classifier assumes that the features in feature 

vectors are statistically independent, and it uses this assumption to compute probabilities of 

a diagnosis from given sets of feature vectors. The estimated probabilities, in turn, are 

applied to diagnose an individual.(Domingos and Pazzani, 1997, Rish, 2001, Hand and Yu, 

2001) Bayes’ theorem describes the relationships of the marginal, conditional, and joint 

probabilities of features and diagnostic labels that are used to learn the classification rule. A 

naive Bayes’ classifier may outperform other sophisticated classifiers because the 

assumption that the features are independent reduces the number of parameters of the 
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probability distributions that must be estimated. The parameters in a naive Baye’s classifier 

therefore can be estimated accurately using fewer feature vectors, thereby increasing its 

performance as compared to that of other classifiers.

AdaBoost Classifiers—AdaBoost is a meta-algorithm that constructs a diagnostic 

classifier with high accuracy (i.e.,AdaBoost is a strong classifier) by linearly combining 

several classifiers that have low accuracy (i.e., separately they are weak classifiers).(Freund 

and Schapire, 1997) AdaBoost classifiers reduce both bias and variance in classification 

accuracy, and they maximize the distance between the decision boundary and the training 

feature vectors.(Freund and Schapire, 1997) Furthermore, AdaBoost classifiers are easy to 

implement for a wide variety of learning tasks, and they usually generalize well to the 

affected population. However, AdaBoost classifiers are sensitive to noise and outliers in the 

training data set and may not significantly improve accuracy if one of the classifiers in the 

linear combination is a strong classifier.

Support Vector Machine (SVM) Classifiers—A support vector machine (SVM) is a 

linear classifier(Cortes and Vapnik, 1995, Vapnik, 1999) -- i.e., it constructs a linear 

classification boundary in the feature space that best separates feature vectors in the training 

set. The classification boundary is an optimal hyperplane (a plane in feature spaces of 

dimension greater than two) that maximizes the distance between the hyperplane and the 

feature vectors that are closest to the hyperplane. The feature vectors that define the 

hyperplane are called the “support vectors” (Fig. 4).

Support vector machines have been extended to classifying a feature vector among more 

than two diagnostic classes and for computing nonlinear separating planes by first mapping 

the features to a higher dimensional space using nonlinear functions and then estimating the 

optimal hyperplane that best separates the features in the higher dimensional space.

(Aizerman et al., 1964) Although an SVM may perform well in classifying a new feature 

vector that was not used to train the SVM, the correct choice of the optimal mapping to the 

higher dimensional space and the formidable computational complexity remain the greatest 

limitations of SVM for diagnostic classification.(Burges, 1998) In addition, the decision 

boundary learned by an SVM is defined by the support vectors only, and therefore if the data 

are sparse, the classification boundary is highly sensitive to the noise in these vectors, such 

that even small variations in support vectors can lead to a large variation in the decision 

boundary. Furthermore, feature vectors other than support vectors do not define the decision 

boundary, and therefore, an SVM classifier ignores a large amount of valuable data, thereby 

undermining the generalizability of the learned boundary to the larger population of affected 

individuals.

VI: Validation Procedures

The performance of a classifier in diagnosing a new patient is evaluated by computing (1) 

misclassification rates using cross-validation procedures, and (2) prediction error using 

bootstrap procedures and Akaike’s Information Criteria (AIC). Prediction error measures the 

accuracy of a classifier in predicting the diagnostic class for an individual from its feature 

vector. Prediction error is computed as the expected value of the squared difference in the 
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feature vector of the person and its predicted value by the classifier.(Efron and Tibshirani, 

1993) In classification problems, the prediction error computes the probability of an 

incorrect classification, which is the probability that the predicted diagnosis differs from the 

actual diagnosis of a patient. A model with a lower prediction error will generalize better to 

the population than the model with a higher prediction error. The AIC computes a prediction 

error by adjusting the error using the complexity c (i.e., the number of diagnostic classes) of 

the learned model and an estimate of the residual variance of feature vectors in each class.

