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Abstract

Single Particle Tracking (SPT) is a technique used to locate fluorescent particles with nanometer 

precision. In the orbital tracking method the position of a particle is obtained analyzing the 

distribution of intensity along a circular orbit scanned around the particle. In combination with an 

active feedback this method allows tracking of particles in 2D and 3D with millisecond temporal 

resolution. Here we describe a SPT setup based on a feedback approach implemented with 

minimal modification of a commercially available confocal laser scanning microscope, the Zeiss 

LSM 510, in combination with an external piezoelectric stage scanner. The commercial 

microscope offers the advantage of a user-friendly software interface and pre-calibrated hardware 

components. The use of an external piezo-scanner allows the addition of feedback into the system 

but also represents a limitation in terms of its mechanical response. We describe in detail this 

implementation of the orbital tracking method and discuss advantages and limitations. As an 

example of application to live cell experiments we perform the 3D tracking of acidic vesicles in 

live polarized epithelial cells.

1. Introduction

Single Particle Tracking (SPT) is a superresolution imaging technique able to provide the 

position of fluorescent molecules with nanometer precision. SPT finds several applications 

in biology where following the dynamics of processes at the nanoscale can be of crucial 

importance. One of the main advantages of observing a single molecule compared to 

ensemble measurements is that results can be obtained without the need of synchronizing 

processes. Indeed, single molecule techniques have revolutionized the scientific research by 

allowing the investigation of once-inaccessible biological processes (Cornish and Ha, 2007). 

Several single molecule techniques are currently available to study the motion of molecules 

in live cells, including Fluorescence Correlation Spectroscopy (FCS) and SPT. FCS is a 

widely used tool to determine diffusion coefficients, chemical rate constants, molecular 

concentrations, fluorescence brightness and other molecular parameters (Elson, 2011). In 

FCS the molecules are observed one at the time through the use of small detection volumes 

at fixed locations and the molecular parameters are generally obtained by averaging many 
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single molecule fluctuation events. In SPT the same molecule or particle is observed for a 

longer period of time so that heterogeneities in time or space and subpopulations become 

more evident. For this reason SPT is the method of choice to study in detail the mechanisms 

of motion of molecules or other kind of particles within the biological environment. SPT has 

been applied to address several biological problems including the motion of bacteria 

(Frymier et al., 1995), the stepping mechanism of molecular motors (Gelles et al., 1988, 

Yildiz et al., 2003), the diffusion of lipids in the plasma membrane (Fujiwara et al., 2002, 

Schutz et al., 2000), the entry process of adeno-associated viruses along their infection 

pathway (Seisenberger et al., 2001) or the trajectories of other biomolecules of interest 

inside the cell (Kubitscheck et al., 2000).

The standard, well established microscopy methodology for SPT is based on the analysis of 

2D fluorescence images, typically acquired using a widefield configuration (Yildiz et al., 

2003). The basic principle for obtaining resolution well below the diffraction limit in SPT is 

that the center of mass of a spatial distribution of intensities can be recovered with 

significantly higher precision than the size of the distribution itself (Bobroff, 1986, 

Thompson et al., 2002). This basic idea is shared by other fluorescence superresolution 

techniques like PALM (Betzig et al., 2006, Shroff et al., 2008) or STORM (Huang et al., 

2008, Rust et al., 2006), and a common requirement is that one must analyzes the intensity 

distribution generated by just a single particle, meaning that its emission must be isolated in 

space (as in SPT) or in time (as in PALM/STORM). The main limitation of the standard 

SPT method is that it is confined to the analysis of 2D images whereas several biologically 

relevant processes happen in 3 dimensions. In order to overcome this limitation several 

methods have been proposed for 3D SPT that can be classified into two main categories: (i) 

image-based approaches followed by the offline extraction of the trajectories and (ii) 

feedback approaches where tracking is performed in real time (Dupont and Lamb, 2011). 

