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Abstract

Immunotherapy for cancer continues to gain both momentum and legitimacy as a rational mode of 

therapy and a vital treatment component in the emerging era of personalized medicine. Gliomas, 

and their most malignant form, glioblastoma, remain as a particularly devastating solid tumor 

whose standard treatment options proffer only modest efficacy and target specificity. 

Immunotherapy would seem a well-suited choice to address such deficiencies given both the 

modest inherent immunogenicity of gliomas and the strong desire for treatment specificity within 

the confines of the toxicity-averse normal brain. This review highlights the caveats and challenges 

to immunotherapy for primary brain tumors, as well as reviews modalities that have been currently 

employed or are undergoing active investigation. Tumor immunosuppressive counter measures, 

peculiarities of CNS immune access, and opportunities for rational treatment design are discussed.

Introduction

In 2010, the FDA approved two immunotherapies, sipuleucel-T (PROVENGE, Dendreon 

Corp.) (1) and ipilimumab (Yervoy, Bristol-Meyers Squibb) for the treatment of metastatic 

hormone-refractory prostate cancer and metastatic melanoma, respectively, ushering in a 

new era for cancer immunotherapy. The state of such approaches for primary brain tumors 

(most frequently glioblastoma (GBM)) remains, by comparison, in its adolescence, 

sustaining the “growing pains” specific to the immunologic peculiarities of GBM and the 

central nervous system (CNS). This review will highlight the current context, clinical 

applications, and challenges to successful immunotherapy for primary brain tumors, 

focusing on GBM.
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Context: The (Fading) Question of Immune Privilege

In light of historical notions regarding CNS immune privilege, relying on a collection of 

seemingly “brain-banished” immune cells to deliver a strategic anti-tumor “smart bomb” 

would appear ill-advised. Such notions draw their origins from the studies of Medawar in 

the 1940s, in which allogeneic skin grafts transplanted onto the brains of experimental 

animals escaped rejection (2). Subsequent CNS studies highlighted vague nascent antigen 

presentation, low HLA-expression, blood-brain barrier (BBB)-imposed restrictions for 

immune access, and absent lymphatic participation, all conjuring the singular perception of 

the brain as an immunologic void.

As early as the 1980’s, revised views of the CNS as more “immunologically distinct” were 

increasingly advanced (3). Nascent CNS mechanisms for antigen uptake/transport, T-cell 

priming, and immune access are increasingly apparent and remain areas of interest for study. 

It is now accepted that intracerebral antigens move through CSF in the subarachnoid space, 

along the olfactory nerve, and across the cribiform plate to the nasal mucosa, where they 

subsequently drain into cervical lymph nodes (CLN) (4, 5). The CLN may be a requisite 

initiator to adaptive CNS immune responses, possessing unclear interplay with several 

brain-resident glial cells that have the capacity to mediate their own mode of HLA-restricted 

antigen presentation (6).

Regardless, T-cells (and other immune effectors) must be granted access to the CNS in order 

to mediate these primed responses. Restrictions for such access are imposed by the blood-

brain barrier (BBB), which is designed to restrict the promiscuous transport of proteins and 

other molecules from the circulation to the parenchyma, and which also limits immune cell 

transit. The BBB likely does not represent the unpassable seal to immune cell trafficking 

initially purported, however (7). This is particularly true in instances of its disruption, often 

the case in the setting of GBM (8, 9). Even when it remains undamaged, circulating immune 

cells are capable of penetrating an intact BBB to perform routine immune surveillance 

functions (10, 11).

While the molecular events underlying immune trafficking to the CNS are still emerging 

(12), several studies have reported on the chemokines and adhesion molecules that may be 

critical (13), some proposing a “CNS homing” phenotype that may be influenced by T-cell 

expression of the α4β1 integrin (14). Ultimately, the identity and phenotype of immune cells 

penetrating CNS tumors, the means by which they are not infrequently foiled, and the 

possibilities for enhancing their homing capacities and anti-tumor functionality represent 

important are as of investigation.