Bootstrapping—A bootstrap procedure estimates prediction error by (a) creating B sets of 

features with replacement from the original set of feature vectors, (b) generating B models 

from each of these B sets, and then (c) using the original set to compute the prediction error 

for each of the B models. The overall prediction error is computed as the average of the B 

prediction errors, one for each of the B models.(Efron and Tibshirani, 1993) However, this 

simple bootstrap procedure is biased, meaning that it underestimates the prediction error. An 

improved bootstrap procedure can be used to compute an unbiased estimate of the prediction 

error by first estimating the bias in the simple bootstrap procedure and then adding the 

estimated bias to generate the improved estimate of the prediction error.(Efron and 

Tibshirani, 1993)

Cross-Validation—A cross-validation procedure computes the sensitivity and specificity 

of a classifier by first dividing the set of feature vectors into two sets: a training set and a test 

set. Then it learns the classification rules using the feature vectors in the training set and 

evaluates the learned rules using the feature vectors in the test set. A method for cross-

validation therefore divides the data into two parts: one part to generate the model, and the 

other to assess the model’s accuracy. An algorithm accurately diagnoses or classifies a 

participant if the person’s true diagnosis as identified by clinical experts matches the 

diagnosis that the algorithm assigns; otherwise the participant is misclassified. The 

misclassification rates for a classifier are computed using a three-step algorithm: (1) The set 

of N feature vectors is divided into n = N / k sets containing roughly equal numbers of 

feature vectors, where k is a user-specified number between 1 and N/2; (2) one of the n sets 

is selected as the test set, and the classification rules are learned using the feature vectors in 

the remaining n −1 sets. The feature vectors in the test set are used to compute the prediction 

error using the learned classification rules; (3) the second step is repeated using each of the n 

sets as the test set, yielding n estimates of the prediction errors, which are averaged to 

estimate the overall prediction error. For example, in a procedure termed “Leave-One-Out” 

(LOO) cross-validation, the validation procedure is repeated N times by treating every one 

of the N feature vectors as the test feature, training the classifier using the remaining 

features, and computing the misclassification rates by counting the number of feature 

vectors that were misclassified. The average misclassification rate is computed for each 

diagnosis by dividing the number of misclassified individuals by the total number of 

individuals who have that clinical diagnosis. A procedure termed “split-half” cross-

validation, on the other hand, partitions the set into two halves, with an equal number of 

feature vectors. By dividing the set into several random halves, the split-half procedure can 

be repeated several times to compute the average and standard deviation of misclassification 

rates across these several applications of split-half cross-validation procedures.
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B: Examples of classifiers for diagnosing psychiatric illnesses using MRI

MRI has enabled us to localize brain disturbances to specific brain regions, and these 

disturbances have been analyzed using machine learning algorithms to diagnose an 

individual as having a specific disorder or not. We will briefly describe neuroimaging 

findings in Alzheimer’s Disease (AD), Major Depressive Disorder (MDD), and Autism 

Spectrum Disorder (ASD) and the classifiers that have been developed to diagnose an 

individual as having one of these disorders.

I: Alzheimer’s Disease

Alzheimer’s Disease (AD) is a neurodegenerative disease characterized by progressive 

impairment of memory and other cognitive functions. Brain MRI measures have been 

demonstrated to be more sensitive indicators of AD than cognitive assessment alone.

(Scheltens and Korf, 2000) Several MRI studies have identified severe localized volume 

loss, presumably representing synaptic and neuronal degeneration, in hippocampus(Hyman 

et al., 1984, Bobinski et al., 1996, Braak and Braak, 1991a, Braak and Braak, 1991b, Brion 

et al., 1994, Mesulam, 2000, Ball et al., 1985), entorhinal cortex(Hyman et al., 1984, 

Bobinski et al., 1996, Janke et al., 2001, Ball et al., 1985), amygdala(Braak and Braak, 

1991a, Braak and Braak, 1991b, Brion et al., 1994, Mesulam, 2000), parahippocampal 

formation(Braak and Braak, 1991a, Braak and Braak, 1991b, Brion et al., 1994, Mesulam, 

2000), and temporoparietal association cortices(DeCarli, 2000). Volume loss in the anterior 

hippocampus and amygdala occur even before the onset of clinical symptoms and in 

individuals who are at genetic risk of developing AD.(Lehtovirta et al., 2000, Fox et al., 

1996) Furthermore, in the earlier stages of AD, hippocampal volume has been shown to be 

1.75 standard deviations smaller than those in age-matched healthy participants.(Jack Jr. et 

al., 2000) MRI findings are possibly a sensitive measure of dementia(Scheltens and Korf, 

2000), and early atrophy of hippocampus and the ventromedial temporal lobe is consistent 

with the presence of early memory impairment(Scheltens and Fox, 2002, Erkinjuntti et al., 

1993, Braak et al., 1993). Hippocampal atrophy, however, is not unique to AD, as it has 

been associated with Parkinson’s dementia(Laakso et al., 1996) and otherwise healthy 

individuals who have impairments in recent memory(De Leon et al., 1999).