The first category includes z-sectioning with a confocal or multiphoton microscope in a 

predetermined volume and analyzing afterwards the images to obtain 3D tracks (Arhel et al., 

2006). This method generally suffers of a poor time resolution limited to the second time-

scale and alternative strategies have been proposed based on the acquisition and analysis of 

one or few images (Pavani and Piestun, 2008, Betzig et al., Speidel et al., 2003). The second 

category of 3D tracking techniques is based on a feedback strategy: the particle position is 

determined in real-time and the focus of the setup is consequently displaced in order to keep 

the particle of interest at the center of the focus. These feedback techniques (Cang et al., 

2008) generally have a good temporal resolution, on the order of milliseconds, and include 

the ABEL trap (Fields and Cohen, 2011), the tetrahedral detection method (Han et al., 2012) 

and the orbital tracking method (Hellriegel and Gratton, 2009, Kis-Petikova and Gratton, 

2004, Levi et al., 2005). One major criticism versus these relatively fast feedback techniques 

is that they do not provide a real-time image of the particle being tracked and for this 

purpose elegant hybrid approaches have been introduced (Juette and Bewersdorf, 2010, 

Katayama et al., 2009). On the other hand the versatility of the orbital tracking approach has 

been recently proved by the successful combination of this method with Fluorescence 

Correlation Spectroscopy (FCS) and 3D imaging (Cardarelli et al., 2011, Cardarelli et al., 

2012, Lanzano et al., 2011a, Lanzano et al., 2011b), showing that the use of feedback can be 

beneficial also on extracting different types of information other than the trajectory itself.

Lanzanò and Gratton Page 2

Methods Appl Fluoresc. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The orbital tracking and the other 3D SPT feedback methods are generally implemented on 

homebuilt microscopes which are not yet commercially available. Currently available setups 

include microscopes with sectioning capabilities as the confocal, multiphoton or spinning 

disk microscopes, that could be used for 3D image-based SPT with relatively limited time 

resolution. These commercial setups offer the advantage of a user-friendly software 

interface and pre-calibrated hardware components. It would be of interest to implement a 

SPT setup based on a feedback approach with minimal modification of a commercially 

available microscope. Here we explore this idea using a widely used confocal laser scanning 

microscope, the Zeiss LSM 510, in combination with an external piezoelectric stage. The 

use of an external scanner is necessary since the manufacturers in general do not provide 

access to the scanning module and as a consequence the scanning pattern is predetermined 

and cannot be modified. The choice of using an external piezoelectric stage is the simplest in 

term of realization since does not require any modification of the optical pathway. The main 

disadvantage is that the mechanical response of this type of scanners is generally limited to 

frequencies below 100Hz and they are not the best choice for fast line scanning if compared 

to galvano-mirror deflectors. On the other hand, for many applications orbiting at a period 

on the order of 10ms is still an acceptable compromise. For instance scanning FCS on 

membranes can be performed with line times of the order of tens of ms, without 

compromising the capability to detect the slower diffusion coefficients typical of membrane 

proteins or clusters. The same is true for 3D imaging using the nSPIRO method (Lanzano 

and Gratton, 2012) where membrane protrusions are tracked in 2D while the third 

coordinate is ramped at a slower pace. In the following we describe in detail this 

implementation of the orbital tracking method on a commercial microscope and its 

characterization. In order to show that the method is suitable for measurements in live cells 

we show 3D trajectories of fluorescently labeled vesicles in polarized epithelial cells.

2. Experimental Section

2.1 Experimental Setup

The commercial setup used in this work is a Zeiss LSM510 (Jena, Germany) confocal laser 

scanning microscope (LSM) equipped with a Confocor3 unit (figure 1). The specimen is 

loaded on a 3-axis piezoelectric nanopositioner (Nano-PDQ, Mad City Labs, Madison, WI) 

mounted on the microscope stage. The piezo-stage is driven by a Nano-Drive (Mad City 

Labs, Madison, WI) controller. The scanning voltages sent to the controller are generated 

through a card (model DaqBoard/3001, IOTech, Cleveland, OH) connected to a personal 

computer. The controller front panel outputs provide access to the real-time position sensor 

signals and can be connected to an oscilloscope for calibration of the scanning patterns. 