Clinical Applications: Immunotherapeutic Approaches to GBM

Employed immunotherapeutic modalities for GBM now encompass a wide variety of 

approaches (Table 1, Fig. 1), the major categories of which are discussed below.
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Surface-directed passive immunotherapies (antibodies and targeted toxins)

Antibody and targeted toxin therapies remain some of the oldest investigated 

immunotherapies for brain tumors (reviewed in (15)). The ultimate goal is specific binding 

of a molecule or receptor on the tumor surface, with the deployed agent serving in one of a 

number of defined capacities: as biologic response modifiers (i.e., EGFR blockade) (16) or 

as delivery vehicles for tumoricidal toxins (i.e., diphtheria, pseudomonas) (17, 18) or 

radionucleotides (131I) (19). Many clinical trials have been conducted over the years, most 

of these being Phase I/II studies. Classically, surface targets have included EGFR, tenascin, 

transferrin receptor, and the IL-13 and IL-4 receptors. The non-permissiveness for large 

protein passage across the BBB often limits treatment delivery to intrathecal routes or 

directly into resection cavities, but some recent Phase II successes are reported employing 

systemic antibody delivery to pediatric patients with diffuse intrapontineglioma (where 

delivery into a resection cavity is precluded) (16).

This treatment mode is further limited by the passivity of the instigated immunity, with the 

duration of immune response tethered to the half-life of the agent delivered. Persistent 

treatment effects can develop, but likely depend on the recruitment of subsequent T-cell 

immunity. Some contemporary antibody therapies then aim to solicit and direct T-cells not 

otherwise specific for tumor by employing bi-specificity for a tumor target and the T-cell 

receptor (bispecific T-cell engagers (BiTEs)). These remain in preclinical testing (20).

Adoptive lymphocyte transfer (ALT)

Multiple strategies have looked to precipitate T-cell activation with the most “simple” being 

direct enlistment of T-cells via adoptive lymphocyte transfer (ALT). Here, autologous T-

cells are harvested, trained/expanded/activated ex vivo against tumor, and transferred back to 

patients either alone or in conjunction with other so-handled immune cells, such as dendritic 

cells. In its earlier renditions, ALT included the transfer of a variety of immune populations, 

not just T-cells. These have included peripheral blood mononuclear cells (PBMC) (21); 

lymphokine/mitogen-activated killer cells (LAK) (22); tumor-infiltrating lymphocytes (TIL) 

(23); and cytotoxic T-lymphocytes (CTL) (24, 25), administered either systemically 

(preclinical data supports tumor trafficking (26)) or into the tumor cavity. Targets have 

varied, and newer renditions have combined ALT with active vaccination (27) and/or prior 

myelosuppressive regimens (28) (NCT00693095), in efforts to promote survival and 

functional expansion of the transferred cells in vivo (active trials: NCT0114427, 

NCT01801852).

Beyond ensuring cell survival, an additional “rate-limiting step” for ALT therapy has been 

the generation of large numbers of functional tumor-specific T-cells ex vivo. One solution 

has been the genetic modification of T-cells to express a chimeric antigen receptor (CAR), 

which specifically binds to tumor antigens in an MHC-unrestricted fashion (29, 30). CARs 

are fusion genes comprised of a single-chain variable fragment (scFv) antibody or other 

extracellular domain recognizing the TAA of interest, linked to intracellular signaling 

modules that mediate T-cell activation upon ligation of the CAR’s extracellular domain. 

Upon gene transfer of the CAR into T-cells (using viral vectors or electroporation (31)), the 

transduced T-cell acquires specificity for the targeted TAA, while retaining its endogenous 
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TCR. As a result of this construct, use is limited to cell surface targets, such as IL-13R, 

EGFRvIII, and HER2 (Phase I/II trials are ongoing or recently completed: NCT01454596, 

NCT01109095, NCT00730613, NCT01082926).

Vaccines

Much of the immunotherapeutic work in GBM to date has been vaccine-based. Tumor 

vaccines encompass a broad range of approaches, including cell-based; antigenic; DNA; and 

viral-derived strategies. Most are intended as therapeutic modalities, initiated after tumor 

detection. The most prominent exceptions are cervical and hepatocellular carcinomas, where 

the identification of human papilloma virus and hepatitis B etiologies, respectively (32, 33) 

confers the ability to vaccinate prophylactically against a cancer. The majority of cancers do 

not have an identified microbial precipitant, and the ability to vaccinate against a viral target 

is not similarly afforded. In the case of GBM, the detection of tumor-borne cytomegalovirus 

(CMV) antigens has sparked debate regarding whether CMV might be etiologic or simply 

re-expressed / reactivated in an immunosuppressive local environment (34, 35).