A number of procedures for machine learning using anatomical MRI data have been 

developed to diagnose individuals as having AD or not. Two studies(Zhang et al., 2011, 

Hinrichs et al., 2009) used data from both anatomical MRI and PET for classification. All of 

these procedures applied an SVM to learn the decision boundary in a feature space, and 

most validated performance of the classifier using an LOO cross-validation. Two studies 

applied 10-fold cross-validation(Zhang et al., 2011, Hinrichs et al., 2009), and 

another(Cuingnet et al., 2010) applied split-half validation by dividing the participants into a 

a training set or a test set. These procedures classified individuals with high sensitivity (SN 

± SD = 83% ± 14%, range = 57%-100%) and specificity (SP ± SD = 88% ± 9%, range = 

66%-97%) (Table 1).
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II: Major Depressive Disorder

Major Depressive Disorder (MDD) is defined by the presence of depressed mood and 

associated disturbances in sleep, appetite, energy, pleasure, self-esteem, and concentration 

that persist for more than two weeks. Using MRI, atrophy in cortex(Morris and Rapoport, 

1990) (Ballmaier et al., 2004a, Pantel et al., 1997, Rabins et al., 1991), frontal lobe(Kumar 

et al., 2000), orbitofrontal cortex (Ballmaier et al., 2004b, Lai et al., 2000, Lee et al., 2003), 

gyrus rectus and anterior cingulate (Ballmaier et al., 2004b), hippocampus(Shah et al., 1998, 

Sheline et al., 1999, Steffens et al., 2000, Steffens et al., 2002, Krishnan et al., 1992, 

Steffens and Krishnan, 1998), amygdala(Sheline et al., 1999, Steffens et al., 2000), and 

lesions in the basal ganglia(Rabins et al., 1991, Steffens and Krishnan, 1998, Tupler et al., 

2002), especially in the caudate (Krishnan et al., 1992) and putamen (Steffens and Krishnan, 

1998, Tupler et al., 2002), have been associated with MDD. MRI studies have also identified 

differences between early versus late-onset MDD (Ballmaier et al., 2004b, Ballmaier et al., 

2004a), with late-onset illness showing less frontal and more temporal and parietal atrophy. 

In addition, several studies using semi-quantitative ratings(Butters et al., 2004, Greenwald et 

al., 1998) and semi-automated measures(Taylor et al., 2003) have reported an increased 

prevalence of white matter hyperintensities in periventricular and subcortical regions, 

especially in the elderly.(Salloway et al., 1996) Diffusion tensor imaging (DTI) has shown 

decreased anisotropy in water diffusion, and therefore possible loss of integrity in neural 

pathways across white matter, of the prefrontal cortex.(Alexopoulos et al., 2002, Taylor et 

al., 2004, Hickie et al., 1995) Patients with subsyndromal depression had similar patterns of 

atrophy in the prefrontal cortex as those with MDD.(Kumar et al., 1998) Although several 

studies have associated disturbances with MDD using anatomical MRI, only one fMRI study 

in 19 patients with MDD and 19 healthy controls has attempted to diagnose an individual as 

having MDD using an affect task of sad faces.(Fu et al., 2007) This latter study applied 

SVM to the voxel-wise maps of activation across the brain and reported high sensitivity 

(=84%) and specificity (=89%) in LOO cross-validation analyses. However, because the 

study employed fMRI data from only 38 participants to learn the classification rules, and 

then computed sensitivity and specificity using LOO cross-validation, the method may not 

generalize well to classify an individual in clinical populations.

III: Autism Spectrum Disorders (ASDs)

ASDs are characterized by abnormalities in reciprocal social interaction and communication, 

as well as the presence of restricted interests and behaviors. These disorders usually 

manifest before the age of three years. Imaging studies have demonstrated disturbances in 

the cortex, corpus callosum(Piven et al., 1997), basal ganglia(Sears et al., 1999), and 

cerebellum(Piven et al., 1992), and they have reported correlations among gray matter 

volume, Intelligence Quotient (IQ), and measures of symptom severity(Rojas et al., 2006). 

Previous attempts to diagnose an individual as having ASD have applied either SVM(Ecker 

et al., 2010b, Ecker et al., 2010a) or LPBoost(Singh et al., 2008) to voxel-wise maps of (1) 

localized volume change in GM, WM, and CSF(Ecker et al., 2010b), (2) cortical thickness 

and average convexity, mean curvature, local area, and distortion of the cortical 

surface(Ecker et al., 2010b), or (3) cortical thickness(Singh et al., 2008). These methods 

evaluated classification accuracy, which was greater than 85%, using methods for either 

