
Network Theory Tools for RNA Modeling

Namhee Kim,
New York University Department of Chemistry Courant Institute of Mathematical Sciences 251 
Mercer Street New York, NY 10012, USA

Louis Petingi, and
College of Staten Island City University of New York Department of Computer Science 2800 
Victory Boulevard Staten Island, NY 10314, USA louis.petingi@csi.cuny.edu

Tamar Schlick
New York University Department of Chemistry Courant Institute of Mathematical Sciences 251 
Mercer Street New York, NY 10012, USA schlick@nyu.edu

Abstract

An introduction into the usage of graph or network theory tools for the study of RNA molecules is 

presented. By using vertices and edges to define RNA secondary structures as tree and dual 

graphs, we can enumerate, predict, and design RNA topologies. Graph connectivity and associated 

Laplacian eigenvalues relate to biological properties of RNA and help understand RNA motifs as 

well as build, by computational design, various RNA target structures. Importantly, graph 

theoretical representations of RNAs reduce drastically the conformational space size and therefore 

simplify modeling and prediction tasks. Ongoing challenges remain regarding general RNA 

design, representation of RNA pseudoknots, and tertiary structure prediction. Thus, developments 

in network theory may help advance RNA biology.
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“To know what to leave out and what to put in; just where and just how, ah, that is 

to have been educated in knowledge of simplicity.”

– Frank Lloyd Wright.

1 Introduction

Modeling biological systems involves not only choices of what to approximate and how, as 

well as what can be neglected, but also selection of appropriate tools, both existing and new, 

to design and apply to complex problems. Many successes in science can be credited to 

borrowing tools from seemingly disparate fields and applying them in new ways. Examples 

include quantum computing using DNA [1], analyzing DNA recombination products using 
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knot theory [91], storing digital information within DNA [15], modeling economic scenarios 

using game theory [70], and applications of Mandelbrot’s fractal geometry to architecture, 

financial markets and turbulence [63, 64, 65].

Network or graph theory is a well-established field of mathematics that has been used 

extensively in a variety of economic, social, biological, and medical contexts. Essentially, 

foundations of graph the ory can be used to enumerate and analyze combinatorial properties 

of various systems, such as communication, chemical, and biological networks. Specific 

examples include chemical structures (e.g., hydrocarbons, drug compounds) [38, 62], 

genetic and cellular relationship [11, 40, 67, 30, 58], transportation arrays [5], Internet 

linkages [88], and social media communications [35]. In mathematical terms, an undirected 

graph G = (V, E) is a discrete object described by a finite set of vertices V and a set E of 

unordered pair of vertices called edges, where each edge represents a connection between 

two vertices. If E is composed instead of ordered pairs of vertices (each representing 

direction of an edge), G is called a directed graph (digraph). In this work, we describe how 

graphs can be used to model and study RNA structure. See also our recent review [47].

2 RNA Background

RNA has come to the forefront of science with recent discoveries of its regulatory roles [19, 

85]. Beyond protein synthesis, RNA can regulate gene expression and modify the genetic 

message by gene silencing [33], chemical modifications of ribosomal RNAs [2], control of 

protein stability [90], and changing conformations of ligand-binding sites of messenger 

RNA [71, 78, 79, 12].

These new discoveries have also opened new avenues for thinking about therapeutic 

biotechnology applications of RNA, because RNA’s editing, silencing, and other regulatory 

capabilities can be manipulated to shut off and turn on genes, deliver drugs, diagnose gene 

activity, and design new materials [80, 31, 13].

Information on RNA structure comes from experimental information (X-ray 

crystallography, NMR, chemical probing) as well as modeling (e.g., as reviewed in [52]). 