Early tumor vaccines comprised “killed or inactivated” tumor cells, eventually genetically 

engineered to elaborate a variety of immune-stimulating cytokines, most famously, 

granulocyte-macrophage colony-stimulating factor (GM-CSF) (36). Versions of GM-CSF 

secreting tumor cell vaccines have been employed for GBM (37, 38), often revealing 

technical difficulties (38). Current generations are accompanied by an allogeneic tumor cell 

line (K-562) secreting GM-CSF. These have completed Phase I testing, and results await 

publication (NCT00694330).

More commonly, vaccine-based therapies for GBM have employed dendritic cells (DC) 

(39–50), most of which have demonstrated some level of efficacy in phase I/II studies. 

Definitive phase III evidence for efficacy remains lacking, however, and production is labor-

intensive and expensive, with nearly all generating DC from peripheral blood monocytes 

with the aid of GM-CSF and IL-4. DC have been loaded/pulsed with synthetic versions of 

glioma-associated antigens/peptides (41, 51, 52); whole tumor cell lysates (40, 43, 45–48); 

or electroporated/pulsed/transfected with tumor cell or even tumor stem cell RNA (49, 50). 

After loading, DC are often matured with a cocktail (often some combination of TNF–α, 

IL-1β, IL-6, PGE2), or more recently with poly I:C, a dsRNA mimic, prior to being 

delivered, typically intradermally. Presently, there are at least 11 open DC vaccine trials for 

adult and/or pediatric glioma in the U. S. (NCT0108820, NCT01792505, NCT22010606, 

NCT01902771, NCT01635283, NCT01204684, NCT01957956, NCT02049489, 

NCT00626483, NCT00045968, NCT01522820), as well as an additional trial for 

medulloblastoma/PNET (NCT01326104).

In contrast to cell-based vaccines, “antigenic” vaccines involve the delivery of a protein or 

peptide antigen itself, often in conjunction with an immune-stimulating adjuvant. This is, in 

effect, an attempt at in vivo pulsing of nascent DC. Advantages include scalable, “off-the-

shelf” production, but HLA-restrictions and reliance upon potentially dysfunctional nascent 

immune cells impose limitations. Currently identified, glioma-associated antigens (GAAs) 

include IL13Ra2, HER2, gp100, TRP2, EphA2, survivin, WT1, SOX2, SOX11, MAGE-A1, 

MAGE-A3, AIM2, SART1, and CMV proteins. Additionally, EGFRvIII and the IDH-1 
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mutant (R132H) represent truly tumor-specific targets within a subset of tumors, with the 

latter proffering a newly revealed vaccine target containing mostly class II MHC epitopes 

(53). A phase I study is set to begin recruiting (NCT02193347).

To date, peptide vaccine trials in glioma have targeted WT-1 (54, 55) and EGFRvIII (41), 

with ongoing trials targeting collections of GAA, including IL13Ra2, survivin, EphA2, and 

WT-1 (NCT02149225, NCT01920191, NCT02078648). A study targeting the same antigens 

in pediatric glioma continues to show tremendous promise and awaits publication 

(NCT01130077). One of the few phase III immunotherapy trials for gliomais an active study 

(NCT01480479) targeting EGFRvIII. “CDX110-04” is an international, multicenter, double-

blind clinical trial of rindopepimut (EGFRvIII peptide vaccine, Celldex) in which 

approximately 700 patients with newly diagnosed, resected, EGFRvIII positive GBM, upon 

completion of standard chemoradiation, are randomized to receive either rindopepimut/GM-

CSF or control (keyhole limpet hemocyanin), in combination with standard adjuvant 

temozolomide.

A unique tumor cell-derived approach administers essentially multiple non-identified 

peptides in the form of heat shock protein-peptide complexes (HSPPC). HSP are stress-

induced proteins that chaperone intracellular peptides from the proteasome to the 

endoplasmic reticulum, mediating transfer to MHC I. One such HSPPC employing the 

tumor-isolated HSP glycoprotein-96 (gp-96) (HSPPC-96, VItespen, formerly Oncophage), 

has served as a vaccination platform in phase III trials for metastatic melanoma and renal 

cell carcinoma with no survival benefit observed (56, 57). A Phase I study published for 

glioma in 2012 demonstrated safety as well as antigen-specific peripheral immune responses 

in 11/12 treated patients (58). Two further early phase clinical trials are ongoing 

(NCT02122822, NCT01814813, NCT00293423).