LOO(Ecker et al., 2010b), leave-two-out(Ecker et al., 2010a), or 9-fold(Singh et al., 2008) 
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cross-validation. The classification rules, however, were learned using imaging data from 

fewer than 40 participants, whereas the dimensionality of the feature space was very large, 

on the order of thousands of voxels across the entire brain. In addition, the several brain 

regions that contributed to classifying an individual were small, typically fewer than 100 

voxels, and they were randomly scattered across the entire brain. Although the small, 

randomly scattered regions may have classified the small number of participants with high 

accuracy, disturbances in the brains of individuals with ASDs are unlikely to be randomly 

distributed in this way in small regions across the brain. Thus, because these methods used 

brain regions that may not be representative of the disturbances in ASDs, and because they 

used a small number of participants that may not be representative of the larger population 

of people with ASDs, the learned classification rules cannot yet be used within clinical 

settings to diagnose a patient as having an ASD (Table 2).

C: Discussion

Many sophisticated imaging and statistical methods have been developed to diagnose an 

individual automatically as having a specific neuropsychiatric disorder. These methods 

learned classification rules and decision boundaries by applying support vector machines 

(SVMs) to selected image features, such as a voxel-wise map of gray matter intensities, gray 

matter volumes, white matter volumes, or volumes and shape features of various subcortical 

regions of the brain. Classification accuracy was evaluated using either leave-one-out (LOO) 

or 10-fold cross-validation, with reported sensitivities and specificities frequently being 

greater than 90%. Most of these machine learning algorithms were applied to diagnose an 

individual as having Alzheimer’s Disease (AD). However, these methods may not 

generalize well in the affected populations because the classification rules were learned from 

small groups of participants and from image features that may not be clinically relevant, and 

the classification accuracies were not assessed in clinical settings. Furthermore, although 

LOO cross-validation is a widely accepted method for evaluating the performance of 

classification algorithms, it may have overestimated the sensitivity and specificity of the 

classifiers, especially because data were available for only a small number of participants. 

Therefore, more rigorous validation and statistical procedures, in particular split-half 

validation, should be used to evaluate accurately the performance of these classifiers. Thus, 

although the classification methods used thus far in imaging studies have shown that brain 

morphometry has the potential to diagnosis individuals accurately, evaluation of the 

performance of the classifiers using more representative features and more rigorous 

validation procedures are essential to ensure accurate and valid performance estimates and 

to improve the generalizability of the learned classification rules within the affected 

population.

All attempts thus far to use imaging-based automated classifiers to diagnose psychiatric 

disorders have assessed performance of the classifiers against the “gold standard” clinical 

diagnoses, though exactly how golden those standards are, is questionable. For example, 

even when those clinical diagnoses are made rigorously using structured or semi-structured 

diagnostic interviews, those diagnoses may not be perfect. Moreover, and possibly more 

problematically, the unquestionable etiological and neurobiological heterogeneity of 

psychiatric diagnoses has for some time brought the categorical boundaries for clinical 
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diagnoses under increasing suspicion and criticism as being invalid. The extent to which 

those diagnoses are invalid is the extent to which the assessment of performance of imaging-

based classifiers will be undermined. Certainly the performance of a classifier can be no 

better than the quality of the gold standard against which it is evaluated, because even if the 

brain-based classifier were to diagnose patients more accurately than do symptom-based 

clinical diagnoses, we could never know it, given that we have nothing better or more 

golden than the clinical diagnosis by which to judge the brain-based classifier. Some kind of 

independent gold standard would be needed to evaluate and validate both the brain-based 

classification and clinical diagnosis, such as their ability to predict future clinical course, 

treatment response, behavioral or cognitive profiles, or comorbid illnesses. Nevertheless, the 

difficulties that the etiological and neurobiological heterogeneity pose for the validity of 

symptom-based clinical diagnoses does not entirely doom or preclude their utility as a 

benchmark for evaluating imaging-based classifiers, given that whatever degree of validity 

they have provides the opportunity to demonstrate the diagnostic potential of a putative 

classifier and can provide proof-of-concept support for the entire enterprise of imaging-

based classification. Also certainly, it is impossible for classifiers consistently perform at a 

level that is statistically significantly better than chance if symptom-based clinical diagnoses 

are entirely invalid. Furthermore, the presence of neurobiological heterogeneity for any 

single clinical diagnoses does not mean that those neurobiological subtypes have nothing in 

common with one another. Indeed, the morphological signatures in the brain of those 

neurobiological subtypes may as a whole have more in common with one another than they 

have with the morphological signatures of other symptom-based clinical diagnoses. Those 

subtypes, in fact, may very well share certain features that constitute in essence a “final 

common pathway” that is responsible for those features producing overlapping symptom 

complexes and that have caused those symptom complexes to be classified as a single 

clinical disorder in the first place. The fact that the best performing imaging-based 

classifiers consistently report diagnostic accuracies in the 80-90% range suggests that the 

“gold standard” clinical diagnoses must be at least that good themselves in terms of having 

brain features that are more alike than they are like the brain features of the comparator 

group.