When we use the piezo-stage to scan the sample we keep the laser spot at a fixed location. 

Using the LSM software we configure the excitation and emission pathways and adjust 

several parameters as the laser power and the size of the confocal pinhole. A 40× water 

immersion objective (Zeiss C-Apochromat NA=1.2) was used for all experiments. 

Fluorescence single-photon detection is performed through the Avalanche Photo Diodes 

(APD) of the Confocor3 unit. The TTL signals corresponding to single-photon detection 

events are collected from the outputs on the Confocor3 unit rear panel and sent to the 
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IOTech card. Signals from both channels can be acquired simultaneously even if only one 

channel is used as a feedback signal in the tracking algorithm.

2.2 Orbital scanning

During orbital scanning, the x and y axis of the piezo-stage are driven independently by π/2-

phase shifted sine wave voltages generated in the card so that the specimen moves in a 

circular path at orbital frequency ω with respect to the laser spot. The position of the center 

of the orbit is determined by the offset values of the sine waves. The voltage inputs can be 

expressed as:

(1)

Depending on the frequency and the mechanical response of the scanner, the actual 

movement of the scanner can be of lower amplitude and with a phase delay with respect to 

the input. The x-axis and y-axis position sensor output voltages can be expressed as:

(2)

We determined the frequency response for each of the 3 axis of the piezo-scanner (figure 

2(a)) by applying a sinusoidal wave of amplitude A0 and variable frequency and measuring 

the amplitude A and phase of the signal detected in the position sensor output. Each axis of 

the scanner can be driven at frequencies up to about 100Hz. For each orbital frequency the 

input parameters (Ax, Ay, φ0x, φ0y) of the x-axis and y-axis of the scanner can be calibrated 

so that effective motion pattern is a circular orbit (figure 2(b)) with Ax=Ay and φx–φ0x= φy–

φ0y=0.

The signal acquisition is synchronized with the orbital scanning. The intensity is sampled at 

a frequency which is equal to the orbital frequency times the number of pixels along the 

orbit. For instance for an orbit of period T=8.192ms and 256 pixels along the orbit, the pixel 

dwell time is Δt=8.192ms/256=32μs.

2.3 2D and 3D Orbital Tracking

For 2D orbital Tracking the position of the center of the scanned orbit was updated 

according to the tracking mechanism every cycle of 8 orbits (tcycle=8T=65.5ms) using the 

Fast Fourier Transform (FFT)-based algorithm described previously (Kis-Petikova and 

Gratton, 2004). The algorithm has been originally implemented in setups using mirror 

scanners but it is also valid for orbital tracking using piezo-scanners. In this case the particle 

is moved along an orbit of radius R around its position whereas the focal spot is kept fixed 

(figure 3). If the particle position is shifted with respect to the focal spot of an amount δ in 

the direction φ0, then the intensity is given by:

Lanzanò and Gratton Page 4

Methods Appl Fluoresc. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(3)

Wherein Rp is the distance between the particle and the focal spot, w is the waist of the Point 

Spread Function (PSF) and F0 and I0 are constant. Considering for simplicity small values of 

4Rδ/w2:

(4)

The algorithm updates the values of the offset voltages Vx and Vy in such a way as to 

minimize the modulation of the first harmonic in the Fourier spectrum of the intensity trace 

along the orbit. For the signal in Eq. (4) the modulation and phase of the first harmonic are 

by definition:

(5)

(6)

For each measured value of orbital modulation and phase the software calculates the values 

ΔVx and ΔVy corresponding to a shift δ of the piezo-scanner in direction π+φ0 (figure 3(b)). 