These structures and their analyses have established RNA’s hierarchical structure, in which 

building blocks (motifs) combine stepwise to form complex active shapes of RNA [52, 47]: 

The primary (1D) structure or sequence leads to the seconday (2D) structure – pattern of 

hydrogen bonding arrangements – which in turn triggers tertiary (3D) structure formation, 

created by all interactions including long-range contacts between 2D substructures (see, 

Figure 1). RNA is a single-stranded polymer whose sugar-phosphate backbone contains four 

standard bases, Adenine (A) and Guanine (G), Uracil (U) and Cytosine (C), and their 

modified bases in various order. This single-stranded polymer folds upon itself, to form GC, 

AU, or GU (“wobble”) base pairs which define double-helical regions (“stems”), imperfect 

with single-stranded regions named “hairpin loops”, “internal loops”, and “junctions”, which 

have one, two, or more adjacent helical arms, respectively (see 2D structure elements in 

Figure 2a and Figure 3). When two single-stranded regions flanked by a stem are base-

paired, an interwined RNA structure called pseudoknot forms (see Figure 1; top middle, and 
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top right, for the interwining green and red stems). Long-range interactions between 

secondary structural motifs form complex tertiary network-like structures.

These hierarchical, modular, and network-like features of RNA structures invite 

mathematical and computational approaches to model, analyze, and predict RNA structures 

(see recent reviews [47, 52]). For example, programs for predicting RNA 2D structures by 

free energy minimization [95, 82], folding 3D structures of small RNAs [72, 18], and 

annotating motifs in 2D/3D structures [66, 76] are widely used. Figure 1 shows the 

abstraction of 2D structures as a tree graph and a knot-like graph (called “dual graph”).

3 Graph Theory Approaches to RNA Structure Modeling

3.1 Early Graph Approaches by Waterman, Nussinov and Shapiro

Pioneering modeling of graphs for RNA began in the late 1970s. Waterman developed 

graphical representations of RNA in 1978 with the aim of analyzing the secondary structure 

of tRNA (Figure 2b) [89]. Specifically, he offered the first graph-theoretic definition of 

secondary structure and classified graphs of RNA secondary structures with the goal of 

finding stable 2D structures. These planar graphs were analyzed for base pairing using an 

adjacency matrix. His method allows comparison of two different RNA 2D structures by 

approximating the free energy based on the adjacency matrix representations. In 1989, Le et 

al. also developed the ordered labeled tree representation to compare 2D structures of RNA 

(Figure 2c) [57].

In 1990, Shapiro and coworkers used a tree representation of RNA 2D structures to measure 

structural similarities (Figure 2d) [83]. They developed an algorithm for analyzing multiple 

RNA 2D structures by multiple string alignment. In particular, they defined the tree edit 

distance between two (full) tree 2D structures to quantify the minimum cost (insertion, 

deletion, and replacement of nodes) along an edit path for converting one tree into another. 

Morosetti further studied similarities in tree graph representations by using topology 

connectivity indices known as the Randić index [6]. That is, for a given graph G = (V, E), 

and d(u) representing the number of edges incident at vertex u of G (i.e., the degree of 

vertex u), the Randić index, R(G), is defined in term of the degrees of the vertices as R(G) = 

∑(u,v)∈E(d(u) · d(v))1/2. This index was originally introduced to assess the connectivity in 

chemical graphs as this measure is sensitive to the shape of a chemical cluster.

3.2 RAG Tree and Dual Graphs

In 2003, Schlick and coworkers introduced tree and dual graphical representations of RNA 

2D motifs in a framework called RAG (RNA-As-Graphs) [22, 23, 20, 37] (see Figures 2e, 3 

and 4).

In the RAG tree graphs, RNA 2D structural elements – stems, loops, bulges, and junctions – 

are converted into 2D graphical objects with the following rules: (1) an edge (−) represents a 

double-stranded helical stem with more than one base pair; (2) a vertex (●) represents a 

single strand that occurs in segments connecting secondary structural elements such as 

bulges, loops, and junctions. Here, a bulge motif is considered to be an internal symmetric or 

asymmetric loop with more than one unmatched nucleotide or one unstable base pair.
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Although RAG tree graphs offer an intuitive description of RNA 2D topologies, they cannot 

represent pseudoknots. The dual graph representation translates RNA 2D structure into a 

more abstract graphical model by interchanging the vertices and edges for opposite motifs 

from the translation rules of RAG tree graphs [22, 20, 23, 37]: (1) a vertex (●) represents a 

double-stranded helical stem with more than one base pair; (2) an edge (−) represents a 

single strand that occurs in segments connecting 2D structural elements such as bulges, 

loops, and junctions where a bulge motif is the same as the translation rules of RAG tree 

graphs (i.e., asymmetric loop with more than one unmatched nucleotide or one unstable base 

pair). See Figure 3 for example.