Methods for diagnostic classification typically have used SVMs to generate classification 

boundaries and decision rules using imaging data from participants who have gold-standard 

clinical diagnoses already available, and they have used those classifiers to diagnose 

individuals who were not included in the datasets used to generate the diagnostic algorithms. 

Reported classification accuracies generally have exceeded 85% and typically have been 

estimated using either LOO cross-validation or 10-fold cross-validation. LOO cross-

validation is sensitive to noise in the imaging data, especially if the feature space consists of 

voxelwise maps of brain measures and if the imaging data are available for only a small 

number of participants. Although 10-fold cross-validation in principle should be more robust 

and more accurate in assessing the accuracy of diagnostic classification than LOO cross-

validation, the limited number of participants in these studies (typically fewer than 100 

combined across diagnostic groups) likely rendered performance of these two methods 

comparable. The limitations of cross-validation techniques undermine the accuracy 

estimates of these diagnostic methods and argue for use of more rigorous validation 
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procedures, such as split-half cross-validation, to assess diagnostic accuracy of the 

classifiers.

The accuracy of diagnostic classifications using imaging data alone is limited by the features 

of the image that are used to generate the classification boundaries and decision rules. 

Although the computational and statistical complexities of classifiers have increased rapidly 

in the last two decades, their classification accuracy has typically not surpassed 85-90%. 

Further improvements in diagnostic accuracy will require more accurate localization and 

measurement of anatomical disturbances that are both robust and specific to particular 

psychiatric illnesses. Classifiers have used increasingly fine-grained features from imaging 

data across the entire brain in an effort to capture anatomical disturbances that are more 

circuit-based and distributed across multiple brain regions.(Peterson, 2010) Using fine-

grained, voxel-wise maps of local volume disturbances prohibitively increases noise in the 

imaging features and increases the dimensionality of the feature space, thereby requiring 

data from many more participants to generate models for diagnostic classification that are 

accurate and generalizable. Therefore, using features that are computed at an appropriate 

level of spatial resolution might be essential to help reduce the dimensionality of the feature 

space and make more tractable the study of a sufficient sample of participants to generate 

classifiers that generalize to the larger population of affected individuals.

The sampling frames used to identify patients and healthy control participants in the 

attempts of research studies thus far to use classifiers to diagnose patients on the basis of 

features in brain images also likely will prove to limit the generalizability and practical 

utility of these approaches to diagnosis. Patients in these studies have been identified from 

samples of convenience, usually from psychiatric clinics, and therefore they are not truly 

representative of all affected people in the general population.(Berkson, 1946) Similarly, the 

healthy participants, although usually recruited to match the patient group demographically, 

have been screened so that they do not have any psychiatric disorder or neurological disease, 

and therefore also are not representative of the general community. The generalizability of a 

classifier therefore is limited by the demographic, clinical, and behavioral characteristics of 

the participants used to generate the classification boundaries. For example, excluding 

participants who fear the tight spaces of the MRI scanner may yield a non-representative 

sample of research participants in a study of generalized anxiety disorders. Similarly, 

excluding patients with DSM-IV Axis 1 comorbodities would create a sample that is not 

representative of the population affected with Bipolar Disorder (BPD). Thus, for a classifier 

to diagnose accurately a patient within clinical settings, and for performance estimates of the 

classifier generated in research settings to estimate likely performance within clinical 

settings, the classifier must be generated using imaging data from participants that are as 

representative as possible of affected people in the general population.

The greatest challenge in generating classifiers in research studies that can be applied to the 

affected population in clinical settings is the availability of imaging data from only a small 

number of participants. The limitation of sample size can perhaps be overcome by the 

growing trend to establish national repositories of imaging data from federally funded 

imaging studies. Pooling data into one repository should significantly increase the imaging 

data available for the training and testing of diagnostic classifiers. Large samples of pooled 
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data also afford the possibility of being more representative of both the affected and healthy 

populations across the country. An example of such a public database is Alzheimer’s 

Disease Neuroimaging Initiative (ADNI), which has acquired imaging data in 895 elderly 

persons who are healthy, with Alzheimer’s disease, or with mild cognitive impairment. 