There are a variety of viral-based anti-cancer approaches being explored today for GBM, 

ranging from immune-targeting antigen-delivery systems (59–61) to tumor-targeting suicide 

gene delivery vectors (62) to directly oncolytic viruses (63–65). The latter two strategies 

classically employ viruses with specific tissue predilections, with the neural preferences for 

herpes and polioviruses creating roles in glioma (reviewed in (66)). Viruses have also served 

as the antigenic target of interest, and as discussed above, studies have uncovered the 

selective re-expression of latent CMV proteins within glioma cells (34, 35), proffering a 

potent immunologic target. Multiple clinical trials targeting CMV are currently open 

(NCT00626483, NCT01109095, NCT00693095).

Immune checkpoint blockade

The physiologic provisions for routine immunologic shutdown are termed “immune 

checkpoints” and are furnished by molecules on activated T-cells, signaling via which 

precipitates inactivation (CTLA-4) or even apoptosis (PD-1). Conversely, blockade or 

antagonism of these same molecules and their intracellular signaling pathways can 

potentiate T-cell responses, and even render them insensitive to tumor-mediated inhibition 

(67).
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CTLA-4 blockade increases the availability of CD28 co-stimulation, thereby amplifying/

perpetuating T-cell activation and either directly or indirectly inhibiting Treg activity, as 

Tregs similarly express CTLA-4 at high levels (68). Resultant T-cell activation is global and 

antigen non-specific, creating a response that is potent, but not inherently “directed.” 

Promising phase III results led to FDA approval of anti-CTLA-4 (ipilimumab, Bristol Myers 

Squibb) for patients with metastatic melanoma in 2010 (69). Although preclinical studies 

have proven extremely promising (70–72), multi-center clinical trials in GBM are only now 

being initiated (NCT02017717). Clinical experience with CNS disease to date has been 

solely in patients harboring small intracranial melanoma metastases (73), experience which 

proved safe, yielding no instances of CNS autoimmunity.

Programmed death-1 (PD-1, CD279) is a member of the CD28 family expressed on 

activated T cells, B cells, dendritic cells, and macrophages (67, 74). PD-1 engages two 

ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC), both members of the B7 family. PD-L1 is 

expressed on a variety of immune and non-hematopoietic cells, while PD-L2 is restricted to 

myeloid cells. The PD-1 pathway functions to down-modulate inflammatory responses 

under physiological conditions and may be exploited by cancers en route to immunologic 

escape. PD-1 is also highly expressed on Tregs, and signaling enhances their suppressive 

function upon ligand engagement. The molecule is detected on a large proportion of TILs, 

and PD-1 ligands (especially PD-L1) are up-regulated on the surface of numerous tumor 

types, including GBM (67), a phenomenon linked to inferior clinical outcomes in a variety 

of cancers (75–77).

Clinical trials with anti-PD-1 (MDX-1106) and anti-PD-L1 (MDX-1105) monoclonal 

antibodies have been conducted in patients with various solid tumors with promising 

response rates (78). In some contrast to the results with anti-CTLA-4, anti-PD1 mAbs 

appear to be better tolerated, although potentially lethal pneumonitis has been observed (67). 

Clinical trials of anti-PD-1 in GBM are set to begin (NCT02017717) and will employ a 

combination arm with ipilimumab, given an expectation for synergy (72).