The above definitions can be modified as needed to construct more detailed 2D network 

models [22, 32, 41]. For example, by adding the flow direction on edges (i.e., labeled 

vertices), RNA structures with different starting and ending vertices can be differentiated 

[22, 32, 41]. Currently, in the goal of RNA tertiary structure prediction, Schlick and 

coworkers are developing 3D tree graph representations for parallel and anti-parallel helical 

arrangements with the following additions and modification of vertices and edges to RAG 

tree graphs: (1) additional vertices (●) are set at helix ends; (2) additional edges (−) are set 

to connect RAG tree vertices representing loops to additional proximal vertices; (3) 

additional vertices (●) are set to represent bulges for asymmetric loop with one unmatched 

nucleotide (see Figures 3 and 4). When the geometrical features such as helix lengths and 

angles are added to 3D tree graphs, we can also represent RNA 3D global geometries 

intuitively. See end of Section 4.4 for an overview.

3.3 Advantages of the RAG Representation

The graphical representation of RNA secondary structures makes it possible to apply graph 

theory methods to quantitatively describe topological properties (i.e., topological 

descriptors) of RNA motifs [20, 43].

Let G = (V, E) be an undirected graph and n = ∣V∣; we define the associated Laplace matrix 

(called the Laplacian) M = (mij) as the n × n matrix where

(1)

and the value wij is the number of edges between vertices i and j. The Laplacian thus 

decribes the connectivity of a graph (see Figures 2e and 3 and Ref. [20, 43]). The Laplacian 

eigenvalues λ1, λ2, … , λn are non-negative and real because M is symmetric, and the 

smallest eigenvalue λ1 = 0 [69]; the Laplacian eigenvalues have been extensively studied 

because they describe combinatorial properties of a topology. As an example, a spanning 

tree of a graph G is a minimally connected subgraph (i.e., connected and acyclic) containing 

all the vertices of G. Each RAG tree graph has only one spanning tree, itself, since any 

removal of an edge makes a graph disconnected. For dual graphs, however, this is not the 

case; dual graphs can have several spanning trees. An arbitrary spanning tree can be found 

by an application of Depth First Search [29] under the assumption that G is connected. The 

number of spanning trees of a graph G on n vertices, t(G), can be evaluated as a function of 
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the Laplacian eigenvalues as  [7]. An open problem in extremal graph 

theory, originally proposed in the 1970s [42], is to characterize graphs with maximum 

number of spanning trees (called t-optimal graphs) among all graphs with e edges and n 

vertices (see [42, 14, 74, 75]); t-optimal graphs play an important role in the design of 

reliable communication networks [8, 9] in reliability theory as well as in optimization design 

theory in statistics [14].

The second smallest eigenvalue, λ2, and its corresponding eigenvector, μ2, provide 

information about topological compactness (i.e., algebraic connectivity) and partition 

properties of graphs, respectively. The eigenvalue λ2, also known as the Fiedler eigenvalue 

[21], increases with the compactness of the structure. For example, λ2 is smaller in a linear 

chain than in a branched structure for a family of closely related graphs (see examples in 

Figure 4). Unlike traditional topological connectivity, algebraic connectivity or compactness 

depends on the number of vertices and how they are connected.

The eigenvector μ2 = (v1, v2, … , vn) provides information on how to subdivide a large RNA 

into smaller fragments by using spectral-graph partitioning methods [77] that minimize 

dependencies between fragments. A cut C(A, A’) of a graph G = (V, E) is a set of edges that, 

when removed from G, partitions the set of vertices V into two sets A and A’. The cut-ratio 

Ω(A, A’) of the cut C(A, A’) is defined as ∣C(A, A’)∣/min(∣A∣, ∣A’∣). The idea of spectral 

partitioning is to bisect (i.e., split a set into two sets whose cardinalities differ by at most in 

one) the vertex set V into {i ∈ V : vi > s} and {i ∈ V : vi ≤ s} for given value s. Spielman et 

al. showed that there exists a value s that can be determined in term of the Fiedler 

eigenvalue, for which the bisection of the Fiedler eigenvector yields the best possible cut-

ratio in G [86]. For example, μ2 corresponding to RAG tree graph 52 in Figure 5 is (−0.20, 

0.34, −0.42, −0.42, 0.70). When s is the median of the eigenvector components, −0.20, the 

graph is partitioned into two sets of vertices, {5, 2} and {1, 3, 4}, representing an internal 

loop and a three-way junction, respectively.