Merging imaging data across multiple laboratories has its own challenges, however, 

including differing ascertainment procedures for recruiting participants, differing 

manufacturers and performance of the MRI scanners, differing SNR and contrast in the 

images, differing patterns of inhomogeneity in image intensity across the imaging volume, 

and differing patterns of geometric distortion in the images. In addition, differing methods 

for processing the images and for defining brain regions have large effects on the imaging 

measures that enter classifiers. Each of these confounding factors reduces the accuracy and 

statistical power of the diagnostic classifiers and therefore must be carefully addressed to 

generate valid decision rules and classification boundaries in datasets combined across sites 

in multi-site imaging studies.

The presence of differing anatomical subtypes of a single, phenotypically defined illness 

presumably will reduce the accuracy of classifiers that are based upon identifying common 

anatomical features that discriminate between two or more phenotypically identified 

disorders. A classification procedure that is trained using imaging data from one anatomical 

subtype perhaps cannot accurately classify a participant from a differing anatomical subtype 

unless those two subtypes share more imaging features with one another than they do with 

the conditions against which they are being compared and classified. Because anatomical 

subtypes of neuropsychiatric disorders have not yet been identified, increasing the number 

of participants seems to be the only available recourse at present to reduce the adverse 

effects of biological heterogeneity on the performance of a diagnostic classifier.

The performance of a classifier can be improved significantly by reducing errors when 

measuring the feature vectors that are used to train and test the classifier. Errors in 

delineating brain regions as well as errors in localizing and quantifying disturbances across 

multiple regions across the brain will increase measurement error in the feature vectors and 

thereby will undermine the accuracy of any given classifier. Automated methods for 

delineating brain regions, for example, or failing to account adequately for artifactual 

variations in image intensity across the brain, typically introduce large measurement errors 

near the surfaces of brain regions, particularly for small regions located deep in the brain. 

Yet current methods for classification typically employ automated methods for delineating 

brain regions because manual delineation is labor-intensive and expensive. However, 

manual delineation of brain regions is at present the only way to minimize errors sufficiently 

in the feature vectors to improve substantially the accuracy of the diagnostic algorithms.

Although current methods for making computer-based diagnoses using brain images alone 

cannot yet be applied within clinical settings, a growing number of studies thus far provides 

strong proof-of-concept evidence that these techniques can and will be used to diagnose 

individuals with high accuracy in the near future. Although the accuracy of diagnosis using 

these algorithms thus far has generally not exceeded 90%, imaging datasets from much 

larger and more representative populations, when subjected to advanced image processing 

and statistical techniques that provide precise and fine-grained features across the entire 
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brain, will be able to generalize better to the larger population of affected individuals and 

therefore will make the automated diagnosis of psychiatric illness using brain images alone 

clinically realistic and logistically feasible.
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Glossary

Classification 
Boundaries

are hypersurfaces that partition the feature spaces into regions of 

features such that brains within each region have the same 

diagnosis.

Cross-Validation 
Procedures

compute the sensitivity and specificity of a classifier first by 

generating the classifier using a set of features called the training 

set, and then by evaluating the performance of the classifier using 

an independent set of features called the test set.

Euclidean Distance is a measure of dissimilarity between two feature vectors. It is 

computed as the length of the line segment connecting the two 

features in the feature space.

Feature Vector is a vector of features that encode the location and magnitude of the 

brain measures used to generate a classifier.

Independent 
Component 
Analysis

generates components (i.e. linear combinations of features) that are 

pairwise statistically independent.

Machine Learning aims at generating decision rules and classification boundaries 

within a feature space that permit assigning a diagnostic label to 

each brain based on its specific set of features.

Mahalanobis 
Distance

is a measure of dissimilarity between two feature vectors that 

accounts for correlations among features and their variances in the 

feature space.

Morphometry studies forms and shapes by quantifying their features of interests 

and correlating these features with clinical, behavioral, and genetic 

measures of individuals.

Principal 
Component 
Analysis

generates components (i.e. linear combinations of the features) that 

are uncorrelated with one another.

Supervised 
Machine Learning

generates decision rules and classification boundaries using a set of 

features from brains with known clinical diagnosis.
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Template Brain is a brain of an individual that is morphologically most 

representative of the brains of individuals in a study.

Unsupervised 
Machine Learning

generates naturalistic groupings of brains using their features 

without a priori knowing their clinical diagnosis.
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Key Points

1. Numerous recent studies using advanced imaging technologies provide strong 

evidence that individuals can be correctly diagnosed using appropriate brain 

imaging measures and automated, machine-based methods for classification.

2. Nevertheless, the automated diagnosis of an individual as having a specific 

psychiatric disorder or not using only MRI data in routine clinical settings still 

faces considerable challenges.

3. The generalizability of learned classification rules to affected populations is 

limited by the availability of imaging data from a relatively small numbers of 

participants and the high dimensionality of imaging measures.