Challenges: Designing, Effecting, and Monitoring Our Success

There is no step along the advance from planning to implementing to assessing 

immunotherapeutic deployment that does not pose a defined set of challenges to be 

acknowledged and met. Beginning with trial design, the relative infrequency of GBM limits 

the obtainable power for single institution studies, which have dominated the landscape as 

phase I and II studies to date. Large phase III studies become similarly challenging to 

construct, and a search of clinicaltrials.gov reveals just three active phase III trials that can 

be classified as immune-based therapies (NCT00045968, NCT01759810, NCT01480479), 

all of which have required willing industry sponsors (Northwest Biotherapeutics, NeuroVita 

Clinic, Celldex). Additionally, some trials target newly diagnosed patients, while others 

enlist patients with recurrence, the latter of whom have almost invariably undergone a 

variety of previous regimens, many with potential immunologic consequences. Even “newly 

diagnosed” patients will have typically seen dexamethasone, an established lymphocyte 

modulator and immunosuppressant. Therefore, trial design must standardize across such 

influences, as well as strive for multi-institutional recruitment.
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Once implemented, immunotherapies face a unique set of contextual difficulties posed 

specifically by GBM and the severity of its immunologic influence. GBMs are now 

increasingly recognized as among the most immunosuppressive of solid tumors. Cellular 

immunity is particularly damaged, with T-cell deficits proving both profound and 

widespread (79). A thorough review of glioma’s capacities for soliciting immune-

compromise is beyond the scope of this account, although exists recently in the literature 

(3). A brief introduction is offered here, however.

Therapies aimed at stimulating T-cell immunity depend on some abundance of T-cells, yet 

T-cell lymphopenia is one of the oldest documented immune shortfalls for patients with 

GBM, harkening back to the studies of Brooks and Roszman in the 1970s (80). Often, 

lymphopenia has been attributed to the effects of treatment with chemotherapy 

(temozolomide) and dexamethasone, and while these undoubtedly contribute, increasing 

evidence is that they merely exacerbate a lymphopenia (particularly CD4) that is already 

present in a substantial number of treatment-naïve patients (81). Investigations into the 

source of such lymphopenia are currently underway and yielding interesting results 

regarding compartmental T-cell re-distributions.

Those T-cells that do remain in the circulation are hampered by anergy (82, 83), IL-2 system 

dysfunction (84), TH2-biased responsiveness (85), decreased NKG2D expression (86), and 

inhibition by disproportionate representations of suppressive regulatory T-cells (Tregs) (81), 

all products of uniquely potent GBM systemic influences and extrinsic mechanisms for 

immune-escape. T-cells that do manage activation and tumor-trafficking find themselves 

faced with equally impressive local and intrinsic means of tumor evasion, including more 

Tregs (87), IDO expression (88), down regulated MHC and B7 family proteins (89, 90), 

increased PD-L1 (91), PTEN loss (92), STAT3 expression/activation (93), TGF-β and IL-10 

production (94), MICA/B secretion (95, 96), and HLA-E expression (97), all of which serve 

to sidestep or directly undermine those immune cells present (Fig. 2). Our own sampling of 

TILs in glioma specimens yields phenotypes rich in CD95, PD-1, PD-L1, CTLA-4, LAG3, 

and Tim3, strongly indicating immune exhaustion, defined by poor effector function, 

sustained expression of inhibitory receptors, and an altered transcriptional state (98). We can 

therefore no longer be satisfied with simply “delivering” immune cells to target, but must 

better know the fate of those cells and arrive at standardized biomarker and radiographic 

surrogates/goals for realized immunity across studies. The question is no longer just one of 

privilege.

Conclusions and Future Directions

Over the last three decades, tumor immunotherapy has forged forward with substantial 

strides, constituting a now legitimate and expanding mode of cancer therapy. Successful 

deployment against GBM, however, requires increasing attention to the “immunologic 

idiosyncrasies” of gliomas and their microenvironment. We must acknowledge, understand, 

and counter the limitations imposed by relying on often impaired host cellular immunity to 

mediate our therapies in an immunologically “distinct” compartment. Such striving for 

immunologic potency, however, must be balanced by vigilance for autoimmune toxicities, 

particularly when choosing whole antigen approaches, as the brain is decidedly less tolerant 
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of collateral inflammation than the prostate or skin. Conversely, these concerns must be 

weighed against fears for tumor immune escape when just a single or small number of 

antigens are targeted (99).