Another important graph-theoretical descriptor is the diameter of a graph G = (V, E) which 

is defined as the maximum distance (length of the shortest path) between every pair of 

vertices u, v ∈ V. Intuitively, the diameter represents the maximum possible communication 

delay between a pair of vertices of a graph. Even though the Fiedler eigenvalue and the 

diameter assess different structural properties of graphs, the algebraic connectivity is related 

to the reciprocal of the average distance of a graph. Also 4/(n · λ2) represents a lower bound 

for the diameter of a graph G on n vertices [68].

Laplacian eigenvalues [20, 43], graph diameter [25], and spanning trees are examples of 

topological descriptors widely used to determine properties of graphs. These quantitative 

measures can be used to compare graphs, subdivide graphs into recurring motifs, and 

identify subgraphs [43, 73].

In communication applications, graphs with maximum number of spanning trees are useful 

for reliable network design [74, 75]. Consider a communication network G = (V, E), in 

which edges fail independently (vertices are perfectly reliable) and each edge x fails with 

probability ρx. The all-terminal reliability, RV (G), gives the probability that each pair of 
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vertices u, v ∈ V will remain connected via an operational path after deletion of the failed 

edges. It is not difficult to show that if a graph G0 has maximum number of spanning trees 

(i.e., G0 is t-optimal) among all graphs in a class with equal number of edges e = ∣E∣ and 

vertices n = ∣V∣, Ωn, e), then when edges are failing (i.e., for each edge x the probability of 

failure ρx approaches 1), G0 is also the most reliable graph in Ω(n, e). Thus t-optimal graphs 

play a significant role when characterizing most reliable graphs given a class of graphs Ω(n, 

e).

Independently from this result in graph theory, Cheng [14] discovered in 1982 that the 

optimization problem of characterizing t-optimal graphs in a class of graphs Ω(n, e) is 

equivalent to the optimization problem of characterizing the so-called balanced incomplete-

block designs in statistics (i.e., design of network with specific requirements such as the 

number of objects in each block). We first consider block designs with t treatments to be 

tested on b blocks of size k with k < t. Each statistical experiment can be mapped to a graph 

in Ω(n, e), where n = t + b and e = b * k, and the optimal block design is the experiment 

represented by a t-optimal graph in ω(n, e).

A key advantage of this topological approach is that it reduces the size of RNA space 

enormously. The RAG framework make it possible to enumerate and generate RNA 2D 

topologies, opening a new avenue for predicting novel RNA motifs [22, 43]. For RAG 

unlabeled tree graphs, the number of possible graphs is obtained using the counting 

polynomial derived by Harary and Prins [22, 34]. To enumerate and construct RAG dual 

graphs, probabilistic graph-growing techniques are used [43]. These sets of distinct graphs 

represent libraries of theoretically possible RNA topologies, which include existing and 

hypothetical (“missing”) RNA motifs.

Since not all hypothetical RNA topologies are physically meaningful, Kim et al. predicted 

motifs, named as “RNA-like” motifs, which are more likely to occur in nature than others by 

a learning approach based on known RNAs [43]. They clustered RNA graphs into two 

groups based on topological variables via the transformation of Laplacian eigenvalues and 

predicted novel candidate RNA-like topologies that possess topological properties similar to 

existing RNAs [43]. Based on these predictions, RAG catalogued all RNA graphs into 

existing and RNA-like, and non-RNA-like motifs (http://www.biomath.nyu.edu/rna): see 

Figures 5–7 for RAG segments. Among the ten RNA-like dual graphs with 3 or 4 vertices 

predicted in 2004, five motifs (see C1, C2, C3, C4, and C7 in Figure 6b) have been 

identified in nature with regulatory or catalytic functions [37].