The value of δ is estimated according to a look-up-table obtained from previous calibration 

and stored in the computer. In this way the particle remains always close to laser spot while 

the piezo-stage is translated in opposite direction with respect to the movement of the 

particle.

For 3D orbital Tracking the orbits are sequentially scanned on two different z-axis positions. 

This is obtained by driving the z-axis of the piezo-scanner with a square wave whose period 

is a multiple of the orbital scanning period.

(7)

The response of the z-axis to a step-like input is in the order of few milliseconds (figure 

2(c)) allowing us to use z-axis periods Tz of the order of 32ms or longer. The feedback along 

the z-axis is provided by measuring the difference in the average orbit intensity at two 

different z planes as described previously (Levi et al., 2005, Hellriegel and Gratton, 2009). 

In this case the modulation can be defined as:

(8)
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Wherein I0[0,π] and I0[π,2π] represent the values of the average intensity in the first and 

second half of the z-axis period. For a Gaussian profile of the PSF along the z-axis we can 

write:

(9)

Wherein Rz is half of the distance between the orbits, wz is the waist of the PSF along the z 

direction, and δz is the distance between the focal spot and the plane at the center of the two 

orbits. The used approximation is rigorously valid only for small values of 4Rzδz/wz
2. If the 

particle position is shifted of an amount δz then the modulation has opposite sign and the 

software updates the value of the offset voltage Vz of an amount ΔVz corresponding to a 

shift -δz of the piezo-scanner.

2.4 Software and data analysis

The software SimFCS (Global for Images) developed at the Laboratory for Fluorescence 

Dynamics (http://www.lfd.uci.edu/globals/) was used to control the scanning and acquisition 

in the tracking mode and for the data analysis. The total Mean Square Displacement (MSD) 

as a function of the delay time τ was calculated as the sum of the MSDs along each of the 3 

axis:

(10)

Where the time average is performed on a given segment of the trajectory. In order to 

perform a segmentation of the trajectories and select the regions where significant particle 

movement occurs, we calculated for each time point t the square distance ΔR2(t) at which 

the particle is found after 50 time steps (3.25s). Then we selected the regions for which 

ΔR2(t)>3×10−2 μm2 and minimum duration of 30 time steps as the regions where significant 

displacement occurs. The remaining parts were labeled as regions of non-significant 

displacement. This segmentation resulted in a subdivision of the trajectories in a number of 

segments ranging from 1 to 6. The average velocity of the particles in the segments of higher 

mobility was extracted by fitting the MSD to the following equation:

(11)

Where D is the diffusion coefficient and v is the linear velocity. This expression of the MSD 

corresponds to a model of directed transport plus a random diffusion component. The 

directed transport component could be interpreted as the motor-driven transport of the 

vesicles along cytoskeletal structures.
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2.5 Fluorescent spheres

Yellow–green fluorescent microspheres (excitation/emission 505/515 nm, Invitrogen, 

Carlsbad, CA) of known diameter (0.11±0.01μm) were diluted, sonicated, and then fixed on 

a microscope slide. Fluorescence was excited at λexc=488nm and detected in the emission 

band 500-550nm. Confocal pinhole diameter was set to 1 Airy Unit (A.U.). Laser power was 

set at the relative value of 0.2% in the LSM software.

2.6 Cell culture and staining

Opossum kidney (OK) proximal tubule cells were kindly provided by Dr. M. Levi 

(University of Colorado, Denver) and cultured as described (Giral et al., 2011, Lanzano et 

al., 2011b). Cells were grown in DMEM/F-12 (Invitrogen, Carlsbad, CA) supplemented 

with 10 % fetal bovine serum, penicillin, streptomycin, and L-glutamine in 37 °CO2 

controlled 95% humidified incubator. Prior to imaging, cells were trasnferred on poly-L-

lysine-coated eight-well Nunc Lab-Tek chambered coverglass (Thermo Fisher Scientific) 

and grown until full confluence.

