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Abstract

There is considerable variability among individuals in musculoskeletal response to long-duration spaceflight.
The specific origin of the individual variability is unknown but is almost certainly influenced by the details of
other mission conditions such as individual differences in exercise countermeasures, particularly intensity of
exercise, dietary intake, medication use, stress, sleep, psychological profiles, and actual mission task demands.
In addition to variations in mission conditions, genetic differences may account for some aspect of individual
variability. Generally, this individual variability exceeds the variability between sexes that adds to the com-
plexity of understanding sex differences alone. Research specifically related to sex differences of the muscu-
loskeletal system during unloading is presented and discussed.

Musculoskeletal Health in Space

It is well known that men and women differ in many
aspects of the musculoskeletal system, with men generally

having greater muscle and bone mass. Important questions for
spaceflight application are whether the time course of loss with
unloading is the same for men and women, whether the initial
bone or muscle mass influences the rate of loss, whether that
rate of loss is linear over an *3-year period (the most likely
duration of initial exploration-class missions), and whether
loss of bone and/or muscle over this period of time has sec-
ondary effects on other musculoskeletal tissues such as artic-
ular cartilage. If there are large sex differences in the time
course of loss, this would be a compelling argument for sex-
specific countermeasure development for exploration-class
space missions. However, to the best of the authors’ knowl-
edge, there are no published human studies that have directly
assessed sex differences in either the time course of disuse-
induced bone or muscle loss or the impact of starting values.

It is well established that the human musculoskeletal re-
sponse to unloading is highly variable among individuals,
with 10-fold differences in response among participants often
observed. As an example, after 30 days of unilateral lower
limb suspension, individual responses ranged from a 2.5% to
a nearly 20% decline in plantarflexor cross-sectional area

compared with before the suspension.1 Similarly, with actual
spaceflight the loss of cancellous bone in the distal tibia after
6 months aboard Mir ranged from 2% to 24%; such changes
range from a negligible loss to deficits equal to those ob-
served after spinal cord injury.2 Understanding the factors
that contribute to such large variability is an important step
toward both selecting and protecting the first astronauts who
undertake very long (2–3 year) exploration missions. The
extent to which biological sex or sex-based hormones con-
tribute to this variability is unknown.

While this review is focused on sex differences in the re-
sponse of the musculoskeletal system to the unloading of
microgravity, it is important to remember that the overriding
uncertainty about which factors contribute to individual dif-
ferences is a significant issue. The primary emphases of the
literature review were to evaluate sex differences with re-
spect to (1) the magnitude of response and time course of
muscle/bone loss to unloading, (2) the influence of negative
energy balance on muscle/bone loss, and (3) risk of joint
injury and the impact on articular cartilage. This literature
review evaluates sex differences in middle-aged, healthy
adults and does not consider adolescent or early adult growth
and development, menopause, osteoporosis, or old age.
While these are all certainly important, there is very little, if
any, literature related to spaceflight and these issues.
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Time Course and Magnitude of Response: Muscle

There is considerable individual variability with respect to
loss of muscle size and function as a result of unloading.3 The
precise extent to which sex differences contribute to this is
unknown. There is limited evidence in the literature that sex
differences related to muscle atrophy might exist. In the first 2
weeks of unloading, minimal sex differences are apparent in
whole muscle atrophy (2%–4%) in side-by-side compari-
sons.4,5 If unloading extends beyond 2 weeks, women may
experience greater reductions in whole muscle volume6 and
fiber area, particularly in fast-type 2 fibers.7,8 Slow-type 1 fi-
bers in both men and women exhibit preferential atrophy with
unloading. There is limited evidence that women experience
greater loss of strength in the first 30 days of bed rest, but this
sex difference in rate of loss may be reversed with long du-
ration unloading ( > 4 months). Women demonstrate greater
impairment in neural activation of muscle after short-term
unloading;4,5,9 future studies should determine if this leads to
greater fatigue susceptibility in women in the first 2 weeks of
unloading. There is one study suggesting that recovery of
strength after unloading may be slower for women than men.10

Taken together these data suggest that the time course of
unloading-induced muscle loss may be sex specific.

There are also areas where sex differences appear quite
unlikely. For both men and women, whole muscle and single
muscle fiber atrophy does not fully account for the strength and
power loss; the reduction in the force and cross-sectional area
of type 1 fibers appears to be very similar in both genders.8,11,12

A significant gap in knowledge is whether sex differences
in strength loss/neural activation translate to differences in
functional performance (e.g., mission-related tasks).