RAG’s systematic catalogue offers a comprehensive search ability and has been used in 

analyzing, designing, and predicting RNA structures [73, 56, 49]. For example, Pasquiali et 

al. analyzed modular pseudoknot architectures by dual subgraph-isomorphism searches in 

large ribosomal RNA [73]. Laserson et al. identified motifs corresponding to antibiotics-

binding motifs in genomes by searching tree graphs [56]. Knisley and coworkers applied 

RAG to predict larger RNA-like structures by merging two small graphs and applying neural 

network analysis [49]. See also [47] for the impact of RAG on the RNA field.
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4 Graph Applications to RNA Structure Prediction

4.1 Motif Analysis

Network analysis applied to RNA structures has identified modular RNA structure which 

are composed of repetitive motifs, in which patterns appear hierarchically, from 2D to 3D 

structure levels. Essentially, motifs are recurring structural elements in RNA molecules.

Statistical analysis of 2D networks helped reveal motif distributions of known RNAs and 

provided improved structural and energetic parameters for 2D structure prediction [94, 24]. 

Zorn et al. annotated paired and unpaired bases in stems, junctions, hairpin loops, bulges, 

and internal loops in ribosomal RNAs and discovered that the paired and unpaired bases in 

structural motifs have characteristic distribution shapes and ranges: the frequency 

distribution of paired bases in stems declines linearly with the number of bases, whereas, for 

unpaired bases in junctions, it has a pronounced peak [94]. Gardner et al. correlated 

structural statistics of hairpins and internal loops to energetic parameters by analyzing 

sequence alignments and 2D structure data sets to improve the accuracy of RNA 2D 

prediction [24].

The RNA 3D network plays an important role in RNA 3D folding and provides models of 

the principles of organization of complex RNA structures [59, 87, 93]. Leontis and Westhof 

developed the network representation rules to represent 3D structure in 2D (including base 

pairing, base-stacking, and basebackbone interactions), which facilitates the discrete models 

and classification of 3D motifs [59]. Using this 3D network representation, they classified 

base pair interactions into 12 geometric families in terms of base pairing and base-stacking 

[59], and catalogued by similar base pair interactions that can be substituted by 

compensatory mutation [87]. Zirbel et al. analyzed and classified 10 base-backbone 

geometrical families based on their hydrogen bond interaction patterns [93].

The Westhof/Leontis 3D network representation and classifications have been used to define 

recurrent 3D motifs in known RNA 3D structures [92, 28, 10]. By manual inspection by 

experts in the field of RNA structure, several 3D motifs have been identified (e.g., coaxial 

helix, A-minor, ribose zipper, and kissing hairpin, see Ref. [92] for the definition of motifs) 

and more continue to be discovered. Recently, the Jaeger and Steinberg groups found new 

3D motifs found common right-angles, twist-joints and double twist-joints motifs in 

ribosomal RNAs and other large RNAs, which establish specific helical arrangements [28, 

10].

The increased repertoire of RNA motifs has stimulated the development and application of 

statistical and computational analysis in RNA structures to better understand the network 

interaction properties of RNA [92, 36]. Xin et al. comprehensively analyzed a data set of 54 

high-resolution RNA crystal structures for motif occurrence and correlations. Specifically, 

they searched seven RNA 3D motifs by various computer programs for motif occurrence 

and correlations (see the resulting frequencies of motifs at http://www.biomath.nyu.edu/

motifs). Pyle and coworkers represented RNA backbone structures using a simplified virtual 

bond system and reported the pseudo-torsional angles focusing on local RNA backbone 
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geometry [36]. Statistics of RNA 3D motifs provide the groundwork for RNA 3D structure 

prediction via networks of restraints.

4.2 Junctions Classification and Prediction

RNA junctions are important structural elements that form when two or more helices come 

together in space in RNA 3D structures associated with 2D structures. The Al-Hashimi, 

Westhof and Schlick groups performed geometrical analysis and classification of 2-way (or 

internal loops), 3-way, and 4-way (and higher-order) junctions, respectively [3, 4, 60, 55, 51, 

50].

Al-Hashimi and coworkers showed that 2D structure features (e.g., loop size) encode 

topological constraints on the 3D helical orientations of 2-way junctions and additional 

long-range contacts serve to stabilize specific helical conformations [3, 4].

Westhof and coworkers classified 3-way junctions to 3 families (called A, B, and C) based 

on coaxial-stacking and orientation of helices, parallel, diagonal, or anti-parallel [60]. They 

also developed an algorithm for automatically predicting the topological family of any RNA 

3-way junction, from given only 2D structure information, based on the parameters derived 

from a data set of 3-way junctions taken from known RNAs [55].