Selective staining of intracellular acidic vesicles was achieved using a solution of the pH-

sensitive dye conjugate pHrodo Green Dextran (Life Technologies, Carlsbad, CA). 

According to manufacturer’s specifications pHrodo Green Dextran is essentially non-

fluorescent outside the cell at neutral pH, but fluoresces brightly at acidic pH. Confluent OK 

cells were incubated with pHrodo Green Dextran at a concentration of 1μg/ml at 37°C for 

10min. Then the cells were washed and the solution replaced with normal maintenance 

media. Fluorescence imaging was performed after 1h to allow internalization of the dye into 

acidic compartments. Fluorescence was excited at λexc=488nm and detected in the emission 

band 500-550nm. Confocal pinhole diameter was set to 1 Airy Unit (A.U.). Laser power was 

set at the relative value of 0.2% in the LSM software.

3. Results

3.1 Calibration using fixed fluorescent spheres

The modulation function of the setup can be determined experimentally by positioning a 

fixed particle at increasing distance from the beam. The modulation increases linearly as a 

function of the distance beam-particle with a slope which depends on the size of the PSF of 

the microscope setup according to the Eqs. (5) and (9). Since the waist of the confocal PSF 

is larger along the optical axis, the modulation varies more slowly when the particle is 

moved along the z direction than along the xy axis (figure 4(a)). The modulation function 

can be used as the base of the feedback to keep the particle centered with the beam. The 

position of the scanner is updated at each cycle based on the values of orbital modulation 

and z-modulation. The noise in the position of the scanner while tracking a fluorescent 

sphere fixed on a slide is shown in figure 5 for two different values of the intensity level. 

The standard deviation of the distribution approximately scales as the inverse of the square 

root of the intensity level.

In order to test the tracking setup under dynamic conditions we positioned the particle at a 

given distance from the beam along the x, y or z axis (figure 6(a)), so that the value of 
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modulation is different from zero (figure 6(b)). At a given instant the tracking algorithm is 

started so that particle is centered with the beam (figure 6(a)) and the modulation is 

minimized (figure 6(b)). The response of the tracking algorithm to a displacement of the 

particle is in the order of ~100ms. This limits the linear speed of the particles that can be 

tracked to values below vmax~1μm/s. In the case of particles diffusing randomly in 3D we 

estimate that tracking will be limited to values of diffusion coefficients below 

Dmax~0.01μm2/s.

3.2 3D Single Particle Tracking in live cells

The 3D single particle tracking setup was tested in live polarized OK cells after 

internalization of the PH-sensitive dye conjugate pHrodo Green Dextran. After 

internalization of the dye, selective staining of intracellular acidic vesicles was obtained 

(figure 7(a)). The vesicles appear different in size and brightness. Using the commercial 

confocal microscope we can image the vesicles and locate an isolated one in the center of 

the field of view (figure 7(a)). At this point we switch to the tracking mode by keeping the 

laser beam steady and moving the external piezo-scanner. The tracked vesicle is kept close 

to laser beam by the feedback algorithm. The fluorescence intensity detected from the 

particle shows a continuous decay due to photobleaching (figure 7(b)). The values of orbital 

modulation and z-modulation are minimized and maintained close to zero (figure 7(b)). The 

movement of the scanner generated in response to the movement of the particle provides 

directly the 3D trajectory of the particle inside the cell (figure 7(c)). The 3D trajectories are 

characterized by the presence of segments where directed motion occurs and segments with 

only diffusive motion. For instance in the trajectory shown in figure 7(c) the directed motion 

in region (I) occurs along the z direction. The functional dependence of the Mean Square 

Displacement (MSD) on the delay time is different for the two regions analyzed (figure 8). 