Time Course and Magnitude of Response: Bone

Sex differences in bone mineral density (BMD) are well
documented; since bone mass scales to body mass, men on
average have a larger skeletal mass. There is little evidence,
however, on whether there is a sex difference in rates of bone
loss with unloading or in the rate or magnitude of recovery
therefrom. While the effects of bed rest on BMD and/or bone
metabolism have been examined separately in men13,14 and
in women,15,16,17 there have been no human studies that have
been statistically powered to make direct sex comparisons. In
one 17-week bed rest study that included both men (n = 13)
and women (n = 5) at one of 10 sites measured (calcaneus),
bone loss was markedly less in women than men.6 However,
the dual energy x-ray absorptiometry-assessed total hip BMD
for women in a 60-day bed rest study17 revealed a substantial
loss at that site, whereas men in a similar study did not have a
decrease in total hip bone mineral content.13

Volumetric BMD and bone geometry of tibial cancellous
and cortical compartments have been evaluated after prolonged
bed rest using peripheral quantitative computed tomography
(pQCT) in men13,15 and high-resolution pQCT in women.16

The small gender differences observed in the bone loss rates at
those tibial sites are within the reported precision for these
pQCT variables. Side-by-side investigations using rodent
hindlimb unloading (a commonly used surrogate for micro-
gravity) reveal greater cancellous bone loss in skeletally ma-
ture female mice18 and a distinct effect of starting values (mice
with greater bone volume at the start lost less bone). However,
in mature rats few differences between genders are apparent.19

There is little definitive evidence showing sex-specific
differences in the rate of bone loss. Certainly, some of the
individual differences may be related to sex-specific hor-
monal factors. As is the case with muscle, the individual
variability within gender in response to unloading is large and
should be better understood.

Negative Energy Balance

Some bed rest studies have restricted energy intake and
allowed weight loss by design or allowed subjects to consume
food at their discretion, so as to not coerce intake. The 60-day
Women’s International Simulation for Space Exploration
study was one of these studies, and as a result, these female
subjects did lose body weight (lean tissue more than fat)
during bed rest at a rate of 0.06 kg/day.20 In a similar 90-day
study with male subjects conducted earlier at the same in-
stitution, men also lost weight at 0.04 kg/day (calculated from
the published average weight loss).21 Due to the many dif-
ferences in study design, it cannot be concluded with any
certainty if this slight difference in rate of weight loss be-
tween men and women is of any significance.

While ‘‘weightlessness’’ is a key aspect of space travel, an
unexpected analog comes in the form of studies related to
weight loss. Though there is a fair amount of literature on
weight loss and effects on bone22 similar to space-related re-
search, few studies have examined the effects of negative
energy balance on bone with regard to gender, and those that
have attempted are plagued by many confounding factors (age,
body size, diet- and/or exercise-induced weight loss, rate of
weight loss, etc.), making drawing conclusions difficult.

Hence, there is a paucity of literature evaluating sex-
related differences relative to the effects of energy deficit on
bone and muscle metabolism. Making comparisons across
separate studies evaluating male and female responses is
fraught with confounding factors. If one were to speculate,
there do not appear to be major sex differences in the bone or
muscle responses to energy deficit between men and women.

Joint Injury

Sex-based differences have been identified in the inci-
dence of osteoarthritis (OA), with OA of the knee, in par-
ticular, significantly more common in women. Sex-based risk
factors explaining this include the loss of estrogen’s anabolic
effect on cartilage after menopause, a higher incidence of
predisposing knee injuries–such as anterior cruciate ligament
tears–in women, and increased joint laxity.23 There is clear
evidence from animal studies that regular mechanical loading
is essential to cartilage health. In humans, 6 or more weeks of
non-weight-bearing can produce changes in magnetic reso-
nance imaging images of knee cartilage that resemble OA.24

However, sex-based differences in the response to joint un-
loading have not been elucidated.

Because articular cartilage health is impacted by the
quality of the underlying bone as well as the strength of
muscles around the joint, assessment of the potential risk for
articular cartilage injury imposed by unloading needs to in-
clude evaluation of all three tissues: bone, muscle, and car-
tilage. There is some evidence to suggest that osteopenia of
subchondral bone underlying articular cartilage contributes
to cartilage degeneration.24,25,26 Conversely, damaged carti-
lage releases receptor activator of nuclear factor kappa-B
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ligand (RANKL) and other inflammatory components, which
can lead to the loss of adjacent bone.27 Since muscles serve to
stabilize and dampen forces across joints,28 loss of muscle
mass and strength after a prolonged unloading can contribute
to joint injury risk and early degenerative joint changes, es-
pecially in the knee. However, sex-based differences in the
relative impact of bone and muscle loss on joint health have
not been defined. Specific interventions to increase load-
bearing or strengthening activities in space will be indicated.
They may also identify the need for progressive strengthen-
ing and joint loading upon arrival on a planetary surface after
extended microgravity exposure, after return from space or
after prolonged period of non-weight-bearing on Earth.

Musculoskeletal injuries have been reported in-flight at a
rate of 0.021 per flight day for men and 0.015 per flight day for
women; hand injuries are the most common, with abrasions
and small lacerations the most common manifestations.29

There are few data on the recovery of the musculoskeletal
system following spaceflight and even less data on sex dif-
ferences in recovery rates. Generally, international space sta-
tion crew have substantial recovery of muscle strength within a
month following flight. The time course of recovery of bone
mineral density has been evaluated but not specifically for sex
differences. In general, half-lives for recovery of bone mineral
density are *150–200 days depending on site.30
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