Schlick and coworkers focused on 4-way and higher-order junctions [51, 50, 53]. Laing et 

al. classified 4-way junctions into nine families according to coaxial stacking patterns and 

helical configurations [51]. They further developed a computational tool, called Junction-

Explorer, to predict helical arrangements in 3- and 4-way junctions by a data mining 

approach, known as random forests, which relies on a set of decision trees trained using 

length, sequence, and free energy specified for any given junction [53]. The web server 

Junction-Explorer is freely available at http://bioinformatics.njit.edu/junction. Junction-

Explorer can predict the junction family with an accuracy of 85% for 3-way junctions and 

74% for 4-way junctions. These studies of RNA junctions help understand the global 

interaction network of RNAs and thus have great potential for guiding the challenging task 

of RNA 3D structure prediction.

4.3 In Vitro Selection Modeling In Silico

In the laboratory, new RNAs are designed by an experimental procedure called in vitro 

selection which involves the generation of large random-sequence pools (~1015) and 

screening the random pool for molecules that can perform a specific function such as 

binding to specific targets.

Theoretical analysis of random pools by Gevertz et al. [25] has shown that the random pools 

are biased towards simple topologies (e.g., see aptamer motifs in Figure 8).

Kim et al. [44, 46] developed a computational framework for modeling the in vitro selection 

process with specific targets in mind and provided computational tools for analyzing and 

improving RNA in vitro selection in three ways: by designing structured pools, by 

generating large sequence pools, and by screening target motifs in large pools. The concept 

of the “nucleotide transition probability matrix” was introduced to represent the mixing 
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ratios of nucleotides in synthesis ports. This makes it possible to design sequence pools 

targeting RNA-like topologies that are more likely to be active when produced 

experimentally.

To assist experimentalists, they made available design tools through a web-server, 

RAGPOOLS: RNA-As-Graph-Pools at http://rubin2.biomath.nyu.edu [45]. This work 

represents a first-generation effort to simulate in vitro selection processes in silico and 

exponentially increases the number of quality samples available to experimentalists. 

Efficient modeling has extended the approach to pools of up to 1014 sequences.

Other efforts in this direction include work by Chushak and Stone on generation and 

screening of 108 random-sequence pools for RNA aptamers for binding specific targets 

using a 3D folding and docking algorithms [16]. Luo et al. developed computational 

approaches to generate and evolve DNA pools for five-way junctions [61].

One of main challenges in vitro selection modeling in silico remains 3D structural 

characterization of the products to complement the 2D motif analysis. Advances in the 

prediction of RNA 3D structure require more conceptual breakthroughs to address the global 

positioning of RNA’s 2D structure elements.

4.4 RNA Structure Prediction

RNA’s modular, hierarchical, and network-like properties invite the application of graph 

approaches to RNA structure prediction. The prediction tools of RNA 2D structures from a 

given sequence (e.g., Mfold [95]) using energy minimization are already widely used. An 

alternative approach is the topology-based method, which generates an exhaustive list of all 

possible topologies, and also uses clustering analysis and shape parameters to narrow down 

the promising topologies [43]. Once these topologies are identified, the next step is to 

generate sequences to fold into them. Build-up approaches have been developed for this 

purpose [43].

The prediction of atomic 3D structure based on a given sequence is an ultimate goal of RNA 

structure prediction. Several programs predicting all-atom structures for small RNAs have 

been developed using fragment assembly and energy minimization (FARNA [18]) and 

modular approach using 4-6 nt building blocks called graph cycles (MC-SYM [72]). NAST 

[39] and iFold [84] use coarse-grained approach with one-bead or three-beads model, 

respectively. However, such programs are generally poor at predicting long-range 

interactions and, for higher prediction accuracy, manual manipulation and expert intuition 

are required; see recent reviews [52, 17].

The challenge remains for prediction of larger and more complex RNAs. An intermediate 

step toward 3D atomic structure prediction of any size and shape has been achieved using 

graphical representation to simplify 3D structures and reduce sampling space [26, 27]. 