In segment (I) the total MSD is well fitted by a parabola, indicating the presence of a 

directed transport component, whereas in segment (II) the total MSD is well fitted by a 

linear function, characteristic of random diffusion. The analysis of the trajectories (N=13) 

yields an average value of directed transport velocity of v=92±40nm/s (mean ± st. dev.) 

which is in keeping with values reported in literature for motor-based transport in polarized 

kidney tubule (MDCK) cells (Noda et al., 2001).

4. Discussion

The method described here falls in the category of the 3D tracking techniques based on a 

feedback strategy: the particle of interest is kept at the center of the focus and its position is 

determined in real-time by the displacement of the piezo-scanner. However, in this version 

of the orbital tracking method we are not using a homebuilt microscope but a commercially 

available confocal microscope. One great advantage of this setup configuration is that we 

can use the user-friendly software interface and pre-calibrated hardware components of the 

LSM to perform imaging. In this sense, the addition of an external stage represents certainly 

a minimal modification to the microscope which can be used in the very same way by the 

confocal microscope users to perform standard imaging. The use of an external piezoelectric 

stage does not require any special modification of the optical pathway. The tracking 
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capability introduced by the external piezo-scanner represents effectively an additional 

option offered by the imaging setup.

The use of an external scanner is necessary since microscope manufacturers do not provide 

access to the scanning module and the scanning pattern is predetermined and cannot be 

modified to introduce feedback. The external scanner needs to be calibrated at least once and 

this operation requires trained personnel but, in principle, the calibration procedure could be 

automatized with the use of proper software and a standard fluorescent sample so that also 

non-expert users could perform it. The need to re-calibrate the scanner arises mainly in case 

there are huge changes in the load of the stage, but not if the weight of the specimen is 

approximately the same (as is the case for standard imaging dishes filled with cell culture 

media). The choice of using an external piezoelectric stage is the simplest in term of 

realization but the main disadvantage is that the mechanical response is generally limited to 

frequencies below 100Hz, an order of magnitude slower compared to galvano-mirror 

deflectors. The temporal response of the 3D tracking configuration is in the order of ~100ms 

resulting in an estimated maximum linear speed of the particles that can be tracked of 

vmax~1μm/s. This limit translates into a maximum diffusion coefficient Dmax~0.01μm2/s for 

particles diffusing randomly in 3D. This somewhat restricts the range of applicability for 

this type of setup to relatively slow moving particles.

The characterization of the setup shows that the modulation function depends on the size of 

the PSF, which in turn depends on several parameters of the confocal microscope (e.g. NA 

of the objective, excitation wavelength, pinhole size). In particular the modulation function 

is generally steeper along the radial direction than along to the axial direction, and the 

response of the feedback is calibrated accordingly. We showed measurement in which the 

particle is always in close proximity of the beam and the modulation is close to zero. In this 

case the movement of the scanner is exactly the opposite of the movement of the particle. 

Nevertheless, also in case the particle is temporarily lost, its position could be recovered by 

converting in distance the measured value of the modulation.

We showed that the method is suitable for measurements in live cells by tracking 

fluorescently labeled acidic vesicles in polarized epithelial cells. The cells can be imaged in 

the standard confocal mode and then the tracking can be activated to obtain the 3D 

trajectories of the vesicles. The trajectories show time segments in which the particles 

experience directed transport and segments where only a slow diffusion is observed. The 

directed motion has been observed in all three directions but we cannot conclude with 

enough statistical significance if there is or not a preferential direction of transport. The 

duration of a single measurement is limited mainly by photobleaching of the particles. This 

is not surprising because in the orbital tracking method, as compared for instance to raster 

scanning, the scanning is limited to a region always in close proximity of the particle and 

photobleaching occurs at a faster rate. The continuous photobleaching of the particle during 

tracking also affects how precise is the determination of the position of the particle. Indeed, 

the uncertainty in the position, which is a function of the number of detected photons, will 

not be the same for all the points of the trajectory but will be larger at longer times.
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In conclusion, we presented a 3D SPT method based on a feedback approach implemented 