4. Imaging measures that encode the nature and locations of disturbances in the 

brain for specific disorders will be necessary for the accurate clinical diagnosis 

of individual patients in clinical settings.

5. Rigorous, split-half cross-validations procedures should be used alongside other 

less stringent, but more common, validation procedures to assess performance of 

classifiers within real-world, clinical settings.
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Fig. 1. 
Spatial Patterns of Abnormalities in Local Volumes across cerebral cortex in participants 

with various neuropsychiatric disorders. Top Row: 44 individuals with velo-cardio-facial 

syndrome (VCFS); and Second Row: 81 Schizophrenia (SZ) patients. These abnormalities 

were detected by comparing each group of patients with a group of healthy individuals who 

were age- and sex-matched with the patient groups. Affected populations have distinct 

spatial patterns of abnormalities that can be used to train a classifier to diagnose individual 

people within that population. The P-values of abnormalities are color-encoded and 

displayed on the template brain. Purple: regions of significant (P-value < 0.0001) local 

volume reductions; Red: regions of significant (P-value < 0.0001) local volume increases in 

the affected populations. VCFS=Velo-Cardio-Facial Syndrome; SZ=Schizophrenia.
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Fig. 2. Classification Algorithm
The input data for a classification algorithm is a set of labeled feature vectors (i.e. xi, a 

feature vector along with its associated class or diagnostic label).The classification 

algorithm generates a classification rule or decision boundary that best separates the feature 

vectors that belong to different classes or diagnostic labels. The learned decision rule is then 

applied to classify new feature vectors from a new participant as belonging to one of the 

various diagnostic classes.
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Fig. 3. 
A Hypothetical Decision Tree for Classifying an Individual as Depressed or Healthy using 

four features: the volume of the left amygdala and right putamen, educational level, and 

Mattis Dementia Rating Scale (MDRS). These four features are computed and used to 

classify a new individual by traversing down the tree. Starting at the root node, the node 

labeled Amygdala L, if the volume of the left amygdala is greater than the specified 

threshold then the individual is classified as healthy and the algorithm stops. Otherwise, it 

moves down along the edge labeled ≤ .0033 to the next node and compares the volume of 

the right putamen to the threshold: If the volume is greater than the threshold then the 

algorithm moves to the leaf node labeled Not Depressed and the individual is classified as 

healthy. Otherwise the process is repeated until a leaf node is reached and a diagnosis is 

assigned to the individual. The decision tree was obtained by personal communications with 

the authors(Dutta et al., 2007). L, Left; R, Right; MDRS, Mattis Dementia Rating Scale.
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Fig.4. 
An Example Support Vector Machine (SVM) that separates the training samples that 

belong to one of two classes (red dots and blue dots) in the feature space using a maximum-

margin hyperplane. Because the dimension of the feature space is 2 in this example, the 

hyperplane is a straight line separating the samples. The hyperplane is only estimated by few 

features called the support vectors, and therefore, small variations in support vectors may 

cause large variations in the estimated decision boundary. Furthermore, feature vectors other 

than the support vector do not influence the hyperplane. Thus, small changes in the location 

of the support vectors can significantly change the orientation of the hyperplane in the 

feature space (the n-dimensional Euclidean space of the features), thereby affecting the 

performance of the SVM in diagnosing a new patient not in the training set.
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Table 1

Recent Procedures for Diagnosing an Individual as having Alzheimer’s Disorder or not using anatomical MRI 

data. Two studies used PET imaging data in addition to MRI data. Features extracted from these imaging data 

typically consisted of voxel-wise maps intensities across the entire brain, therefore yielding a high 

dimensional feature space. In all studies, the decision boundary within the feature space was learned using 

support vector machine (SVM), and the classification accuracy was typically assessed using leave-one-out 

(LOO) cross-validation. SN=sensitivity; SP=specificity; MCI=mild cognitive impairment; MCIc=MCI 

participants who converted to AD; MCInc=MCI participants who did not convert to AD; GM=gray matter; 

WM=white matter; CSF=cerebrospinal fluid; ROI=region of interest; PET=positron emission tomography; 

FDG-PET=18fluorodeoxyglucose-PET; HC=healthy controls; SPHARM=spherical harmonics; SPHARM-
PDM=spherical harmonics-point distribution model; LOO=leave-one-out.

Study Participants Features Performance

Fan,
2008(Fan et al., 
2008)

56 with AD, 88 with MCI, and 66 
healthy
controls

Voxel-wise maps of localized
volumes in (1) GM, (2) WM, 
and
(3) CSF.

LOO cross-validation.
(1) AD vs HC: Accuracy=94.3%;
(2) MCI vs HC: Accuracy=81.8%;
(3) AD vs MCI: Accuracy=74.3%.