Gillespie et al. represented RNA backbones as polygonal curves on the 3D triangular lattices 

and simulated the folding of RNA pseudoknots, by considering only the 3D conformations 

that can realize pseudoknot structures in the 3D space given the base pair restrictions [26]. 

Gopal et al. predicted and visualized the average structure of 2D/3D topology ensembles of 
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long viral RNAs (with thousands nucleotides) using enumeration of RAG tree graphs and 

coarse-grained molecular dynamics [27]. Ongoing efforts using graph approaches are aimed 

at predicting helical arrangements given 1D and 2D information via 3D motif constraints.

Currently, Schlick and coworkers are developing a hierarchical RNA folding approach using 

RAG 3D tree graphs and the geometrical analyses of RNA junctions and 3D motifs [54, 48]. 

The approach exploits the advantage of 3D tree graphs to reduce the conformational space 

for RNA and accelerate global sampling of candidate RNA 3D topologies. From given RNA 

2D structures, initial 3D graphs are constructed by a junction family prediction program 

called Junction-Explorer [54]: Junction-Explorer is based on a data mining study that uses 

random trees to predict junction topology based on input feature vectors. The algorithm is 

trained on known RNA junctions. Following initial junction prediction, the Monte Carlo 

graph sampling is performed where each candidate graph is scored by a statistical potential 

energy function that guides preferred local and global conformations [48]. This graph-based 

hierarchical model is being tested on a set of known 3D structures, and shows promise for 

predicting large RNA structures. The translation of graph predictions to atomic models is 

also under current development.

5 Concluding Remarks and Open Problems

Network representations of complex RNA structures have been shown to be useful for 

representing, analyzing, predicting, and designing RNAs. From Waterman’s graph 

approaches [89] to RAG tree and dual graphs [22], these various mathematical objects offer 

an efficient way of visualizing, classifying, and predicting RNA structures.

RAG’s tree and dual graphs exploit the network-like nature of RNA 2D topologies [22, 23, 

20, 37]. The application of graph theory to RAG representations has been used to measure 

overall compactness and enumerate all possible 2D topologies [43, 20]. The cataloguing, 

classification, and clustering of RAG graphs has expanded our understanding of RNAs 

structural repertoire, and allowed us to predict RNA-like topologies [43, 37, 49]. Graph 

enumeration and clustering algorithms have been used to explore RNA-like topologies [43, 

37], and the graph merge method has been developed to predict larger RNA topologies [49]. 

The RAG database has been used to perform topology-based approaches which led to 

prediction of non-coding RNA searches in genomes [56] and submotif searches in larger 

RNAs [73].

Graph representations in combination with network and geometrical analysis have been 

applied to RNA structure prediction in multiple ways. By exploring network properties on 

2D and 3D levels, recurrent motifs have been searched for and identified in known RNAs, 

which lays the groundwork for 3D structure prediction [94, 59, 92]. In particular, the 3D 

geometrical analysis of junction networks are led to topological classification of junction 

family types [3, 4, 60, 55, 51, 50]. To discover new RNAs with RNA-like topologies, the 

RAG catalog has been used to analyze, generate, and design targeted RNA structures to 

ultimately enhance in vitro selection experimental procedures [44, 46, 45]. The substantial 

reduction in conformational space size can enhance RNA structure prediction [26, 27, 54, 

48].
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Graph theory is expected to continue to be a useful tool for representing, analyzing, and 

predicting RNAs; such applications also provide exciting research opportunities in biology 

for mathematical scientists. We end with three open questions that require collaboration 

between mathematicians and biologists:

First, can we develop an alternative approach to clustering approaches for predicting RNA-

like topologies based on the spectrum of a graph? The clustering analysis used previously by 

[43, 37] is based on supervised approaches trained on the whole set of all existing RNA 

topologies. This method has a considerable number of false positives [37]. An alternative 

approach is to identify in the RAG database those graphs that are non-isomorphic but have 

the same eigenvalues, determine which are known in nature, and then explore whether a 

certain spectral pattern lead to a fruitful way to predict novel RNAs. For example, if there 

are three specific non-isomorphic trees with the same spectrum and only one has been found 

experimentally, the other two may be RNA-like and good candidates for design. This 

approach relies on the well-known result in graph theory that two different non-isomorphic 

trees (for the same number of vertices) can have the same eigenvalues; that is, the vertex 

number and the eigenvalues alone cannot uniquely identify a topology.