with minimal modification of a commercial confocal laser scanning microscope. Feedback-

based scanning is obtained in the commercial microscope through addition of an external 

piezo-electric stage. The slow mechanical response of the scanner seems the main limitation 

to dynamic performance of this setup. On the other hand the availability of a setup for 

performing real time tracking in 3D on a commercial microscope seems an appealing feature 

of this orbital tracking configuration, especially for the biological applications where 

velocities are relatively low but imaging of the sample with a commercial system is 

preferred.
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Figure 1. 
Schematic design of the experimental setup for Single Particle Tracking: a 3-axis piezo-

stage mounted on a commercial confocal microscope (Zeiss LSM510-Confocor3) is used to 

move the sample with respect to the focal spot. The movement of the piezo-stage along the 3 

axis is controlled by a PC through a card that generates the input voltages. The same card is 

used for acquisition of the signals from the detection unit of the microscope. The position of 

the piezo-scanner can be monitored connecting the capacitive sensors outputs to an 

oscilloscope.
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Figure 2. 
(a) Frequency response of each axis of the piezo to a sinusoidal input voltage signal. (b) 

Orbital trajectory of the scanner monitored through the capacitive sensor for different orbit 

periods. (d) Response of the piezo to a step-like input along the z-axis.
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Figure 3. 
Schematic principle of the Orbital Tracking method using the piezo-scanner. (a) A 

fluorescent particle located at a distance δ and an angle φ0 from the focal spot is scanned 

along an orbit of radius R, generating a modulation in the intensity pattern along the orbit. 

Based on the values of phase and modulation of the intensity pattern the software calculates 

the position of the particle. (b) The calculated position of the particle is used as a feedback 

to correct the position of the scanner of an amount δ toward the direction π+φ0, so that the 

modulation of the intensity is minimized
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Figure 4. 
Characterization of the tracking setup. (a) Modulation versus distance beam-particle in the 

xy plane (dots) and z direction (triangles) respectively. This calibration curve has been 

obtained for 100nm fluorescent beads using an orbit radius of 150nm and a z-radius of 

300nm.
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Figure 5. 
Relative position of the scanner while tracking a fluorescent 100nm bead fixed on a slide for 

two different intensity levels. The values of the standard deviation of the scanner position 

along each axis and intensity are (a) σx=4.2nm, σy=4.8nm, σz=4.9nm for an intensity level 

of 870 counts/cycle and (b) σx=2.4nm, σy=2.8nm, σz=2.4nm for an intensity level of 1843 

counts/cycle (1 cycle=65.5ms).
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Figure 6. 
Response of the tracking algorithm to the displacement of the particle along the different 

axis. The particle is positioned at a given distance along x, y or z from the beam (a), so that 

the value of modulation is different from zero (b). At a given time (indicated by the arrows 

for each measurement) we start the tracking algorithm so that particle is centered with the 

beam (a) and the modulation minimized (b).
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Figure 7. 
3D single particle tracking of acidic vesicles in live polarized OK cells. (a) Confocal image 

of vesicles labeled with pHrodo Green Dextran in OK cells. An isolated vesicle is positioned 

in center of the field of view (dashed circle). (b) As the tracking algorithm is started, the 

particle is kept close to the laser beam, as demonstrated by the continuous photobleaching of 

the intensity and the value of modulation close to zero. (c) In the 3D trajectory we can 

distinguish a segment of directed motion (dashed oval, I) and a segment of diffusive motion 

(dashed circle, II).
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Figure 8. 
Analysis of a the 3D trajectory shown in figure 7(c). From the value of position as a function 

of time we can extract the MSD for each axis relative to the trajectory segment (I) and (II). 

In (I) the total MSD is well fitted by a parabola whereas in (II) the total MSD is well fitted 

by a linear function.

Lanzanò and Gratton Page 19

Methods Appl Fluoresc. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