Immunotherapy is now poised to be a more ubiquitous component to the ever-emerging 

collage that will be personalized medicine. It will be the responsibility of immunotherapists, 

then, to determine its optimal place in the broadening context of complementary (or even co-

canceling) therapies and tumor genetic backgrounds. GBM, as with cancer more generally, 

is now recognized as a constellation of genetically distinct diseases. The Cancer Genome 

Atlas (TCGA) project’s division of GBM into proneural, neural, classical, and mesenchymal 

classifications highlights tumor phylogenies whose genetic makeup, patient characteristics, 

prognoses, and responses to traditional therapies all vary definitively (100). The 

immunophenotypes and efficacy of various immune-based therapies amidst the tumor 

classes remains almost entirely uncharacterized, however. Such characterization will be an 

important step to developing personalized treatment combinations predicated on 

pathological diagnosis and the genomic technologies highlighted in there view by Gajjar and 

colleagues (101) in this CCR Focus section, and therefore, represents a vital future direction 

for GBM immunotherapy.

Likewise, the revealing of GBM subclasses may hold some relevance for understanding the 

differences between responders and non-responders in immunotherapy trials, as well as 

between patients possessing normal versus defective cellular immunity (often strongly 

dichotomous). Practically speaking, this means that immunotherapy trials should begin to 

incorporate GBM subclass and baseline immunophenotype into patient selection and 

grouping. Pre-treatment factors such as lymphocyte count, steroid exposure, Treg fraction, 

and T-cell phenotype and responsiveness (as well as a variety of not yet determined 

immune-markers) are likely to be just as important as (and possibly related to) proneural 

versus mesenchymal subtype in determining treatment responses and should constitute, at 

the very least, subgroup analyses in trials. Despite the challenges this will pose, it is the 

contextual understanding afforded that will permit us to move from simply proof of concept 

to a realizable goal of therapeutic efficacy.
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Figure 1. 
Targeting typical GBM antigens. Immunotherapy takes a variety of forms that may 

ultimately target glioma surface antigens or antigens expressed in the cytoplasm that are 

processed and presented in the context of MHC class I. In this figure, a sampling of surface 

(left) and intracellular (right) glioma antigens that have been commonly targeted are 

represented, along with pertinent immunotherapeutic effectors. Some of the primary 

modalities targeting surface antigens/receptors are antibodies/ligands (unarmed or armed 

with toxins (black ring) or radionucleotides (red ring)); BiTEs, which recruit T-cells to the 

tumor cell surface; and CAR+ T-cells, which provide surface-antigen specificity to 

otherwise non-reactive T-cells. For intracellular antigens presented in the context of MHC I, 

T-cells are the primary effectors. These may be adoptively transferred (ALT), or activated 

by DC, antigenic, HSPPC, or DNA/viral vaccines. Their activity may also be non-

specifically perpetuated by immune checkpoint blockade with antibodies to CTLA-4 and 

PD-1, for instance, which can also inhibit Treg-mediated T-cell suppression. Recent work to 

build a vaccine against a mutated IDH-1 has revealed mostly class II epitopes for mutation-

spanning peptides, which may provide a target to CD4 T-cells in the context of low levels of 

glioma class II MHC, or may stimulate a CD4 helper response via APC-mediated class II 

MHC presentation to CD4 T-cells.
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Figure 2. 
GBM immuno-evasive and –suppressive mechanisms. GBM employs a variety of 

mechanisms, both cell intrinsic and extrinsic, meant to sidestep or even directly counter host 

immune responses. GBM is pictured here as red cells amongst orange normal brain (glial 

cells). Inset on the left represents magnification of tumor, normal glia, and a CD8 T-cell 

with typical exhausted phenotype. GBM cell-intrinsic mechanisms (visible on inset) include 

IDO expression (leading to recruitment of tumor-associated Tregs (black dotted arrow)) (88), 

down regulated MHC and B7 family proteins (89, 90), increased PD-L1 (91), PTEN loss 

(which can precipitate PD-L1 expression) (92), STAT3 expression/activation (pleotropic 

immunosuppression) (93), TGF-β and IL-10 production (causing counterproductive TH2 

shifts and elaborating Tregs) (94), MICA/B secretion (inhibiting both T- and NK-cell 

activity) (95, 96), and HLA-E expression (inhibiting NK cells) (97). Cell-extrinsic 

mechanisms comprise effects on surrounding and systemic immune cells, and include 

lymhopenia and depressed cellular immunity. Patient T-cells are hampered by anergy (82, 

83), IL-2 system dysfunction (84), TH2-biased responsiveness (85), decreased NKG2D 

expression (86), and inhibition by disproportionate representations of Tregs (81).
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