Second, can we extend the RAG database for design of RNAs by build up by systematic 

identification of RNA submotifs for a target structure and links of submotifs to 1D/3D 

structures from the PDB? This problem involves rigorously identifying submotifs for a 

target structure, which can be an automated search of 3D subgraphs based on subgraph 

isomorphism. Established graph theory properties regarding subgraph isomorphism and 

maximum number of spanning trees could be appropriate here. Ongoing activity on 

determining graphs with maximum number of spanning trees (among graphs with the same 

number of vertices and edges) using the Laplacian eigenvalues and other optimization 

techniques could be valuable here.

Third, can we expand the repertoire of 3D motifs by applying spectral graph partitioning and 

the algebraic connectivity? So far, only a limited number of known 3D motifs has been 

identified and analyzed by manual inspection and computational searches from solved 

RNAs. The application of spectral graph partitioning could be useful to enumerate all 

existing 3D motifs by dividing 3D graphs translated from RNA 3D structures. The 

topological properties of 3D motifs could also be described by the F iedler eigenvalue and 

related to the diameter of the whole structure.

Unlike Frank Lloyd Wright’s architecture, biological macromolecules cannot be made 

arbitrarily simple, but perhaps simplified network representations could lead to more 

innovative and successful approaches for addressing difficult real-life problems in RNA 

structure prediction and design.
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Figure 1. 
RNA’s hierarchical network-like structures from 1D to 3D. The primary (1D), secondary 

(2D), and tertiary (3D) structures associated with fluoride riboswitch (PDB:4NEC [81]) are 

shown. The RAG tree and dual graphs representing its 2D topology without and with 

pseudoknot, respectively, are also shown. The double-stranded or stem regions are colored 

green for tree topologies and red for pseudoknot formation.
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Figure 2. 
Graph theoretical models of an RNA 2D structure for a three-way junction (a) by Waterman, 

Nussinov, Shapiro, and Schlick. (b) Waterman (1978): graphs at base-pair level; (c) 

Nussinov (1989): ordered labeled tree graphs B, I, H, M, and S represent bulge, internal 

loop, bifurcation loop, and single-stranded region, respectively; (d) Shapiro (1990): 

simplified tree graphs where R represent a paired region; (e) Schlick (2003): RAG tree and 

dual graphs.
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Figure 3. 
The RAG translation rules of RNA 2D structures as dual, tree, and 3D tree graphs (as 

developed in our recent work, see text). For each 2D structural element, the associated dual, 

tree, and 3D tree graphs are shown along with Laplacian of the tree graph. RNAs with 

pseudoknot structures can only be presented by a dual graph.
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Figure 4. 
Examples of known RNAs with their RAG represenations: dual, tree, and 3D tree graphs (as 

developed in our recent work, see text). Each RAG graph is also described by the vertex 

number and the second smallest Laplacian eigenvalue.
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Figure 5. 
RNA tree graph library segment. Tree graphs are associated with existing RNAs (from the 

PDB) and classified as RNA-like and non-RNA-like. The eigenvalues of RNA topologies 

are a measure of structural compactness.
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Figure 6. 
RAG tree and dual graphs. (a) The library of topologies of RAG tree graphs between 2 and 

10 vertices, with the second smallest Laplacian eigenvalues (λ2) listed. (b) RAG dual graphs 

between 2 and 4 vertices, with topological classification (tree, bridge, and pseudoknot). The 

status of existing, RNA-like, and non-RNA-like topologies is represented by red, blue, and 

black (dashed), respectively (see text). The motifs in the yellow box indicate the five 

candidate motifs (C1, C2, C3, C4, and C7) as of 2004 [43] which have been identified as 

CPEB3, purine riboswitch, tRNA-like, Tombusvirus 3′ UTR region, and Flavivirus, 

respectively, in the updated RAG as of 2011 [37].
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Figure 7. 
45 RNA-like topologies with 5 vertices predicted by supervised clustering analysis based on 

existing RNAs [37]. The submotifs found in nature are colored red.
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Figure 8. 
Pool screening and filtering analysis for 1012 random-sequence pools for aptamers.
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