Klöppel,
2008(Klöppel et al., 
2008b)

Group 1: 20 with AD and 20 
healthy;
Group 2: 14 with AD and 14 
healthy. with
histopathological confirmation; 
and
Group 3: 33 with mild AD and 57 
healthy.

Voxel-wise measure of gray
matter intensity

LOO cross-validation.
Group 1: SN=95%; SP=95%;
Group 2: SN=100%; SP=85.7%;
Group 3: SN=60.6%; SP=93%.

Gerardin,
2009(Gerardin et al., 
2009)

23 with AD; 23 with MCI; 25 
healthy
controls

SPHARM coefficients for the
shape of hippocampus

LOO cross-validation.
(1) AD vs HC: SN=96%;
SP=92%;
(2) MCI vs HC: SN=83%,
SP=84%.

Hinrichs,
2009(Hinrichs et al., 
2009)

77 with AD and 82 healthy 
controls

Voxel-wise maps for
(1) gray matter probability, 
and
(2) FDG-PET intensity

10-fold cross-validation.
SN=78.5%; SP=81.8%.

Magnin,
2009(Magnin et al., 
2009)

16 with AD, and 22 healthy 
controls

Percent gray matter within 90
ROIs across the brain.

Bootstrap validation.
SN=91.5%, SP=96.6%.

Misra,
2009(Misra et al., 
2009)

103 with MCI who converted to 
AD
(MCIc); and 76 MCI who did not 
convert to
AD (MCInc).

Voxel-wise maps of variations 
in
localized volumes within (1) 
GM,
(2) WM, and (3) CSF.

LOO cross-validation.
Accuracy (number of correctly
classified) >75%.

Cuingnet,
2011(Cuingnet et al., 
2011)

162 elderly controls (HC); 137 
with AD; 76
with MCI who converted to AD 
(MCIc);
134 with MCI who did not convert 
to AD
(MCInc)

(1) voxel-wise probability 
maps
of GM, WM, and CSF;
(2) Voxel-wise measure of
cortical thickness;
(3) Hippocampal volume and
shape using spherical 
armonics

LOO cross-validation.
SN and SP varied across 28
different methods tested:
(1) HC vs AD: SN>63%;
SP>77%. The best SN=81%
and SP=95% (Table 4(Cuingnet et al., 
2011));
(2) HC vs MCIc: SN>22%;
SP>73%. The best SN=65%
and SP=94% (Table 5(Cuingnet et al., 
2011));
(3) MCInv vs MCIc: SN>0%,
SP>61%. The best SN=57%
and SP=78% (Table 6(Cuingnet et al., 
2011)).
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Study Participants Features Performance

Oliveira,
2010(Oliveira et al., 
2010)

14 with AD, and 20 healthy 
controls

Volume of 45 brain regions
delineated automatically using
FreeSurfer

LOO cross-validation.
SN=92.8%; SP=85%.

Zhang,
2011(Zhang et al., 
2011)

51 with AD, 99 with MCI, and 52 
healthy
controls

For 93 ROIs, average 
measures
of GM volume, and intensity 
in
PET; and three proteins in 
CSF.

10-fold cross-validation.
(1) AD vs HC: SN=93%,
SP=93.3%;(2) MCI vs HC: SN=81.8%,
SP=66%.

J Child Psychol Psychiatry. Author manuscript; available in PMC 2014 November 18.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Haubold et al. Page 32

Table 2

Recent Procedures for Diagnosing an Individual as having Autism Spectrum Disorders (ASDs) or not using 

anatomical MRI data. The classification accuracy was computed using methods for leave-k-out (LOO) cross-

validation. SN=sensitivity; SP=specificity; GM=gray matter; WM=white matter; CSF=cerebrospinal fluid; 

LOO=leave-one-out; SVM=support vector machine.

Study Participants Features Performance

Ecker
2010a(Ecker et al., 2010a)

20 with ASD and 20 healthy controls Five morphological measures
brain surfaces: (1) convexity
and concavity, (2) mean
curvature, (3) metric distortion,
(4) cortical thickness, and (5)
pial area

SN>85%, SP>85% of a SVM
classifier computed using leave-
two-out cross validation

Ecker
2010b(Ecker et al., 2010b)

22 with ASD and 22 healthy controls Locally averaged voxels from
GM, WM, and CSF

SN=88%, SP=86% of a SVM
classifier computed using LOO
cross validation

Singh
2008(Singh et al., 2008)

16 with ASD and 11 healthy controls Cortical thickness Accuracy (number of correctly
classified) ~90% of a LPBoost
classifier computed using 9-fold
cross validation
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